विविधताओं की गणना में प्रत्यक्ष विधि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 14: Line 14:




किसी फलन के मिनिमाइज़र होने के लिए आवश्यक नियम प्राप्त करने के लिए मानक उपकरण यूलर-लैग्रेंज समीकरण है। किन्तु इन्हें संतुष्ट करने वाले फलन के मध्य मिनिमाइज़र की खोज करने से गलत निष्कर्ष निकल सकते हैं यदि मिनिमाइज़र का अस्तित्व पूर्व से स्थापित नहीं है।
किसी फलन के मिनिमाइज़र होने के लिए आवश्यक नियम प्राप्त करने के लिए मानक उपकरण यूलर-लैग्रेंज समीकरण है। किन्तु इन्हें संतुष्ट करने वाले फलन के मध्य मिनिमाइज़र की खोज करने से असत्य निष्कर्ष निकल सकते हैं यदि मिनिमाइज़र का अस्तित्व पूर्व से स्थापित नहीं है।


इस प्रकार से कार्यात्मक <math>J</math> मिनिमाइज़र रखने के लिए इसे नीचे से सीमाबद्ध किया जाना चाहिए। इसका तथ्य यह है
इस प्रकार से कार्यात्मक <math>J</math> मिनिमाइज़र रखने के लिए इसे नीचे से सीमाबद्ध किया जाना चाहिए। इसका तथ्य यह है


:<math>\inf\{J(u)|u\in V\} > -\infty.\,</math>
:<math>\inf\{J(u)|u\in V\} > -\infty.\,</math>
यह स्थिति यह जानने के लिए पर्याप्त नहीं है कि एक मिनिमाइज़र उपस्तिथ है, किन्तु यह एक न्यूनतम अनुक्रम के अस्तित्व को दर्शाता है, अर्थात, <math>V</math> में एक अनुक्रम <math>(u_n)</math> जैसे कि <math>J(u_n) \to \inf\{J(u)|u\in V\}.                                                                                                                                                                              </math>
चूंकि स्थिति को जानने के लिए पर्याप्त नहीं है कि मिनिमाइज़र उपस्तिथ है, किन्तु यह न्यूनतम अनुक्रम के अस्तित्व को दर्शाता है, अर्थात, <math>V</math> में अनुक्रम <math>(u_n)</math> जैसे कि <math>J(u_n) \to \inf\{J(u)|u\in V\}.                                                                                                                                                                              </math>


इस प्रकार से प्रत्यक्ष विधि को निम्नलिखित चरणों में विभाजित किया जा सकता है
इस प्रकार से प्रत्यक्ष विधि को निम्नलिखित चरणों में विभाजित किया जा सकता है
#<math>J</math> के लिए न्यूनतम अनुक्रम <math>(u_n)</math> लें
#<math>J</math> के लिए न्यूनतम अनुक्रम <math>(u_n)</math> मान लीजिये
#दिखाएँ कि <math>(u_n)</math> कुछ अनुवर्ती (u_{n_k}) को स्वीकार करता है, जो <math>V</math> पर टोपोलॉजी <math>\tau</math> के संबंध में <math>u_0\in V</math> में परिवर्तित होता है।
#दिखाएँ गए <math>(u_n)</math> कुछ अनुवर्ती (u_{n_k}) को स्वीकार करता है, जो की <math>V</math> पर टोपोलॉजी <math>\tau</math> के संबंध में <math>u_0\in V</math> में परिवर्तित होता है।
#दिखाएँ कि टोपोलॉजी <math>\tau</math> के संबंध में <math>J</math> क्रमिक रूप से [[निचला अर्ध-निरंतर]] है  .
#मान लीजिये टोपोलॉजी <math>\tau</math> के संबंध में <math>J</math> क्रमिक रूप से [[निचला अर्ध-निरंतर]] है  .


