ब्लैक-स्कोल्स समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Partial differential equation in mathematical finance}} | {{Short description|Partial differential equation in mathematical finance}} | ||
[[गणितीय वित्त]] में, ब्लैक-स्कोल्स समीकरण आंशिक अंतर समीकरण (पीडीई) है जो ब्लैक-स्कोल्स मॉडल के | [[गणितीय वित्त]] में, '''ब्लैक-स्कोल्स समीकरण''' आंशिक अंतर समीकरण (पीडीई) है जो की ब्लैक-स्कोल्स मॉडल के अधीन [[यूरोपीय कॉल]] या [[यूरोपीय पुट]] के मूल्य विकास को नियंत्रित करता है।<ref>{{cite book |first=Bernt |last=Øksendal |authorlink=Bernt Øksendal |title=Stochastic Differential Equations : An Introduction with Applications |location=Berlin |publisher=Springer |edition=5th |year=1998 |isbn=3-540-63720-6 |chapter=Option Pricing |pages=266–283 }}</ref> इस प्रकार से, यह शब्द समान पीडीई को संदर्भित कर सकता है जिसे विभिन्न प्रकार के [[विकल्प (वित्त)]], या अधिक सामान्यतः, [[व्युत्पन्न (वित्त)|डेरिवेटिव्स (वित्त)]] के लिए प्राप्त किया जा सकता है। | ||
[[Image:Stockpricesimulation.jpg|thumb|right| | [[Image:Stockpricesimulation.jpg|thumb|right|मार्केट डेटा के मापदंडों के साथ सिम्युलेटेड ज्यामितीय ब्राउनियन गतियाँ]]इस प्रकार से किसी यूरोपीय कॉल के लिए या बिना किसी लाभांश का भुगतान करने वाले अंडरलाइइंग स्टॉक पर लगाने के लिए, समीकरण यह है: | ||
:<math>\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS\frac{\partial V}{\partial S} - rV = 0</math> | :<math>\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS\frac{\partial V}{\partial S} - rV = 0</math> | ||
जहां V स्टॉक मूल्य S और समय t के फलन के रूप में विकल्प की | जहां V स्टॉक मूल्य S और समय t के फलन के रूप में विकल्प की मूल्य है, r रिस्क-मुक्त ब्याज दर है, और <math>\sigma</math> स्टॉक की अस्थिरता है. | ||
समीकरण के पीछे मुख्य वित्तीय अंतर्दृष्टि यह है कि, | समीकरण के पीछे मुख्य वित्तीय अंतर्दृष्टि यह है कि, फ्रिक्शनलेस मार्केटकी मॉडल धारणा के अधीन है, अनेक व्यक्ति अंडरलाइइंग एसेट्स को सही विधि से खरीद और बेचकर विकल्प को पूर्ण रूप से हेज (वित्त) कर सकता है और परिणामस्वरूप "रिस्क को खत्म कर सकता है।" यह बचाव, परिवर्तन में, यह दर्शाता है कि विकल्प के लिए केवल ही सही मूल्य है, जैसा कि ब्लैक-स्कोल्स फॉर्मूला द्वारा वापस किया गया है। | ||
==ब्लैक-स्कोल्स पीडीई की वित्तीय व्याख्या== | ==ब्लैक-स्कोल्स पीडीई की वित्तीय व्याख्या== | ||
समीकरण की | समीकरण की मूर्त व्याख्या होती है जिसे प्रायः चिकित्सकों द्वारा उपयोग किया जाता है और यह अगले उपधारा में दी गई सामान्य व्युत्पत्ति का आधार है। समीकरण को इस रूप में दुबारा लिखा जा सकता है: | ||
:<math>\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = rV - rS\frac{\partial V}{\partial S} </math> | :<math>\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = rV - rS\frac{\partial V}{\partial S} </math> | ||
बायीं ओर समय क्षय शब्द, समय के संबंध में | बायीं ओर समय क्षय शब्द, समय के संबंध में डेरिवेटिव्स मूल्य में परिवर्तन, थीटा कहा जाता है, और दूसरा स्थानिक डेरिवेटिव्स गामा सम्मिलित शब्द, अंडरलाइइंग मूल्य के संबंध में डेरिवेटिव्स मूल्य की उत्तलता सम्मिलित है। दाहिनी ओर डेरिवेटिव में लंबी स्थिति और छोटी स्थिति से मिलकर रिस्क रहित रिटर्न और अंतर्निहित के <math display="inline"> {\partial V}/{\partial S}</math> शेयरों से युक्त एक छोटी स्थिति है. | ||
ब्लैक और स्कोल्स की अंतर्दृष्टि यह थी कि दाहिनी ओर द्वारा दर्शाया गया पोर्टफोलियो | ब्लैक और स्कोल्स की अंतर्दृष्टि यह थी कि दाहिनी ओर द्वारा दर्शाया गया पोर्टफोलियो रिस्क रहित है: इस प्रकार समीकरण कहता है कि किसी भी अनंत समय अंतराल पर रिस्क रहित रिटर्न को थीटा और गामा को सम्मिलित करने वाले शब्द के योग के रूप में व्यक्त किया जा सकता है। विकल्प के लिए, थीटा सामान्यतः ऋणात्मक होती है, जो विकल्प का उपयोग करने के लिए कम समय होने के कारण मूल्य में हानि को दर्शाती है (लाभांश के बिना किसी अंडरलाइइंग पर यूरोपीय कॉल के लिए, यह सदैव ऋणात्मक होता है)। इस प्रकार से गामा सामान्यतः धनात्मक होता है और इसलिए गामा शब्द विकल्प को धारण करने में हुए लाभ को दर्शाता है। समीकरण में कहा गया है कि किसी भी अतिसूक्ष्म समय अंतराल में थीटा से हानि और गामा पद से लाभ को एक-दूसरे की पूर्णतः करनी चाहिए जिससे परिणाम रिस्क रहित दर पर वापस हो जाती है। | ||
