|
|
Line 20: |
Line 20: |
| \iff \color{blue}b\color{black} \color{red}^{(0)}\color{black} = \color{green}y\color{black} | | \iff \color{blue}b\color{black} \color{red}^{(0)}\color{black} = \color{green}y\color{black} |
| \iff \color{blue}1\color{black} = \color{green}y\color{black} | | \iff \color{blue}1\color{black} = \color{green}y\color{black} |
| \iff \color{green}y\color{black} = \color{blue}1\color{black} | | \iff \color{green}y\color{black} = \color{blue}1\color{black} |
| | |
| | |
| | |
| </math> इसलिए, इन मानों को सूत्र में प्रतिस्थापित करने पर, हम देखते हैं कि: <math> | | </math> इसलिए, इन मानों को सूत्र में प्रतिस्थापित करने पर, हम देखते हैं कि: <math> |
| \color{black} \log \color{blue}_b \color{black} (\color{green}y\color{black}) = \color{red}x\color{black} | | \color{black} \log \color{blue}_b \color{black} (\color{green}y\color{black}) = \color{red}x\color{black} |
Line 68: |
Line 71: |
|
| |
|
|
| |
|
| == सरल संचालन का उपयोग करना == | | == सरल संचालन का उपयोग करना == |
|
| |
|
| गणना को आसान बनाने के लिए लघुगणक का उपयोग किया जा सकता है। उदाहरण के लिए, दो संख्याओं को केवल लघुगणक तालिका का उपयोग करके और जोड़कर गुणा किया जा सकता है। इन्हें अधिकांशतः लघुगणकीय गुणों के रूप में जाना जाता है, जिन्हें नीचे दी गई तालिका में प्रलेखित किया गया है।<ref>{{Cite web|title=4.3 - Properties of Logarithms|url=https://people.richland.edu/james/lecture/m116/logs/properties.html|access-date=2020-08-29|website=people.richland.edu}}</ref> नीचे दिए गए पहले तीन ऑपरेशन मानते हैं कि {{math|1=''x'' = ''b''<sup>''c''</sup>}} और/या {{math|1=''y'' = ''b''<sup>''d''</sup>}} जिससे {{math|1=log<sub>''b''</sub>(''x'') = ''c''}} और {{math|1=log<sub>''b''</sub>(''y'') = ''d''}} हो। व्युत्पत्तियाँ लॉग परिभाषाओं {{math|1=''x'' = ''b''<sup>log<sub>''b''</sub>(''x'')</sup>}} और {{math|1=''x'' = log<sub>''b''</sub>(''b''<sup>''x''</sup>)}} का भी उपयोग करती हैं। | | गणना को आसान बनाने के लिए लघुगणक का उपयोग किया जा सकता है। उदाहरण के लिए, दो संख्याओं को केवल लघुगणक तालिका का उपयोग करके और जोड़कर गुणा किया जा सकता है। इन्हें अधिकांशतः लघुगणकीय गुणों के रूप में जाना जाता है, जिन्हें नीचे दी गई तालिका में प्रलेखित किया गया है।<ref>{{Cite web|title=4.3 - Properties of Logarithms|url=https://people.richland.edu/james/lecture/m116/logs/properties.html|access-date=2020-08-29|website=people.richland.edu}}</ref> नीचे दिए गए पहले तीन ऑपरेशन मानते हैं कि {{math|1=''x'' = ''b''<sup>''c''</sup>}} और/या {{math|1=''y'' = ''b''<sup>''d''</sup>}} जिससे {{math|1=log<sub>''b''</sub>(''x'') = ''c''}} और {{math|1=log<sub>''b''</sub>(''y'') = ''d''}} हो। व्युत्पत्तियाँ लॉग परिभाषाओं {{math|1=''x'' = ''b''<sup>log<sub>''b''</sub>(''x'')</sup>}} और {{math|1=''x'' = log<sub>''b''</sub>(''b''<sup>''x''</sup>)}} का भी उपयोग करती हैं। |
Line 102: |
Line 105: |
|
| |
|
|
| |
|
| === उत्पाद, भागफल और शक्ति नियमों की व्युत्पत्ति === | | === उत्पाद, भागफल और शक्ति नियमों की व्युत्पत्ति === |
|
| |
|
| ये तीन मुख्य लघुगणक नियम/नियम/सिद्धांत हैं,<ref> | | ये तीन मुख्य लघुगणक नियम/नियम/सिद्धांत हैं,<ref> |
Line 113: |
Line 116: |