यह देखने के लिए कि यह मिनिमाइज़र के अस्तित्व को दर्शाता है, क्रमिक रूप से निम्न-अर्ध-निरंतर कार्यों के निम्नलिखित लक्षण वर्णन पर विचार करें।
इस प्रकार से यह देखने के लिए मिनिमाइज़र के अस्तित्व को दर्शाता है, अतः क्रमिक रूप से निम्न-अर्ध-निरंतर कार्यों के निम्नलिखित लक्षण वर्णन पर विचार करें।
:फलन <math>J</math> यदि क्रमिक रूप से निम्न-अर्धनिरंतर है
:फलन <math>J</math> यदि क्रमिक रूप से निम्न-अर्धनिरंतर है
::मान लीजिये <math>V</math> में किसी भी अभिसरण अनुक्रम <math>u_n \to u_0</math> के लिए <math>\liminf_{n\to\infty} J(u_n) \geq J(u_0)</math> से निष्कर्ष निकलता है
::मान लीजिये <math>V</math> में किसी भी अभिसरण अनुक्रम <math>u_n \to u_0</math> के लिए <math>\liminf_{n\to\infty} J(u_n) \geq J(u_0)</math> से निष्कर्ष निकलता है


इस प्रकार से निष्कर्ष निकलता है
इस प्रकार से निष्कर्ष निकलता है:
:<math>\inf\{J(u)|u\in V\} = \lim_{n\to\infty} J(u_n) = \lim_{k\to \infty} J(u_{n_k}) \geq J(u_0) \geq \inf\{J(u)|u\in V\}</math>,
:<math>\inf\{J(u)|u\in V\} = \lim_{n\to\infty} J(u_n) = \lim_{k\to \infty} J(u_{n_k}) \geq J(u_0) \geq \inf\{J(u)|u\in V\}</math>,
दूसरे शब्दों में
:दूसरे शब्दों में जहाँ:
 
:<math>J(u_0) = \inf\{J(u)|u\in V\}</math>.
:<math>J(u_0) = \inf\{J(u)|u\in V\}</math>.


Line 38: Line 39:


=== बनच समष्टि ===
=== बनच समष्टि ===
इस प्रकार से प्रत्यक्ष विधि को प्रायः सफलता के साथ प्रयुक्त किया जा सकता है जब समष्टि <math>V</math> एक अलग करने योग्य [[ प्रतिवर्ती स्थान |वियोज्य रिफ्लेक्सिव]] [[ बनच स्थान |बनच]] समष्टि <math>W</math> का एक उपसमूह होता है। इस स्तिथियों में अनुक्रमिक बनच-अलाओग्लू प्रमेय का तात्पर्य है कि <math>V</math> में किसी भी बंधे हुए अनुक्रम <math>(u_n)</math> का एक परिणाम होता है जो <math>W</math> में कुछ <math>u_0</math> में परिवर्तित हो जाता है। [[कमजोर टोपोलॉजी|अशक्त टोपोलॉजी]] के संबंध में. यदि <math>V</math>, को <math>W</math>, में क्रमिक रूप से संवृत किया गया है, ताकि <math>u_0</math> <math>V</math> में हो, तो प्रत्यक्ष विधि को कार्यात्मक <math>J:V\to\bar{\mathbb{R}}</math> पर दिखाकर प्रयुक्त किया जा सकता है
इस प्रकार से प्रत्यक्ष विधि को प्रायः सफलता के साथ प्रयुक्त किया जा सकता है जब समष्टि <math>V</math> एक अलग करने योग्य [[ प्रतिवर्ती स्थान |वियोज्य रिफ्लेक्सिव]] [[ बनच स्थान |बनच]] समष्टि <math>W</math> का एक उपसमूह होता है। इस स्तिथियों में अनुक्रमिक बनच-अलाओग्लू प्रमेय का तात्पर्य है कि <math>V</math> में किसी भी बंधे हुए अनुक्रम <math>(u_n)</math> का एक परिणाम होता है जो <math>W</math> में कुछ <math>u_0</math> में परिवर्तित हो जाता है। और [[कमजोर टोपोलॉजी|अशक्त टोपोलॉजी]] के संबंध में. यदि <math>V</math>, को <math>W</math>, में क्रमिक रूप से संवृत किया गया है, जिससे <math>u_0</math> <math>V</math> में हो, तब प्रत्यक्ष विधि को कार्यात्मक <math>J:V\to\bar{\mathbb{R}}</math> पर दिखाकर प्रयुक्त किया जा सकता है