विकल्प जारीकर्ता के दृष्टिकोण से, उदा. निवेश बैंक, गामा शब्द विकल्प की हेजिंग की | विकल्प जारीकर्ता के दृष्टिकोण से, उदा. निवेश बैंक, गामा शब्द विकल्प की हेजिंग की निवेश है। (चूंकि गामा तब अधिक उच्च होता है जब अंडरलाइइंग का स्पॉट मूल्य विकल्प के स्ट्राइक मूल्य के समीप होता है, उस परिस्थिति में विक्रेता की हेजिंग निवेश अधिक उच्च होती है।) | ||
==ब्लैक-स्कोल्स पीडीई की व्युत्पत्ति== | ==ब्लैक-स्कोल्स पीडीई की व्युत्पत्ति== | ||
निम्नलिखित व्युत्पत्ति जॉन सी. हल (अर्थशास्त्री) | निम्नलिखित व्युत्पत्ति जॉन सी. हल (अर्थशास्त्री) हल्स विकल्प, फ्यूचरस और अन्य डेरिवेटिव में दी गई है।<ref name="Hull">{{Cite book|last=Hull |first=John C. |year=2008| edition=7 |title=विकल्प, वायदा और अन्य डेरिवेटिव|publisher=[[Prentice Hall]] |isbn=978-0-13-505283-9}}</ref>{{rp|287–288}} यह, परिवर्तन में, मूल ब्लैक-स्कोल्स पेपर में क्लासिक तर्क पर आधारित है। | ||
उपरोक्त मॉडल मान्यताओं के अनुसार, | उपरोक्त मॉडल मान्यताओं के अनुसार, अंडरलाइइंग एसेट्स (सामान्यतः स्टॉक) की मूल्य [[ज्यामितीय ब्राउनियन गति]] का अनुसरण करती है। वह है | ||
:<math>\frac{dS}{S} = \mu \,dt + \sigma \,dW\,</math> | :<math>\frac{dS}{S} = \mu \,dt + \sigma \,dW\,</math> | ||
जहां W स्टोकेस्टिक | जहां W स्टोकेस्टिक वेरिएबल ([[वीनर प्रक्रिया|ब्राउनियन गति]]) है। ध्यान दें कि ''W,'' और परिणामस्वरूप इसकी असीमित वृद्धि ''dW'', स्टॉक के मूल्य इतिहास में अनिश्चितता का एकमात्र स्रोत दर्शाता है। सहज रूप से, ''W(t'') [[यादृच्छिक प्रक्रिया|प्रोसेस]] है जो इतने यादृच्छिक विधि से "ऊपर और नीचे घूमती है" कि किसी भी समय अंतराल पर इसका अपेक्षित परिवर्तन ''0'' है। (इसके अतिरिक्त, समय T के साथ इसका विचरण T के समान है; देखें) {{sectionlink|वीनर प्रक्रिया#मूलभूत गुण}}); डब्ल्यू के लिए अच्छा असतत एनालॉग [[सरल यादृच्छिक चलना|सरल रेंडम]] वॉक है। इस प्रकार उपरोक्त समीकरण बताता है कि स्टॉक पर रिटर्न की असीमित दर में ''μdt'' का अपेक्षित मूल्य और <math>\sigma^2 dt </math> भिन्नता है. | ||
किसी विकल्प का भुगतान (या स्टॉक के लिए कोई | किसी विकल्प का भुगतान (या स्टॉक के लिए कोई डेरिवेटिव्स आकस्मिकता)। {{mvar|S}}) परिपक्वता पर ज्ञात होता है। पहले के समय में इसका मूल्य ज्ञात करने के लिए हमें यह जानना होगा कि कैसे <math>V</math> के फलन के रूप में विकसित होता है <math>S</math> और <math>t</math>. इटो की प्रमेयिका के अनुसार हमारे पास दो वेरिएबल हैं | ||
इसी प्रकार से परिपक्वता पर विकल्प (या स्टॉक {{mvar|S}} के लिए किसी भी डेरिवेटिव्स आकस्मिक) <math>V(S,T)</math> का भुगतान ज्ञात होता है। पहले के समय में इसका मान ज्ञात करने के लिए हमें यह जानना होगा कि <math>V</math>, <math>S</math> और <math>t</math> के एक फलन के रूप में कैसे विकसित होता है, दो वेरिएबल के लिए यह लेम्मा है द्वारा हमारे पास है | |||
:<math>dV = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)dt + \sigma S \frac{\partial V}{\partial S}\,dW</math> | :<math>dV = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)dt + \sigma S \frac{\partial V}{\partial S}\,dW</math> | ||
अब निश्चित पोर्टफोलियो पर विचार करें, जिसे [[डेल्टा हेजिंग]] | अब निश्चित पोर्टफोलियो पर विचार करें, जिसे [[डेल्टा हेजिंग]] या डेल्टा-हेज पोर्टफोलियो कहा जाता है, जिसमें विकल्प छोटा और लंबा विकल्प सम्मिलित है। <math display="inline">{\partial V}/{\partial S}</math> समय पर शेयर <math>t</math>. इन होल्डिंग्स का मूल्य है | ||
:<math>\Pi = -V + \int\frac{\partial V}{\partial S}dS</math> | :<math>\Pi = -V + \int\frac{\partial V}{\partial S}dS</math> | ||
समयावधि के साथ <math>[t,t+\Delta t]</math>, होल्डिंग्स के मूल्यों में परिवर्तन से कुल लाभ या हानि है ( | समयावधि के साथ <math>[t,t+\Delta t]</math>, होल्डिंग्स के मूल्यों में परिवर्तन से कुल लाभ या हानि है (किन्तु नीचे नोट देखें): | ||
:<math>\Delta \Pi = -\Delta V + \frac{\partial V}{\partial S}\,\Delta S</math> | :<math>\Delta \Pi = -\Delta V + \frac{\partial V}{\partial S}\,\Delta S</math> | ||
अब अंतरों को डेल्टा से प्रतिस्थापित करके dS/S और dV के समीकरणों को अलग करें: | अब अंतरों को डेल्टा से प्रतिस्थापित करके ''dS/S'' और ''dV'' के समीकरणों को अलग करें: | ||
