विकिरण की लंबाई: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Electron penetration depth at which its energy is reduced by 1/e}}
{{short description|Electron penetration depth at which its energy is reduced by 1/e}}


[[कण भौतिकी]] में, विकिरण की लंबाई सामग्री की विशेषता है, जो इसके साथ विद्युत चुम्बकीय रूप से संवाद करने वाले उच्च ऊर्जा [[प्राथमिक कण]] की ऊर्जा हानि से संबंधित है। इसे सामग्री की औसत लंबाई (सेमी में) के रूप में परिभाषित किया गया है जिस पर [[इलेक्ट्रॉन]] की ऊर्जा कारक 1/e (गणितीय स्थिरांक) द्वारा कम हो जाती है।<ref name=Gupta/>
[[कण भौतिकी]] में, विकिरण की लंबाई सामग्री की विशेषता है, जो इसके साथ विद्युत चुम्बकीय रूप से संवाद करने वाले उच्च ऊर्जा [[प्राथमिक कण]] की ऊर्जा हानि से संबंधित है। इसे सामग्री की औसत लंबाई (सेमी में) के रूप में परिभाषित किया गया है जिस पर [[इलेक्ट्रॉन]] की ऊर्जा कारक 1/e (गणितीय स्थिरांक) द्वारा कम हो जाती है।<ref name="Gupta">
 
 
==परिभाषा==
उच्च परमाणु क्रमांक वाली सामग्रियों (जैसे [[टंगस्टन]], [[यूरेनियम]], [[प्लूटोनियम]]) में ~10 MeV से अधिक ऊर्जा वाले [[इलेक्ट्रॉनों]] मुख्य रूप से ऊर्जा खो देते हैं {{lang|de|[[bremsstrahlung]]}}, और उच्च-ऊर्जा फोटॉन द्वारा {{chem2|[[Positron|e+]][[electron|e-]]}} जोड़ी उत्पादन. इन संबंधित अंतःक्रियाओं के लिए पार किए गए पदार्थ की विशिष्ट मात्रा को विकिरण लंबाई कहा जाता है {{math|''X''<sub>0</sub>}}, आमतौर पर g·cm में मापा जाता है<sup>−2</sup>. यह दोनों औसत दूरी है जिस पर एक उच्च-ऊर्जा इलेक्ट्रॉन सभी को खो देता है {{math|{{frac|1|[[e (mathematical constant)|''e'']]}}}} इसकी ऊर्जा द्वारा {{lang|de|bremsstrahlung}},<ref name=Gupta>
{{cite journal
{{cite journal
   |author=M. Gupta
   |author=M. Gupta
Line 17: Line 13:
  |arxiv=astro-ph/0406663
  |arxiv=astro-ph/0406663
  |display-authors=etal|bibcode=2004PhLB..592....1P
  |display-authors=etal|bibcode=2004PhLB..592....1P
   }}</ref> और {{frac|7|9}} उच्च-ऊर्जा फोटॉन द्वारा युग्म उत्पादन के लिए माध्य मुक्त पथ का। यह उच्च-ऊर्जा कण वर्षा का वर्णन करने के लिए उपयुक्त लंबाई का पैमाना भी है।
   }}</ref>
 
 
==परिभाषा==
उच्च परमाणु क्रमांक वाली सामग्रियों (जैसे [[टंगस्टन]], [[यूरेनियम]], [[प्लूटोनियम]]) में ~10 MeV से अधिक ऊर्जा वाले [[इलेक्ट्रॉनों]] मुख्य रूप से {{lang|de|[[ब्रेम्सस्ट्रालंग]]}} और उच्च-ऊर्जा फोटॉन द्वारा {{chem2|[[Positron|e+]][[electron|e-]]}} जोड़ी उत्पादन द्वारा ऊर्जा खो देते हैं। इन संबंधित अंतःक्रियाओं के लिए पार किए गए पदार्थ की विशिष्ट मात्रा को विकिरण लंबाई  {{math|''X''<sub>0</sub>}} कहा जाता है, सामान्यतः g·cm<sup>−2</sup> में मापा जाता है। यह वह औसत दूरी है जिस पर उच्च-ऊर्जा इलेक्ट्रॉन ब्रेम्सस्ट्रालंग द्वारा अपनी ऊर्जा का आधा {{math|{{frac|1|[[e (mathematical constant)|''e'']]}}}} भाग  खो देता है और उच्च-ऊर्जा फोटॉन द्वारा युग्म उत्पादन के लिए माध्य मुक्त पथ का {{frac|7|9}} भाग है। यह उच्च-ऊर्जा विद्युत चुम्बकीय कैस्केड वर्णन करने के लिए उपयुक्त लंबाई का पैमाना भी है।