# <math>J</math> नीचे से घिरा हुआ है,  
# <math>J</math> नीचे से घिरा हुआ है,  
#<math>J</math> के लिए कोई भी न्यूनतम अनुक्रम परिबद्ध है, और
#<math>J</math> के लिए कोई भी न्यूनतम अनुक्रम परिबद्ध है,
# <math>J</math> अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है, अर्थात , किसी भी अशक्त अभिसरण अनुक्रम <math>u_n \to u_0</math> के लिए यह <math>\liminf_{n\to\infty} J(u_n) \geq J(u_0)</math> रखता है.
# <math>J</math> अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है, अर्थात , किसी भी अशक्त अभिसरण अनुक्रम <math>u_n \to u_0</math> के लिए यह <math>\liminf_{n\to\infty} J(u_n) \geq J(u_0)</math> रखता है.
दूसरा भाग सामान्यतः यह दिखाकर पूरा किया जाता है कि <math>J</math> कुछ विकास की स्थिति को स्वीकार करता है। एक उदाहरण है
दूसरा भाग सामान्यतः यह दिखाकर पूरा किया जाता है कि <math>J</math> कुछ विकास की स्थिति को स्वीकार करता है। इस प्रकार से उदाहरण है
:<math>J(x) \geq \alpha \lVert x \rVert^q - \beta</math> कुछ के लिए <math>\alpha > 0</math>, <math>q \geq 1</math> और <math>\beta \geq 0</math>.
:<math>J(x) \geq \alpha \lVert x \rVert^q - \beta</math> कुछ के लिए <math>\alpha > 0</math>, <math>q \geq 1</math> और <math>\beta \geq 0</math>.
इस संपत्ति के साथ एक कार्यात्मक को कभी-कभी प्रमुख्य कहा जाता है। प्रत्यक्ष विधि प्रयुक्त करते समय अनुक्रमिक निचली अर्ध-निरंतरता दिखाना सामान्यतः अधिक समष्टि भाग होता है। कार्यात्मकताओं के सामान्य वर्ग के लिए कुछ प्रमेयों के लिए नीचे देखें
इस गुण के साथ एक कार्यात्मक को कभी-कभी प्रमुख्य कहा जाता है। प्रत्यक्ष विधि प्रयुक्त करते समय अनुक्रमिक निचली अर्ध-निरंतरता दिखाना सामान्यतः अधिक समष्टि भाग होता है। कार्यात्मकताओं के सामान्य वर्ग के लिए कुछ प्रमेयों के लिए नीचे देखें


=== सोबोलेव समष्टि ===
=== सोबोलेव समष्टि ===
Line 68: Line 69:
:मान लीजिए <math>F</math> फलन है जिसमें निम्नलिखित गुण हैं:
:मान लीजिए <math>F</math> फलन है जिसमें निम्नलिखित गुण हैं:
:# फलन <math>F</math> कैराथिओडोरी फलन है।
:# फलन <math>F</math> कैराथिओडोरी फलन है।
:# होल्डर संयुग्मित <math>q = \tfrac{p}{p-1}</math> और <math>b \in L^1(\Omega)</math> के साथ <math>a\in L^q(\Omega, \mathbb{R}^{mn})</math> इस प्रकार उपस्तिथ है कि निम्नलिखित असमानता लगभग हर <math>x \in \Omega</math> और हर <math>(y, A) \in \mathbb{R}^m \times \mathbb{R}^{mn}</math> के लिए सही है, यहां <math>F(x, y, A) \geq \langle a(x) ,  A \rangle + b(x)</math>, <math>A</math> में <math>\mathbb{R}^{mn}</math> <math>\langle a(x) ,  A \rangle</math> और <math>a(x)</math> के फ्रोबेनियस आंतरिक उत्पाद को दर्शाता है।
:# होल्डर संयुग्मित <math>q = \tfrac{p}{p-1}</math> और <math>b \in L^1(\Omega)</math> के साथ <math>a\in L^q(\Omega, \mathbb{R}^{mn})</math> इस प्रकार उपस्तिथ है कि निम्नलिखित असमानता लगभग सभी <math>x \in \Omega</math> और <math>(y, A) \in \mathbb{R}^m \times \mathbb{R}^{mn}</math> के लिए सही है, जहाँ <math>F(x, y, A) \geq \langle a(x) ,  A \rangle + b(x)</math>, <math>A</math> में <math>\mathbb{R}^{mn}</math> <math>\langle a(x) ,  A \rangle</math> और <math>a(x)</math> के फ्रोबेनियस आंतरिक उत्पाद को दर्शाता है।
:यदि फलन <math>A \mapsto F(x, y, A)</math> लगभग हर के लिए उत्तल है <math>x \in \Omega</math> और हर <math>y\in \mathbb{R}^m</math>,
:यदि फलन <math>A \mapsto F(x, y, A)</math> लगभग सभी के लिए उत्तल है <math>x \in \Omega</math> और हर <math>y\in \mathbb{R}^m</math>,
:तब <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है।
:तब <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है।