:<math>\Delta S = \mu S \,\Delta t + \sigma S\,\Delta W\,</math> | :<math>\Delta S = \mu S \,\Delta t + \sigma S\,\Delta W\,</math> | ||
:<math>\Delta V = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)\Delta t + \sigma S \frac{\partial V}{\partial S}\,\Delta W</math> | :<math>\Delta V = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)\Delta t + \sigma S \frac{\partial V}{\partial S}\,\Delta W</math> | ||
और | और उन्हें <math>\Delta \Pi</math> के व्यंजक में उचित रूप से प्रतिस्थापित करें : | ||
:<math>\Delta \Pi = \left(-\frac{\partial V}{\partial t} - \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)\Delta t</math> | :<math>\Delta \Pi = \left(-\frac{\partial V}{\partial t} - \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)\Delta t</math> | ||
ध्यान दें कि <math>\Delta W</math> शब्द लुप्त हो गया है. इस प्रकार अनिश्चितता समाप्त हो गई है और पोर्टफोलियो प्रभावी रूप से | ध्यान दें कि <math>\Delta W</math> शब्द लुप्त हो गया है. इस प्रकार अनिश्चितता समाप्त हो गई है और पोर्टफोलियो प्रभावी रूप से रिस्क रहित है। इस पोर्टफोलियो पर रिटर्न की दर किसी अन्य रिस्क रहित साधन पर रिटर्न की दर के समान होनी चाहिए; अन्यथा, मध्यस्थता के अवसर होंगे। अब मान लीजिए कि रिटर्न की रिस्क-मुक्त दर <math>r</math> है हमारे पास समयावधि <math>[t,t+\Delta t]</math> होनी चाहिए | ||
:<math>\Delta \Pi = r\Pi\,\Delta t</math> | :<math>\Delta \Pi = r\Pi\,\Delta t</math> | ||
यदि अब हम अपने सूत्रों को | यदि अब हम अपने सूत्रों को <math>\Delta\Pi</math> और <math>\Pi = \int \Delta\Pi</math> के स्थान पर प्रतिस्थापित करें तो हमें प्राप्त होता है: | ||
:<math>\left(-\frac{\partial V}{\partial t} - \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)\Delta t = r\left(-V + S\frac{\partial V}{\partial S}\right)\Delta t</math> | :<math>\left(-\frac{\partial V}{\partial t} - \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)\Delta t = r\left(-V + S\frac{\partial V}{\partial S}\right)\Delta t</math> | ||
सरलीकरण करते हुए, हम प्रसिद्ध ब्लैक-स्कोल्स आंशिक अंतर समीकरण पर पहुंचते हैं: | सरलीकरण करते हुए, हम प्रसिद्ध ब्लैक-स्कोल्स आंशिक अंतर समीकरण पर पहुंचते हैं: | ||
:<math>\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS\frac{\partial V}{\partial S} - rV = 0</math> | :<math>\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS\frac{\partial V}{\partial S} - rV = 0</math> | ||
ब्लैक-स्कोल्स मॉडल की मान्यताओं के साथ, यह दूसरा क्रम आंशिक अंतर समीकरण किसी भी प्रकार के विकल्प के लिए तब तक | : | ||
ब्लैक-स्कोल्स मॉडल की मान्यताओं के साथ, यह दूसरा क्रम आंशिक अंतर समीकरण किसी भी प्रकार के विकल्प के लिए तब तक प्रयुक्त रहता है जब तक इसका मूल्य फलन <math>V</math> <math>S</math> के संबंध में दो बार भिन्न होता है और <math>t</math> के संबंध में इस प्रकार से विभिन्न विकल्पों के लिए अलग-अलग मूल्य निर्धारण सूत्र समाप्ति पर भुगतान फलन की स्वीकृति और उचित सीमा नियम से उत्पन्न होते है। | |||
तकनीकी नोट: ऊपर दिए गए विवेकाधीन दृष्टिकोण से अस्पष्ट सूक्ष्मता यह है कि पोर्टफोलियो मूल्य में | तकनीकी नोट: ऊपर दिए गए विवेकाधीन दृष्टिकोण से अस्पष्ट सूक्ष्मता यह है कि पोर्टफोलियो मूल्य में सामान्य परिवर्तन केवल धारित एसेट्सयों के मूल्यों में सामान्य परिवर्तन के कारण था, न कि एसेट्सयों की स्थिति में परिवर्तन के कारण होता है। दूसरे शब्दों में, पोर्टफोलियो को ''[[स्व-वित्तपोषण पोर्टफोलियो|सेल्फ-फाईनेंसिंग ]]''माना गया था। | ||
===वैकल्पिक व्युत्पत्ति=== | ===वैकल्पिक व्युत्पत्ति=== | ||
यहां वैकल्पिक व्युत्पत्ति है जिसका उपयोग उन स्थितियों में किया जा सकता है जहां | इस प्रकार से यहां वैकल्पिक व्युत्पत्ति है जिसका उपयोग उन स्थितियों में किया जा सकता है जहां प्रारंभ में यह स्पष्ट नहीं है कि हेजिंग पोर्टफोलियो क्या होना चाहिए। (संदर्भ के लिए, श्रेवे खंड II का 6.4 देखें)।<ref>{{cite book |last1=Shreve |first1=Steven |title=वित्त II के लिए स्टोकेस्टिक कैलकुलस|date=2004 |publisher=Springer |edition=1st |isbn=0-387-40101-6 |pages=268-272}}</ref> | ||
