डेविड प्रमेय का सितारा: Difference between revisions

From Vigyanwiki
No edit summary
Line 53: Line 53:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 09/07/2023]]
[[Category:Created On 09/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:47, 28 July 2023

डेविड स्टार प्रमेय (पास्कल त्रिकोण की पंक्तियों को यहां स्तंभ के रूप में दिखाया गया है)।

डेविड स्टार प्रमेय मुख्य रूप से द्विपद गुणांक के अंकगणितीय गुणों पर प्राप्त होने वाला गणितीय परिणाम है। इसकी खोज हेनरी डब्ल्यू गोल्ड ने सन् 1972 में की थी।

कथन

पास्कल के त्रिभुज में डेविड स्टार आकार के दो त्रिभुजों में से प्रत्येक को बनाने वाले द्विपद गुणांक के सबसे बड़े सामान्य भाजक के समान हैं:

उदाहरण

पास्कल के त्रिभुज की पंक्तियाँ 8, 9, और 10 में उपस्थित हैं।

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

n=9, k=3 या n=9, k=6 के लिए उपयोग किए जाने वाले तत्वों में 84 क्रमों में तत्वों की संख्या 28, 56, 126, 210, 120, 36 से घिरा रहता है। इस प्रकार वैकल्पिक मान का उपयोग करते हुए, हमारे पास gcd(28) मान प्राप्त होता है, इस प्रकार 126, 120) = 2 = जीसीडी(56, 210, 36) के समान हैं।

प्राप्त होने वाले तत्वों में 36 अनुक्रमों में 8, 28, 84, 120, 45, 9 तत्वों से घिरा रहता है, और वैकल्पिक मान लेने पर हमारे पास gcd(8, 84, 45) = 1 = gcd(28, 120, 9) मान प्राप्त होता है।

सामान्यीकरण

उपरोक्त मानों में सबसे बड़ा सामान्य भाजक भी के समान होता है,[1] इस प्रकार उपरोक्त उदाहरण में तत्व 84 इसके सबसे दाहिने स्वरूप के लिए, हमारे पास gcd(70, 56, 28, 8) = 2 भी है। इसके अतिरिक्त इस परिणाम में और भी सामान्यीकरण किया जाता हैं।

संबंधित परिणाम

तीन संख्याओं के दो समुच्चयों मे जिनके बारे में स्टार ऑफ डेविड प्रमेय कहता है कि उनके सबसे बड़े सामान्य भाजक समान हैं, उनके उत्पाद भी समान हैं।[1] यहाँ पर उदाहरण के लिए, फिर से यह देखते हुए कि तत्व 84 क्रम से तत्वों 28, 56, 126, 210, 120, 36 से घिरा रहता है, और पुनः वैकल्पिक मान का उपयोग करते हुए हमारे पास 28×126×120 = 26×33×5×72=56×210×36 मान प्राप्त होता है, इस परिणाम की पुष्टि प्रत्येक द्विपद गुणांक को भाज्य रूप में लिखकर इसका उपयोग करके प्राप्त की जा सकती है,

यह भी देखें

  • तथ्यात्मक और द्विपद विषयों की सूची

संदर्भ

  1. 1.0 1.1 Weisstein, Eric W. "Star of David Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/StarofDavidTheorem.html

बाहरी संबंध