जब <math>n = 1</math> या <math>m = 1</math> निम्नलिखित व्युत्क्रम-जैसा प्रमेय मान्य है<ref>Dacorogna, pp. 66&ndash;74.</ref>
जब <math>n = 1</math> या <math>m = 1</math> निम्नलिखित व्युत्क्रम-जैसा प्रमेय मान्य है<ref>Dacorogna, pp. 66&ndash;74.</ref>
:ये मान लीजिए <math>F</math> निरंतर है और संतुष्ट करता है
:मान लीजिए <math>F</math> निरंतर है और संतुष्ट करता है
::<math>| F(x, y, A) | \leq a(x, | y |, | A |)</math>
::<math>| F(x, y, A) | \leq a(x, | y |, | A |)</math>
:मान लीजिये प्रत्येक <math>(x, y, A)</math>और एक निश्चित फलन <math>a(x, |y|, |A|)</math> के लिए <math>|y|</math>और <math>|A|</math> में बढ़ रहा है और <math>x</math> में स्थानीय रूप से पूर्णांकित है यदि <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, तो किसी दिए गए <math>(x, y) \in \Omega \times \mathbb{R}^m</math> के लिए फलन <math>A \mapsto F(x, y, A)</math> उत्तल है।
:मान लीजिये प्रत्येक <math>(x, y, A)</math>और निश्चित फलन <math>a(x, |y|, |A|)</math> के लिए <math>|y|</math>और <math>|A|</math> में बढ़ रहा है और <math>x</math> में स्थानीय रूप से पूर्णांकित है यदि <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, तो किसी दिए गए <math>(x, y) \in \Omega \times \mathbb{R}^m</math> के लिए फलन <math>A \mapsto F(x, y, A)</math> उत्तल है।
:
:
निष्कर्षतः, जब <math>m = 1</math> या <math>n = 1</math>, कार्यात्मक <math>J</math>, उचित विकास और सीमा <math>F</math> को मानते हुए , अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है यदि, और केवल यदि फलन <math>A \mapsto F(x, y, A)</math> उत्तल है.
निष्कर्षतः, जब <math>m = 1</math> या <math>n = 1</math>, कार्यात्मक <math>J</math>, उचित विकास और सीमा <math>F</math> को मानते हुए , अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है यदि, और केवल यदि फलन <math>A \mapsto F(x, y, A)</math> उत्तल है.