ब्लैक-स्कोल्स मॉडल में, यह मानते हुए कि हमने | ब्लैक-स्कोल्स मॉडल में, यह मानते हुए कि हमने रिस्क-तटस्थ संभाव्यता माप को चुना है, और अंडरलाइइंग स्टॉक मूल्य S(t) को ज्यामितीय ब्राउनियन गति के रूप में विकसित माना जाता है: | ||
:<math> \frac{dS(t)}{S(t)} = r\ dt + \sigma dW(t) </math> | :<math> \frac{dS(t)}{S(t)} = r\ dt + \sigma dW(t) </math> | ||
चूंकि यह स्टोचैस्टिक डिफरेंशियल समीकरण (एसडीई) | चूंकि यह स्टोचैस्टिक डिफरेंशियल समीकरण (एसडीई) दर्शाया गया है कि स्टॉक मूल्य विकास [[मार्कोव श्रृंखला]] है, इस अंडरलाइइंग पर कोई भी डेरिवेटिव्स समय ''t'' और वर्तमान समय में स्टॉक मूल्य, ''S''(''t'') का फलन है। फिर इटो के लेम्मा का अनुप्रयोग रियायती डेरिवेटिव्स प्रक्रिया <math>e^{-rt}V(t, S(t))</math> के लिए एसडीई देता है, जो मार्टिंगेल होना चाहिए। इसे धारण करने के लिए, प्रवाहित शब्द शून्य होना चाहिए, जिसका तात्पर्य ब्लैक-स्कोल्स पीडीई से है। | ||
यह व्युत्पत्ति मूल रूप से फेनमैन-केएसी फॉर्मूला का अनुप्रयोग है और जब भी | यह व्युत्पत्ति मूल रूप से फेनमैन-केएसी फॉर्मूला का अनुप्रयोग है और जब भी अंडरलाइइंग एसेट्सयां दिए गए एसडीई के अनुसार विकसित होती हैं तो इसका प्रयास किया जा सकता है। | ||
==ब्लैक-स्कोल्स पीडीई को हल करना== | ==ब्लैक-स्कोल्स पीडीई को हल करना== | ||
इस प्रकार से ब्लैक-स्कोल्स पीडीई, श्रेणी और टर्मिनल स्थितियों के साथ, डेरिवेटिव्स के लिए प्राप्त हो जाता है, तब पीडीई को संख्यात्मक विश्लेषण के मानक विधियों, जैसे कि प्रकार की [[परिमित अंतर विधि]] का उपयोग करके संख्यात्मक रूप से हल किया जा सकता है।<ref>{{cite book |first1=Paul |last1=Wilmott |first2=Sam |last2=Howison |first3=Jeff |last3=Dewynne |chapter=Finite-difference Methods |title=वित्तीय डेरिवेटिव का गणित|location= |publisher=Cambridge University Press |year=1995 |isbn=0-521-49789-2 |pages=135–164 |chapter-url=https://books.google.com/books?id=VYVhnC3fIVEC&pg=PA135 }}</ref> कुछ स्तिथियों में, स्पष्ट सूत्र के अनुसार हल करना संभव है, जैसे कि यूरोपीय कॉल के स्तिथि में, जो ब्लैक और स्कोल्स द्वारा किया गया था। | |||
कॉल विकल्प के लिए ऐसा करने के लिए, याद रखें कि उपरोक्त पीडीई में सीमा | कॉल विकल्प के लिए ऐसा करने के लिए, याद रखें कि उपरोक्त पीडीई में सीमा का नियम हैं <ref>{{Citation |last=Chan |first=Raymond |title=Black-Scholes Equations |date=2021-07-03 |url=https://www.math.cuhk.edu.hk/~rchan/teaching/math4210/chap08.pdf}}</ref> | ||
:<math>\begin{align} | :<math>\begin{align} | ||
C(0, t) &= 0\text{ for all }t \\ | C(0, t) &= 0\text{ for all }t \\ | ||
Line 69: | Line 72: | ||
C(S, T) &= \max\{S - K, 0\} | C(S, T) &= \max\{S - K, 0\} | ||
\end{align}</math> | \end{align}</math> | ||
अंतिम | अंतिम नियम उस समय विकल्प का मूल्य दर्शाती है जब विकल्प परिपक्व होता है। इस प्रकार से अन्य स्थितियाँ संभव हैं क्योंकि ''S 0'' या अनंत तक जाता है। उदाहरण के लिए, अन्य स्थितियों में उपयोग की जाने वाली सामान्य स्थितियाँ यह हैं कि जब ''S 0'' पर जाता है तो डेल्टा विलुप्त हो जाता है और ''S'' अनंत तक जाता है तो गामा विलुप्त हो जाता है; ये उपरोक्त स्थितियों के समान ही सूत्र देंगे (सामान्य रूप से, अलग-अलग सीमा स्थितियाँ अलग-अलग समाधान देंगी, इसलिए उपस्तिथ स्थिति के लिए उपयुक्त परिस्थितियों को चुनने के लिए कुछ वित्तीय अंतर्दृष्टि का उपयोग किया जाना चाहिए)। | ||
पीडीई का समाधान किसी भी पहले के समय | इस प्रकार से पीडीई का समाधान किसी भी पहले के समय <math>\mathbb{E}\left[\max\{S-K,0\}\right]</math> में विकल्प का मूल्य देता है, पीडीई को हल करने के लिए हम मानते हैं कि यह कॉची-यूलर समीकरण है जिसे परिवर्तन-परिवर्तनीय परिवर्तन प्रारंभ करके गर्मी समीकरण में परिवर्तित किया जा सकता है | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 80: | Line 83: | ||
तब ब्लैक-स्कोल्स पीडीई [[प्रसार समीकरण]] बन जाता है | तब ब्लैक-स्कोल्स पीडीई [[प्रसार समीकरण]] बन जाता है | ||
:<math>\frac{\partial u}{\partial\tau} = \frac{1}{2}\sigma^{2}\frac{\partial^2 u}{\partial x^2}</math> | :<math>\frac{\partial u}{\partial\tau} = \frac{1}{2}\sigma^{2}\frac{\partial^2 u}{\partial x^2}</math> | ||
टर्मिनल स्थिति <math>C(S, T) = \max\{S - K, 0\}</math> अब प्रारंभिक | टर्मिनल स्थिति <math>C(S, T) = \max\{S - K, 0\}</math> अब प्रारंभिक नियम बन गई है | ||