एक ही प्रकार के नाभिक से युक्त किसी दिए गए पदार्थ के लिए विकिरण की लंबाई निम्नलिखित अभिव्यक्ति द्वारा अनुमानित की जा सकती है:<ref name=pdg>
एक ही प्रकार के नाभिक से युक्त किसी दिए गए पदार्थ के लिए विकिरण की लंबाई निम्नलिखित अभिव्यक्ति द्वारा अनुमानित की जा सकती है:<ref name=pdg>

Revision as of 11:39, 27 July 2023

कण भौतिकी में, विकिरण की लंबाई सामग्री की विशेषता है, जो इसके साथ विद्युत चुम्बकीय रूप से संवाद करने वाले उच्च ऊर्जा प्राथमिक कण की ऊर्जा हानि से संबंधित है। इसे सामग्री की औसत लंबाई (सेमी में) के रूप में परिभाषित किया गया है जिस पर इलेक्ट्रॉन की ऊर्जा कारक 1/e (गणितीय स्थिरांक) द्वारा कम हो जाती है।[1]


परिभाषा

उच्च परमाणु क्रमांक वाली सामग्रियों (जैसे टंगस्टन, यूरेनियम, प्लूटोनियम) में ~10 MeV से अधिक ऊर्जा वाले इलेक्ट्रॉनों मुख्य रूप से ब्रेम्सस्ट्रालंग और उच्च-ऊर्जा फोटॉन द्वारा e+e जोड़ी उत्पादन द्वारा ऊर्जा खो देते हैं। इन संबंधित अंतःक्रियाओं के लिए पार किए गए पदार्थ की विशिष्ट मात्रा को विकिरण लंबाई X0 कहा जाता है, सामान्यतः g·cm−2 में मापा जाता है। यह वह औसत दूरी है जिस पर उच्च-ऊर्जा इलेक्ट्रॉन ब्रेम्सस्ट्रालंग द्वारा अपनी ऊर्जा का आधा 1e भाग खो देता है और उच्च-ऊर्जा फोटॉन द्वारा युग्म उत्पादन के लिए माध्य मुक्त पथ का 79 भाग है। यह उच्च-ऊर्जा विद्युत चुम्बकीय कैस्केड वर्णन करने के लिए उपयुक्त लंबाई का पैमाना भी है।

एक ही प्रकार के नाभिक से युक्त किसी दिए गए पदार्थ के लिए विकिरण की लंबाई निम्नलिखित अभिव्यक्ति द्वारा अनुमानित की जा सकती है:[2]

कहाँ Z परमाणु संख्या है और Aनाभिक की द्रव्यमान संख्या है।

के लिए Z > 4, एक अच्छा अनुमान है[3][inconsistent]

कहाँ

कम ऊर्जा (कुछ दसियों MeV से कम) पर इलेक्ट्रॉनों के लिए, आयनीकरण द्वारा ऊर्जा हानि प्रमुख है।

हालांकि इस परिभाषा का उपयोग लेपटोन और फोटॉन से परे अन्य विद्युत चुम्बकीय संपर्क कणों के लिए भी किया जा सकता है, मजबूत मजबूत संपर्क और परमाणु बल की उपस्थिति इसे सामग्री का बहुत कम दिलचस्प लक्षण वर्णन बनाती है; परमाणु टकराव की लंबाई और परमाणु संपर्क की लंबाई अधिक प्रासंगिक है।

विकिरण की लंबाई और सामग्री के अन्य गुणों के लिए व्यापक तालिकाएँ कण डेटा समूह से उपलब्ध हैं।[2][4]


यह भी देखें

संदर्भ

  1. M. Gupta; et al. (2010). "Calculation of radiation length in materials". PH-EP-Tech-Note. 592 (1–4): 1. arXiv:astro-ph/0406663. Bibcode:2004PhLB..592....1P. doi:10.1016/j.physletb.2004.06.001.
  2. 2.0 2.1 S. Eidelman; et al. (2004). "Review of particle physics". Phys. Lett. B. 592 (1–4): 1–5. arXiv:astro-ph/0406663. Bibcode:2004PhLB..592....1P. doi:10.1016/j.physletb.2004.06.001. (http://pdg.lbl.gov/)
  3. De Angelis, Alessandro; Pimenta, Mário (2018). Introduction to Particle and Astroparticle Physics (2 ed.). Springer. Bibcode:2018ipap.book.....D. doi:10.1007/978-3-319-78181-5. ISBN 978-3-319-78180-8.
  4. "कण डेटा समूह पर AtomicNuclearProperties".