चूंकि , ऐसे अनेक रोचक स्तिथि हैं जहाँ कोई यह नहीं मान सकता कि <math>F</math> उत्तल है. निम्नलिखित प्रमेय<ref>Acerbi-Fusco</ref> उत्तलता की अशक्त धारणा का उपयोग करके अनुक्रमिक निम्न अर्ध-निरंतरता प्रमाणित करता है:  
चूंकि , ऐसे अनेक रोचक स्तिथि हैं जहाँ कोई यह नहीं मान सकता कि <math>F</math> उत्तल है. निम्नलिखित प्रमेय<ref>Acerbi-Fusco</ref> उत्तलता की अशक्त धारणा का उपयोग करके अनुक्रमिक निम्न अर्ध-निरंतरता प्रमाणित करता है:  
:ये मान लीजिए <math>F: \Omega \times \mathbb{R}^m \times \mathbb{R}^{mn} \to [0, \infty)</math> फलन है जिसमें निम्नलिखित गुण हैं:
:मान लीजिए <math>F: \Omega \times \mathbb{R}^m \times \mathbb{R}^{mn} \to [0, \infty)</math> फलन है जिसमें निम्नलिखित गुण हैं:
:# फलन <math>F</math> कैराथिओडोरी फलन है।
:# फलन <math>F</math> कैराथिओडोरी फलन है।
:#फलन <math>F</math> में कुछ <math>p>1</math> के लिए <math>p</math>-वृद्धि है, एक स्थिर <math>C</math> उपस्तिथ है जैसे कि प्रत्येक <math>y \in \mathbb{R}^m</math> के लिए और [[लगभग हर|लगभग]] प्रत्येक '''<math>x \in \Omega</math> <math>| F(x, y, A) | \leq C(1+|y|^p + |A|^p)</math>''' के लिए
:#फलन <math>F</math> में कुछ <math>p>1</math> के लिए <math>p</math>-वृद्धि है, एक स्थिर <math>C</math> उपस्तिथ है जैसे कि प्रत्येक <math>y \in \mathbb{R}^m</math> के लिए और [[लगभग हर|लगभग]] प्रत्येक '''<math>x \in \Omega</math> <math>| F(x, y, A) | \leq C(1+|y|^p + |A|^p)</math>''' के लिए है,
:#प्रत्येक <math>y \in \mathbb{R}^m</math> के लिए और लगभग प्रत्येक <math>x \in \Omega</math> के लिए फलन <math>A \mapsto F(x, y, A) </math> क्वासिकोनवेक्स है: एक घन <math>D \subseteq \mathbb{R}^n</math> उपस्तिथ है जैसे कि प्रत्येक <math>A \in \mathbb{R}^{mn}, \varphi \in W^{1,\infty}_0(\Omega, \mathbb{R}^m)</math> के लिए यह धारण करता है:
:#प्रत्येक <math>y \in \mathbb{R}^m</math> के लिए और लगभग प्रत्येक <math>x \in \Omega</math> के लिए फलन <math>A \mapsto F(x, y, A) </math> क्वासिकोनवेक्स है: जहाँ घन <math>D \subseteq \mathbb{R}^n</math> उपस्तिथ है जैसे कि प्रत्येक <math>A \in \mathbb{R}^{mn}, \varphi \in W^{1,\infty}_0(\Omega, \mathbb{R}^m)</math> के लिए यह धारण करता है:
<math display=block> F(x, y, A) \leq |D|^{-1} \int_D F(x, y, A+ \nabla \varphi (z))dz </math>
<math display=block> F(x, y, A) \leq |D|^{-1} \int_D F(x, y, A+ \nabla \varphi (z))dz </math>
:::जहाँ <math>|D|</math> का [[आयतन]] <math>D</math> है .
:::जहाँ <math>|D|</math> का [[आयतन]] <math>D</math> है .
:तब <math>J</math>, <math> W^{1,p}(\Omega,\mathbb{R}^m) </math> में क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है .
:जब <math>J</math>, <math> W^{1,p}(\Omega,\mathbb{R}^m) </math> में क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है .


इस स्तिथियों में व्युत्क्रम जैसा प्रमेय निम्नलिखित है:<ref>Dacorogna, pp. 156.</ref>
इस स्तिथियों में व्युत्क्रम जैसा प्रमेय निम्नलिखित है:<ref>Dacorogna, pp. 156.</ref>
:मान लीजिए <math>F</math> निरंतर है और संतुष्ट करता है
:मान लीजिए <math>F</math> निरंतर है और संतुष्ट करता है
::<math>| F(x, y, A) | \leq a(x, | y |, | A |)</math>
::<math>| F(x, y, A) | \leq a(x, | y |, | A |)</math>
:प्रत्येक <math>(x, y, A)</math> और <math>|y|</math>, में बढ़ते हुए एक निश्चित फलन <math>a(x, |y|, |A|)</math> के लिए और <math>|A|</math> और <math>x</math> में स्थानीय रूप से एकीकृत यदि <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, तो किसी दिए गए <math>(x, y) \in \Omega \times \mathbb{R}^m</math> के लिए फलन <math>A \mapsto F(x, y, A)</math> क्वासिकोनवेक्स है। यह दावा तब भी सत्य है जब दोनों <math>m, n</math> से बड़े <math>1</math> हों और पूर्व के पश्चात से मेल खाते हों जब <math>m = 1</math> या <math>n = 1</math>, हो तब से quasiconvexity उत्तलता के समान है।
:प्रत्येक <math>(x, y, A)</math> और <math>|y|</math>, में बढ़ते हुए एक निश्चित फलन <math>a(x, |y|, |A|)</math> के लिए और <math>|A|</math> और <math>x</math> में स्थानीय रूप से एकीकृत यदि <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, जब किसी दिए गए <math>(x, y) \in \Omega \times \mathbb{R}^m</math> के लिए फलन <math>A \mapsto F(x, y, A)</math> क्वासिकोनवेक्स है। यह दावा तब भी सत्य है जब दोनों <math>m, n</math> से बड़े <math>1</math> हों और पूर्व के पश्चात से मेल खाते हों जब <math>m = 1</math> या <math>n = 1</math>, हो तब से quasiconvexity उत्तलता के समान है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Revision as of 11:28, 21 July 2023