:<math>u(x, 0) = u_0(x) := K(e^{\max\{x, 0\}} - 1) = K\left(e^{x}-1\right)H(x) ,</math> | :<math>u(x, 0) = u_0(x) := K(e^{\max\{x, 0\}} - 1) = K\left(e^{x}-1\right)H(x) ,</math> | ||
जहां H(x) [[हेविसाइड स्टेप फ़ंक्शन]] है। हेविसाइड | जहां ''H''(''x'') [[हेविसाइड स्टेप फ़ंक्शन|हेविसाइड स्टेप फलन]] है। हेविसाइड फलन ''S'', ''t'' समन्वय प्रणाली में सीमा डेटा के प्रवर्तन से मेल खाता है जिसके लिए ''t'' = ''T'', की आवश्यकता होती है, | ||
:<math>C(S,\,T)=0\quad \forall\;S < K ,</math> | :<math>C(S,\,T)=0\quad \forall\;S < K ,</math> | ||
S, K > 0 दोनों को मानते हुए। इस धारणा के साथ, यह x = 0 के अपवाद के साथ, वास्तविक संख्याओं में सभी x पर अधिकतम | इस प्रकार से ''S, K > 0'' दोनों को मानते हुए। इस धारणा के साथ, यह ''x = 0'' के अपवाद के साथ, वास्तविक संख्याओं में सभी x पर अधिकतम फलन के समान है। 'अधिकतम' फलन और हेविसाइड फलन के मध्य उपरोक्त समानता है वितरण की भावना क्योंकि यह ''x = 0'' के लिए मान्य नहीं है। सूक्ष्म होते हुए भी, यह महत्वपूर्ण है क्योंकि हेविसाइड फलन को ''x = 0'' पर परिमित होने की आवश्यकता नहीं है, यहां तक कि उस स्थिति के लिए परिभाषित भी नहीं किया गया है। यदि ''x = 0'' पर हेविसाइड फलन के मान पर अधिक जानकारी के लिए, हेविसाइड स्टेप फलन लेख में शून्य तर्क अनुभाग देखें। | ||
प्रारंभिक मान | प्रारंभिक मान फलन, ''u(x, 0)'' दिए गए प्रसार समीकरण को हल करने के लिए मानक [[कनवल्शन]] विधि का उपयोग करते हुए, हमारे पास है | ||
:<math>u(x, \tau) = \frac{1}{\sigma\sqrt{2\pi\tau}}\int_{-\infty}^{\infty}{u_0 (y)\exp{\left[-\frac{(x - y)^2}{2\sigma^2 \tau}\right]}}\,dy , </math> | :<math>u(x, \tau) = \frac{1}{\sigma\sqrt{2\pi\tau}}\int_{-\infty}^{\infty}{u_0 (y)\exp{\left[-\frac{(x - y)^2}{2\sigma^2 \tau}\right]}}\,dy , </math> | ||
जो, कुछ | जो, कुछ परिवर्तन के पश्चात, उपज देता है | ||
:<math>u(x, \tau) = Ke^{x + \frac{1}{2}\sigma^2 \tau}N(d_+) - KN(d_-) ,</math> | :<math>u(x, \tau) = Ke^{x + \frac{1}{2}\sigma^2 \tau}N(d_+) - KN(d_-) ,</math> | ||
जहाँ <math> N(\cdot) </math> [[मानक सामान्य]] संचयी वितरण फलन है और | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 96: | Line 99: | ||
d_- &= \frac{1}{\sigma\sqrt{\tau}} \left[\left(x + \frac{1}{2} \sigma^{2}\tau\right) - \frac{1}{2} \sigma^2 \tau\right] . | d_- &= \frac{1}{\sigma\sqrt{\tau}} \left[\left(x + \frac{1}{2} \sigma^{2}\tau\right) - \frac{1}{2} \sigma^2 \tau\right] . | ||
\end{align}</math> | \end{align}</math> | ||
ये वही समाधान हैं (समयानुवाद तक) जो 1976 में फिशर ब्लैक द्वारा प्राप्त किए गए थे।<ref>See equation (16) in {{cite journal |last=Black |first=Fischer S. |title=The Pricing of Commodity Contracts |journal=[[Journal of Financial Economics]] |volume=3 |issue=1–2 |pages=167–179 |year=1976 |doi=10.1016/0304-405X(76)90024-6 }}</ref> | ये वही समाधान हैं (समयानुवाद तक) जो 1976 में फिशर ब्लैक द्वारा प्राप्त किए गए थे।<ref>See equation (16) in {{cite journal |last=Black |first=Fischer S. |title=The Pricing of Commodity Contracts |journal=[[Journal of Financial Economics]] |volume=3 |issue=1–2 |pages=167–179 |year=1976 |doi=10.1016/0304-405X(76)90024-6 }}</ref> | ||
<math>u, x, \tau</math> को वेरिएबल के मूल सेट में वापस लाने से ब्लैक-स्कोल्स समीकरण का उपर्युक्त समाधान प्राप्त होता है। | |||
:एसिम्प्टोटिक स्थिति को अब | :एसिम्प्टोटिक स्थिति को अब अनुभूत किया जा सकता है। | ||
:<math>u(x,\,\tau) \overset{x\rightsquigarrow\infty}{\asymp} Ke^x,</math> | :<math>u(x,\,\tau) \overset{x\rightsquigarrow\infty}{\asymp} Ke^x,</math> | ||
जो मूल निर्देशांक पर वापस लौटने पर केवल S देता है। | जो मूल निर्देशांक पर वापस लौटने पर केवल S देता है। | ||
Line 107: | Line 110: | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Black-Scholes equation}} | {{DEFAULTSORT:Black-Scholes equation}} | ||
[[Category: Machine Translated Page]] | [[Category:Created On 13/07/2023|Black-Scholes equation]] | ||
[[Category: | [[Category:Lua-based templates|Black-Scholes equation]] | ||
[[Category:Machine Translated Page|Black-Scholes equation]] | |||
[[Category:Pages with script errors|Black-Scholes equation]] | |||
[[Category:Templates Vigyan Ready|Black-Scholes equation]] | |||
[[Category:Templates that add a tracking category|Black-Scholes equation]] | |||
[[Category:Templates that generate short descriptions|Black-Scholes equation]] | |||
[[Category:Templates using TemplateData|Black-Scholes equation]] | |||
[[Category:गणितीय वित्त|Black-Scholes equation]] | |||
[[Category:वित्तीय मॉडल|Black-Scholes equation]] |
Latest revision as of 12:15, 31 July 2023
गणितीय वित्त में, ब्लैक-स्कोल्स समीकरण आंशिक अंतर समीकरण (पीडीई) है जो की ब्लैक-स्कोल्स मॉडल के अधीन यूरोपीय कॉल या यूरोपीय पुट के मूल्य विकास को नियंत्रित करता है।[1] इस प्रकार से, यह शब्द समान पीडीई को संदर्भित कर सकता है जिसे विभिन्न प्रकार के विकल्प (वित्त), या अधिक सामान्यतः, डेरिवेटिव्स (वित्त) के लिए प्राप्त किया जा सकता है।
इस प्रकार से किसी यूरोपीय कॉल के लिए या बिना किसी लाभांश का भुगतान करने वाले अंडरलाइइंग स्टॉक पर लगाने के लिए, समीकरण यह है:
जहां V स्टॉक मूल्य S और समय t के फलन के रूप में विकल्प की मूल्य है, r रिस्क-मुक्त ब्याज दर है, और स्टॉक की अस्थिरता है.
समीकरण के पीछे मुख्य वित्तीय अंतर्दृष्टि यह है कि, फ्रिक्शनलेस मार्केटकी मॉडल धारणा के अधीन है, अनेक व्यक्ति अंडरलाइइंग एसेट्स को सही विधि से खरीद और बेचकर विकल्प को पूर्ण रूप से हेज (वित्त) कर सकता है और परिणामस्वरूप "रिस्क को खत्म कर सकता है।" यह बचाव, परिवर्तन में, यह दर्शाता है कि विकल्प के लिए केवल ही सही मूल्य है, जैसा कि ब्लैक-स्कोल्स फॉर्मूला द्वारा वापस किया गया है।
ब्लैक-स्कोल्स पीडीई की वित्तीय व्याख्या
समीकरण की मूर्त व्याख्या होती है जिसे प्रायः चिकित्सकों द्वारा उपयोग किया जाता है और यह अगले उपधारा में दी गई सामान्य व्युत्पत्ति का आधार है। समीकरण को इस रूप में दुबारा लिखा जा सकता है:
बायीं ओर समय क्षय शब्द, समय के संबंध में डेरिवेटिव्स मूल्य में परिवर्तन, थीटा कहा जाता है, और दूसरा स्थानिक डेरिवेटिव्स गामा सम्मिलित शब्द, अंडरलाइइंग मूल्य के संबंध में डेरिवेटिव्स मूल्य की उत्तलता सम्मिलित है। दाहिनी ओर डेरिवेटिव में लंबी स्थिति और छोटी स्थिति से मिलकर रिस्क रहित रिटर्न और अंतर्निहित के शेयरों से युक्त एक छोटी स्थिति है.
ब्लैक और स्कोल्स की अंतर्दृष्टि यह थी कि दाहिनी ओर द्वारा दर्शाया गया पोर्टफोलियो रिस्क रहित है: इस प्रकार समीकरण कहता है कि किसी भी अनंत समय अंतराल पर रिस्क रहित रिटर्न को थीटा और गामा को सम्मिलित करने वाले शब्द के योग के रूप में व्यक्त किया जा सकता है। विकल्प के लिए, थीटा सामान्यतः ऋणात्मक होती है, जो विकल्प का उपयोग करने के लिए कम समय होने के कारण मूल्य में हानि को दर्शाती है (लाभांश के बिना किसी अंडरलाइइंग पर यूरोपीय कॉल के लिए, यह सदैव ऋणात्मक होता है)। इस प्रकार से गामा सामान्यतः धनात्मक होता है और इसलिए गामा शब्द विकल्प को धारण करने में हुए लाभ को दर्शाता है। समीकरण में कहा गया है कि किसी भी अतिसूक्ष्म समय अंतराल में थीटा से हानि और गामा पद से लाभ को एक-दूसरे की पूर्णतः करनी चाहिए जिससे परिणाम रिस्क रहित दर पर वापस हो जाती है।
विकल्प जारीकर्ता के दृष्टिकोण से, उदा. निवेश बैंक, गामा शब्द विकल्प की हेजिंग की निवेश है। (चूंकि गामा तब अधिक उच्च होता है जब अंडरलाइइंग का स्पॉट मूल्य विकल्प के स्ट्राइक मूल्य के समीप होता है, उस परिस्थिति में विक्रेता की हेजिंग निवेश अधिक उच्च होती है।)
ब्लैक-स्कोल्स पीडीई की व्युत्पत्ति
निम्नलिखित व्युत्पत्ति जॉन सी. हल (अर्थशास्त्री) हल्स विकल्प, फ्यूचरस और अन्य डेरिवेटिव में दी गई है।[2]: 287–288 यह, परिवर्तन में, मूल ब्लैक-स्कोल्स पेपर में क्लासिक तर्क पर आधारित है।
उपरोक्त मॉडल मान्यताओं के अनुसार, अंडरलाइइंग एसेट्स (सामान्यतः स्टॉक) की मूल्य ज्यामितीय ब्राउनियन गति का अनुसरण करती है। वह है
जहां W स्टोकेस्टिक वेरिएबल (ब्राउनियन गति) है। ध्यान दें कि W, और परिणामस्वरूप इसकी असीमित वृद्धि dW, स्टॉक के मूल्य इतिहास में अनिश्चितता का एकमात्र स्रोत दर्शाता है। सहज रूप से, W(t) प्रोसेस है जो इतने यादृच्छिक विधि से "ऊपर और नीचे घूमती है" कि किसी भी समय अंतराल पर इसका अपेक्षित परिवर्तन 0 है। (इसके अतिरिक्त, समय T के साथ इसका विचरण T के समान है; देखें) वीनर प्रक्रिया § मूलभूत गुण); डब्ल्यू के लिए अच्छा असतत एनालॉग सरल रेंडम वॉक है। इस प्रकार उपरोक्त समीकरण बताता है कि स्टॉक पर रिटर्न की असीमित दर में μdt का अपेक्षित मूल्य और भिन्नता है.