गणित में, विविधताओं की गणना में प्रत्यक्ष विधि किसी दिए गए फलन (गणितीय) के लिए मिनिमाइज़र के अस्तित्व का प्रमाण बनाने की एक सामान्य विधि है,[1] जिसे 1900 के समीप स्टैनिस्लाव ज़रेम्बा और डेविड हिल्बर्ट द्वारा प्रस्तुत किया गया था। और यह विधि कार्यात्मक विश्लेषण और टोपोलॉजी के विधियों पर निर्भर करती है। किसी समाधान के अस्तित्व को प्रमाणित करने के लिए उपयोग किए जाने के साथ-साथ, वांछित स्पष्टतः के समाधान की गणना करने के लिए प्रत्यक्ष विधियों का उपयोग किया जा सकता है।[2]

विधि

इस प्रकार से विविधताओं की कैलकुलस कार्यात्मकताओं फलन से संबंधित है जहां कुछ फलन समिष्ट है और विषय का मुख्य हित ऐसे फलन के लिए मिनिमाइज़र रूप से दर्शाना है, अर्थात फलन जैसे कि:



किसी फलन के मिनिमाइज़र होने के लिए आवश्यक नियम प्राप्त करने के लिए मानक उपकरण यूलर-लैग्रेंज समीकरण है। किन्तु इन्हें संतुष्ट करने वाले फलन के मध्य मिनिमाइज़र की खोज करने से असत्य निष्कर्ष निकल सकते हैं यदि मिनिमाइज़र का अस्तित्व पूर्व से स्थापित नहीं है।

इस प्रकार से कार्यात्मक मिनिमाइज़र रखने के लिए इसे नीचे से सीमाबद्ध किया जाना चाहिए। इसका तथ्य यह है

चूंकि स्थिति को जानने के लिए पर्याप्त नहीं है कि मिनिमाइज़र उपस्तिथ है, किन्तु यह न्यूनतम अनुक्रम के अस्तित्व को दर्शाता है, अर्थात, में अनुक्रम जैसे कि

इस प्रकार से प्रत्यक्ष विधि को निम्नलिखित चरणों में विभाजित किया जा सकता है

  1. के लिए न्यूनतम अनुक्रम मान लीजिये
  2. दिखाएँ गए कुछ अनुवर्ती (u_{n_k}) को स्वीकार करता है, जो की पर टोपोलॉजी के संबंध में में परिवर्तित होता है।
  3. मान लीजिये टोपोलॉजी के संबंध में क्रमिक रूप से निचला अर्ध-निरंतर है  .

इस प्रकार से यह देखने के लिए मिनिमाइज़र के अस्तित्व को दर्शाता है, अतः क्रमिक रूप से निम्न-अर्ध-निरंतर कार्यों के निम्नलिखित लक्षण वर्णन पर विचार करें।

फलन यदि क्रमिक रूप से निम्न-अर्धनिरंतर है
मान लीजिये में किसी भी अभिसरण अनुक्रम के लिए से निष्कर्ष निकलता है

इस प्रकार से निष्कर्ष निकलता है:

,
दूसरे शब्दों में जहाँ:
.

विवरण

बनच समष्टि

इस प्रकार से प्रत्यक्ष विधि को प्रायः सफलता के साथ प्रयुक्त किया जा सकता है जब समष्टि एक अलग करने योग्य वियोज्य रिफ्लेक्सिव बनच समष्टि का एक उपसमूह होता है। इस स्तिथियों में अनुक्रमिक बनच-अलाओग्लू प्रमेय का तात्पर्य है कि में किसी भी बंधे हुए अनुक्रम का एक परिणाम होता है जो में कुछ में परिवर्तित हो जाता है। और अशक्त टोपोलॉजी के संबंध में. यदि , को , में क्रमिक रूप से संवृत किया गया है, जिससे में हो, तब प्रत्यक्ष विधि को कार्यात्मक पर दिखाकर प्रयुक्त किया जा सकता है

  1. नीचे से घिरा हुआ है,
  2. के लिए कोई भी न्यूनतम अनुक्रम परिबद्ध है,
  3. अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है, अर्थात , किसी भी अशक्त अभिसरण अनुक्रम के लिए यह रखता है.