किसी विकल्प का भुगतान (या स्टॉक के लिए कोई डेरिवेटिव्स आकस्मिकता)। S) परिपक्वता पर ज्ञात होता है। पहले के समय में इसका मूल्य ज्ञात करने के लिए हमें यह जानना होगा कि कैसे के फलन के रूप में विकसित होता है और . इटो की प्रमेयिका के अनुसार हमारे पास दो वेरिएबल हैं
इसी प्रकार से परिपक्वता पर विकल्प (या स्टॉक S के लिए किसी भी डेरिवेटिव्स आकस्मिक) का भुगतान ज्ञात होता है। पहले के समय में इसका मान ज्ञात करने के लिए हमें यह जानना होगा कि , और के एक फलन के रूप में कैसे विकसित होता है, दो वेरिएबल के लिए यह लेम्मा है द्वारा हमारे पास है
अब निश्चित पोर्टफोलियो पर विचार करें, जिसे डेल्टा हेजिंग या डेल्टा-हेज पोर्टफोलियो कहा जाता है, जिसमें विकल्प छोटा और लंबा विकल्प सम्मिलित है। समय पर शेयर . इन होल्डिंग्स का मूल्य है
समयावधि के साथ , होल्डिंग्स के मूल्यों में परिवर्तन से कुल लाभ या हानि है (किन्तु नीचे नोट देखें):
अब अंतरों को डेल्टा से प्रतिस्थापित करके dS/S और dV के समीकरणों को अलग करें:
और उन्हें के व्यंजक में उचित रूप से प्रतिस्थापित करें :
ध्यान दें कि शब्द लुप्त हो गया है. इस प्रकार अनिश्चितता समाप्त हो गई है और पोर्टफोलियो प्रभावी रूप से रिस्क रहित है। इस पोर्टफोलियो पर रिटर्न की दर किसी अन्य रिस्क रहित साधन पर रिटर्न की दर के समान होनी चाहिए; अन्यथा, मध्यस्थता के अवसर होंगे। अब मान लीजिए कि रिटर्न की रिस्क-मुक्त दर है हमारे पास समयावधि होनी चाहिए
यदि अब हम अपने सूत्रों को और के स्थान पर प्रतिस्थापित करें तो हमें प्राप्त होता है:
सरलीकरण करते हुए, हम प्रसिद्ध ब्लैक-स्कोल्स आंशिक अंतर समीकरण पर पहुंचते हैं:
ब्लैक-स्कोल्स मॉडल की मान्यताओं के साथ, यह दूसरा क्रम आंशिक अंतर समीकरण किसी भी प्रकार के विकल्प के लिए तब तक प्रयुक्त रहता है जब तक इसका मूल्य फलन के संबंध में दो बार भिन्न होता है और के संबंध में इस प्रकार से विभिन्न विकल्पों के लिए अलग-अलग मूल्य निर्धारण सूत्र समाप्ति पर भुगतान फलन की स्वीकृति और उचित सीमा नियम से उत्पन्न होते है।
तकनीकी नोट: ऊपर दिए गए विवेकाधीन दृष्टिकोण से अस्पष्ट सूक्ष्मता यह है कि पोर्टफोलियो मूल्य में सामान्य परिवर्तन केवल धारित एसेट्सयों के मूल्यों में सामान्य परिवर्तन के कारण था, न कि एसेट्सयों की स्थिति में परिवर्तन के कारण होता है। दूसरे शब्दों में, पोर्टफोलियो को सेल्फ-फाईनेंसिंग माना गया था।
वैकल्पिक व्युत्पत्ति
इस प्रकार से यहां वैकल्पिक व्युत्पत्ति है जिसका उपयोग उन स्थितियों में किया जा सकता है जहां प्रारंभ में यह स्पष्ट नहीं है कि हेजिंग पोर्टफोलियो क्या होना चाहिए। (संदर्भ के लिए, श्रेवे खंड II का 6.4 देखें)।[3]
ब्लैक-स्कोल्स मॉडल में, यह मानते हुए कि हमने रिस्क-तटस्थ संभाव्यता माप को चुना है, और अंडरलाइइंग स्टॉक मूल्य S(t) को ज्यामितीय ब्राउनियन गति के रूप में विकसित माना जाता है:
चूंकि यह स्टोचैस्टिक डिफरेंशियल समीकरण (एसडीई) दर्शाया गया है कि स्टॉक मूल्य विकास मार्कोव श्रृंखला है, इस अंडरलाइइंग पर कोई भी डेरिवेटिव्स समय t और वर्तमान समय में स्टॉक मूल्य, S(t) का फलन है। फिर इटो के लेम्मा का अनुप्रयोग रियायती डेरिवेटिव्स प्रक्रिया के लिए एसडीई देता है, जो मार्टिंगेल होना चाहिए। इसे धारण करने के लिए, प्रवाहित शब्द शून्य होना चाहिए, जिसका तात्पर्य ब्लैक-स्कोल्स पीडीई से है।
यह व्युत्पत्ति मूल रूप से फेनमैन-केएसी फॉर्मूला का अनुप्रयोग है और जब भी अंडरलाइइंग एसेट्सयां दिए गए एसडीई के अनुसार विकसित होती हैं तो इसका प्रयास किया जा सकता है।
ब्लैक-स्कोल्स पीडीई को हल करना