दूसरा भाग सामान्यतः यह दिखाकर पूरा किया जाता है कि कुछ विकास की स्थिति को स्वीकार करता है। इस प्रकार से उदाहरण है

कुछ के लिए , और .

इस गुण के साथ एक कार्यात्मक को कभी-कभी प्रमुख्य कहा जाता है। प्रत्यक्ष विधि प्रयुक्त करते समय अनुक्रमिक निचली अर्ध-निरंतरता दिखाना सामान्यतः अधिक समष्टि भाग होता है। कार्यात्मकताओं के सामान्य वर्ग के लिए कुछ प्रमेयों के लिए नीचे देखें

सोबोलेव समष्टि

इस प्रकार से विविधताओं की गणना में विशिष्ट कार्यात्मकता प्रपत्र का अभिन्न अंग है

जहाँ का उपसमुच्चय है और पर वास्तविक-मूल्यवान फलन है. का तर्क भिन्न फलन है , और इसका जैकोबियन को -सदिश से पहचाना जाता है।

यूलर-लैग्रेंज समीकरण प्राप्त करते समय, सामान्य दृष्टिकोण यह मान लेना है कि के पास सीमा है और के लिए परिभाषा का क्षेत्र है। सर्वोच्च मानदंड से संपन्न होने पर यह स्थान एक बनच समष्टि है, किन्तु यह प्रतिवर्ती नहीं है। प्रत्यक्ष विधि को प्रयुक्त करते समय, कार्यात्मकता को सामान्यतः सोबोलेव समष्टि पर , के साथ परिभाषित किया जाता है जो एक रिफ्लेक्सिव बानाच समष्टि है। के सूत्र में के व्युत्पन्न को तब अशक्त व्युत्पन्न के रूप में लिया जाना चाहिए।

एक अन्य सामान्य फलन समिष्ट है जो फलन के का एफ़िन सब समिष्ट है जिसका ट्रेस ट्रेस ऑपरेटरकी छवि में कुछ निश्चित फलन है। यह प्रतिबंध कार्यात्मक के न्यूनतमकर्ताओं को खोजने की अनुमति देता है जो कुछ वांछित सीमा नियम को पूर्ण करते हैं। यह डिरिचलेट सीमा नियम के साथ यूलर-लैग्रेंज समीकरण को हल करने के समान है। इसके अतिरिक्त ऐसी पतिस्थिति हैं जिनमें में मिनिमाइज़र हैं किन्तु में नहीं हैं। सीमा पर मूल्यों को सीमित करते हुए न्यूनतमकरण समस्याओं को हल करने के विचार को फलन समिष्ट को देखकर और अधिक सामान्यीकृत किया जा सकता है जहां ट्रेस केवल सीमा के एक भाग पर तय किया गया है, और अन्य पर अनेैतिक रूप से हो सकता है.

सीमा पर मूल्यों को सीमित करते हुए न्यूनतमकरण समस्याओं को हल करने के विचार को फलन समष्टि को देखकर और अधिक सामान्यीकृत किया जा सकता है जहां ट्रेस केवल सीमा के भाग पर तय किया गया है, और अनेैतिक रूप से हो सकता है।

इस प्रकार से अगला भाग उपरोक्त प्रकार के फलन की अशक्त अनुक्रमिक निचली अर्ध-निरंतरता के संबंध में प्रमेय प्रस्तुत करता है।

अभिन्नों की अनुक्रमिक निचली अर्ध-निरंतरता

विभिन्नताओं के कलन में जितने प्रकार्य हैं, वे उसी प्रकार के हैं

,

जहां विवृत है, फलन को दर्शाने करने वाले प्रमेय जिसके लिए , के साथ में अशक्त रूप से क्रमिक रूप से निम्न-अर्धनिरंतर है, अधिक महत्वपूर्ण है।

सामान्य किसी के पास निम्नलिखित होते हैं:[3]