इस प्रकार से ब्लैक-स्कोल्स पीडीई, श्रेणी और टर्मिनल स्थितियों के साथ, डेरिवेटिव्स के लिए प्राप्त हो जाता है, तब पीडीई को संख्यात्मक विश्लेषण के मानक विधियों, जैसे कि प्रकार की परिमित अंतर विधि का उपयोग करके संख्यात्मक रूप से हल किया जा सकता है।[4] कुछ स्तिथियों में, स्पष्ट सूत्र के अनुसार हल करना संभव है, जैसे कि यूरोपीय कॉल के स्तिथि में, जो ब्लैक और स्कोल्स द्वारा किया गया था।
कॉल विकल्प के लिए ऐसा करने के लिए, याद रखें कि उपरोक्त पीडीई में सीमा का नियम हैं [5]
अंतिम नियम उस समय विकल्प का मूल्य दर्शाती है जब विकल्प परिपक्व होता है। इस प्रकार से अन्य स्थितियाँ संभव हैं क्योंकि S 0 या अनंत तक जाता है। उदाहरण के लिए, अन्य स्थितियों में उपयोग की जाने वाली सामान्य स्थितियाँ यह हैं कि जब S 0 पर जाता है तो डेल्टा विलुप्त हो जाता है और S अनंत तक जाता है तो गामा विलुप्त हो जाता है; ये उपरोक्त स्थितियों के समान ही सूत्र देंगे (सामान्य रूप से, अलग-अलग सीमा स्थितियाँ अलग-अलग समाधान देंगी, इसलिए उपस्तिथ स्थिति के लिए उपयुक्त परिस्थितियों को चुनने के लिए कुछ वित्तीय अंतर्दृष्टि का उपयोग किया जाना चाहिए)।
इस प्रकार से पीडीई का समाधान किसी भी पहले के समय में विकल्प का मूल्य देता है, पीडीई को हल करने के लिए हम मानते हैं कि यह कॉची-यूलर समीकरण है जिसे परिवर्तन-परिवर्तनीय परिवर्तन प्रारंभ करके गर्मी समीकरण में परिवर्तित किया जा सकता है
तब ब्लैक-स्कोल्स पीडीई प्रसार समीकरण बन जाता है
टर्मिनल स्थिति अब प्रारंभिक नियम बन गई है
जहां H(x) हेविसाइड स्टेप फलन है। हेविसाइड फलन S, t समन्वय प्रणाली में सीमा डेटा के प्रवर्तन से मेल खाता है जिसके लिए t = T, की आवश्यकता होती है,
इस प्रकार से S, K > 0 दोनों को मानते हुए। इस धारणा के साथ, यह x = 0 के अपवाद के साथ, वास्तविक संख्याओं में सभी x पर अधिकतम फलन के समान है। 'अधिकतम' फलन और हेविसाइड फलन के मध्य उपरोक्त समानता है वितरण की भावना क्योंकि यह x = 0 के लिए मान्य नहीं है। सूक्ष्म होते हुए भी, यह महत्वपूर्ण है क्योंकि हेविसाइड फलन को x = 0 पर परिमित होने की आवश्यकता नहीं है, यहां तक कि उस स्थिति के लिए परिभाषित भी नहीं किया गया है। यदि x = 0 पर हेविसाइड फलन के मान पर अधिक जानकारी के लिए, हेविसाइड स्टेप फलन लेख में शून्य तर्क अनुभाग देखें।
प्रारंभिक मान फलन, u(x, 0) दिए गए प्रसार समीकरण को हल करने के लिए मानक कनवल्शन विधि का उपयोग करते हुए, हमारे पास है
जो, कुछ परिवर्तन के पश्चात, उपज देता है
जहाँ मानक सामान्य संचयी वितरण फलन है और
ये वही समाधान हैं (समयानुवाद तक) जो 1976 में फिशर ब्लैक द्वारा प्राप्त किए गए थे।[6]
को वेरिएबल के मूल सेट में वापस लाने से ब्लैक-स्कोल्स समीकरण का उपर्युक्त समाधान प्राप्त होता है।
- एसिम्प्टोटिक स्थिति को अब अनुभूत किया जा सकता है।
जो मूल निर्देशांक पर वापस लौटने पर केवल S देता है।
संदर्भ
- ↑ Øksendal, Bernt (1998). "Option Pricing". Stochastic Differential Equations : An Introduction with Applications (5th ed.). Berlin: Springer. pp. 266–283. ISBN 3-540-63720-6.
- ↑ Hull, John C. (2008). विकल्प, वायदा और अन्य डेरिवेटिव (7 ed.). Prentice Hall. ISBN 978-0-13-505283-9.
- ↑ Shreve, Steven (2004). वित्त II के लिए स्टोकेस्टिक कैलकुलस (1st ed.). Springer. pp. 268–272. ISBN 0-387-40101-6.
- ↑ Wilmott, Paul; Howison, Sam; Dewynne, Jeff (1995). "Finite-difference Methods". वित्तीय डेरिवेटिव का गणित. Cambridge University Press. pp. 135–164. ISBN 0-521-49789-2.
- ↑ Chan, Raymond (2021-07-03), Black-Scholes Equations (PDF)
- ↑ See equation (16) in Black, Fischer S. (1976). "The Pricing of Commodity Contracts". Journal of Financial Economics. 3 (1–2): 167–179. doi:10.1016/0304-405X(76)90024-6.