मान लीजिए फलन है जिसमें निम्नलिखित गुण हैं:
  1. फलन कैराथिओडोरी फलन है।
  2. होल्डर संयुग्मित और के साथ इस प्रकार उपस्तिथ है कि निम्नलिखित असमानता लगभग सभी और के लिए सही है, जहाँ , में और के फ्रोबेनियस आंतरिक उत्पाद को दर्शाता है।
यदि फलन लगभग सभी के लिए उत्तल है और हर ,
तब क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है।

जब या निम्नलिखित व्युत्क्रम-जैसा प्रमेय मान्य है[4]

मान लीजिए निरंतर है और संतुष्ट करता है
मान लीजिये प्रत्येक और निश्चित फलन के लिए और में बढ़ रहा है और में स्थानीय रूप से पूर्णांकित है यदि क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, तो किसी दिए गए के लिए फलन उत्तल है।

निष्कर्षतः, जब या , कार्यात्मक , उचित विकास और सीमा को मानते हुए , अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है यदि, और केवल यदि फलन उत्तल है.

चूंकि , ऐसे अनेक रोचक स्तिथि हैं जहाँ कोई यह नहीं मान सकता कि उत्तल है. निम्नलिखित प्रमेय[5] उत्तलता की अशक्त धारणा का उपयोग करके अनुक्रमिक निम्न अर्ध-निरंतरता प्रमाणित करता है:

मान लीजिए फलन है जिसमें निम्नलिखित गुण हैं:
  1. फलन कैराथिओडोरी फलन है।
  2. फलन में कुछ के लिए -वृद्धि है, एक स्थिर उपस्तिथ है जैसे कि प्रत्येक के लिए और लगभग प्रत्येक के लिए है,
  3. प्रत्येक के लिए और लगभग प्रत्येक के लिए फलन क्वासिकोनवेक्स है: जहाँ घन उपस्तिथ है जैसे कि प्रत्येक के लिए यह धारण करता है:

जहाँ का आयतन है .
जब , में क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है .

इस स्तिथियों में व्युत्क्रम जैसा प्रमेय निम्नलिखित है:[6]

मान लीजिए निरंतर है और संतुष्ट करता है
प्रत्येक और , में बढ़ते हुए एक निश्चित फलन के लिए और और में स्थानीय रूप से एकीकृत यदि क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, जब किसी दिए गए के लिए फलन क्वासिकोनवेक्स है। यह दावा तब भी सत्य है जब दोनों से बड़े हों और पूर्व के पश्चात से मेल खाते हों जब या , हो तब से quasiconvexity उत्तलता के समान है।

टिप्पणियाँ

  1. Dacorogna, pp. 1–43.
  2. I. M. Gelfand; S. V. Fomin (1991). विविधताओं की गणना. Dover Publications. ISBN 978-0-486-41448-5.
  3. Dacorogna, pp. 74–79.
  4. Dacorogna, pp. 66–74.
  5. Acerbi-Fusco
  6. Dacorogna, pp. 156.


सन्दर्भ और आगे पढ़ना

  • Dacorogna, Bernard (1989). विविधताओं की गणना में प्रत्यक्ष विधियाँ. Springer-Verlag. ISBN 0-387-50491-5.
  • Fonseca, Irene; Giovanni Leoni (2007). विविधताओं की गणना में आधुनिक तरीके: रिक्त स्थान. Springer. ISBN 978-0-387-35784-3.
  • मोरे, सी. बी., जूनियर: विविधताओं के कैलकुलस में ाधिक इंटीग्रल्स। स्प्रिंगर, 1966 (2008 में पुनर्मुद्रित), बर्लिन ISBN 978-3-540-69915-6.
  • जिंदरिच नेकस: अण्डाकार समीकरणों के सिद्धांत में प्रत्यक्ष विधियाँ। (ए.कुफनर और जी.ट्रोनेल द्वारा फ्रेंच मूल 1967 से अनुवाद), स्प्रिंगर, 2012, ISBN 978-3-642-10455-8.
  • T. Roubíček (2000). "परवलयिक समस्याओं के लिए सीधी विधि". Adv. Math. Sci. Appl. Vol. 10. pp. 57–65. MR 1769181.
  • एसरबी एमिलियो, फुस्को निकोला। विविधताओं की गणना में अर्धनिरंतरता की समस्याएं। तर्कसंगत यांत्रिकी और विश्लेषण के लिए पुरालेख 86.2 (1984): 125-145


श्रेणी:विविधताओं की गणना