| </ref> जिससे ऊपर सूचीबद्ध अन्य गुण सिद्ध किये जा सकता है। इनमें से प्रत्येक लघुगणक गुण उनके संबंधित घातांक नियम के अनुरूप हैं, और उनकी व्युत्पत्ति/प्रमाण उन तथ्यों पर निर्भर होंगे। प्रत्येक लघुगणक नियम को प्राप्त/सिद्ध करने के कई विधि हैं - यह केवल एक संभावित विधि है। | | </ref> जिससे ऊपर सूचीबद्ध अन्य गुण सिद्ध किये जा सकता है। इनमें से प्रत्येक लघुगणक गुण उनके संबंधित घातांक नियम के अनुरूप हैं, और उनकी व्युत्पत्ति/प्रमाण उन तथ्यों पर निर्भर होंगे। प्रत्येक लघुगणक नियम को प्राप्त/सिद्ध करने के कई विधि हैं - यह केवल एक संभावित विधि है। |
|
| |
|
| ==== किसी उत्पाद का लघुगणक ==== | | ==== किसी उत्पाद का लघुगणक ==== |
|
| |
|
| <i>किसी उत्पाद का लघुगणक</i> नियम को औपचारिक रूप से बताने के लिए: | | <i>किसी उत्पाद का लघुगणक</i> नियम को औपचारिक रूप से बताने के लिए: |
Line 142: |
Line 145: |
| इससे व्युत्पत्ति पूर्ण हो जाती है। | | इससे व्युत्पत्ति पूर्ण हो जाती है। |
|
| |
|
| ==== भागफल का लघुगणक ==== | | ==== भागफल का लघुगणक ==== |
| भागफल नियम के लघुगणक को औपचारिक रूप से बताने के लिए: | | भागफल नियम के लघुगणक को औपचारिक रूप से बताने के लिए: |
| :<math>\forall b \in \mathbb{R}_+, b \neq 1, \forall x, y, \in \mathbb{R}_+, \log_b \left( \frac{x}{y} \right) = \log_b(x) - \log_b(y)</math> | | :<math>\forall b \in \mathbb{R}_+, b \neq 1, \forall x, y, \in \mathbb{R}_+, \log_b \left( \frac{x}{y} \right) = \log_b(x) - \log_b(y)</math> |
गणित में, कई लघुगणकीय पहचान (गणित) उपस्थित हैं। इनमें से उल्लेखनीय का संकलन निम्नलिखित है, जिनमें से कई का उपयोग कम्प्यूटेशनल उद्देश्यों के लिए किया जाता है।
तुच्छ पहचान
|
because |
|
|
because |
|
स्पष्टीकरण
परिभाषा के अनुसार, हम जानते हैं कि:
- ,
जहाँ या .
सेटिंग हम देख सकते हैं कि: इसलिए, इन मानों को सूत्र में प्रतिस्थापित करने पर, हम देखते हैं कि: , जो हमें पहली गुण प्राप्त करता है।
सेटिंग , हम देख सकते हैं कि:. इसलिए, इन मानों को सूत्र में प्रतिस्थापित करने पर, हम देखते हैं कि: , जो हमें दूसरी गुण दिलाती है।
कई गणितीय पहचानों को तुच्छ कहा जाता है, केवल इसलिए क्योंकि वे अपेक्षाकृत सरल होती हैं (समान्यत: एक अनुभवी गणितज्ञ के दृष्टिकोण से) इसका अर्थ यह नहीं है कि किसी पहचान या सूत्र को तुच्छ कहने का अर्थ यह है कि यह महत्वपूर्ण नहीं है।
घातांक समाप्त करना
समान आधार वाले लघुगणक और घातांक फलन एक दूसरे को समाप्त कर देते हैं। यह सच है क्योंकि लघुगणक और घातांक व्युत्क्रम संक्रियाएँ हैं - ठीक उसी तरह जैसे गुणा और भाग व्युत्क्रम संक्रियाएँ हैं, और जोड़ और घटाव व्युत्क्रम संक्रियाएँ हैं।
- [1]
उपरोक्त दोनों निम्नलिखित दो समीकरणों से प्राप्त हुए हैं जो लघुगणक को परिभाषित करते हैं: (ध्यान दें कि इस स्पष्टीकरण में, के वेरिएबल और हो सकता है कि वह उसी नंबर का जिक्र न कर रहा हो)
समीकरण को देखते हुए, और में से के मान को प्रतिस्थापित करने पर, हमें निम्नलिखित समीकरण मिलता है: , जो हमें पहला समीकरण देता है। इसके बारे में सोचने का एक और अधिक समान्य विधि यह है कि , और वह "" है।
.
समीकरण को देखते हुए
, और इसके लिए मान प्रतिस्थापित करना का , हमें निम्नलिखित समीकरण मिलता है:
जो हमें दूसरा समीकरण देता है। इसके बारे में सोचने का एक और अधिक कठिन विधि यह है ,और वह कुछ , .है
सरल संचालन का उपयोग करना
गणना को आसान बनाने के लिए लघुगणक का उपयोग किया जा सकता है। उदाहरण के लिए, दो संख्याओं को केवल लघुगणक तालिका का उपयोग करके और जोड़कर गुणा किया जा सकता है। इन्हें अधिकांशतः लघुगणकीय गुणों के रूप में जाना जाता है, जिन्हें नीचे दी गई तालिका में प्रलेखित किया गया है।[2] नीचे दिए गए पहले तीन ऑपरेशन मानते हैं कि x = bc और/या y = bd जिससे logb(x) = c और logb(y) = d हो। व्युत्पत्तियाँ लॉग परिभाषाओं x = blogb(x) और x = logb(bx) का भी उपयोग करती हैं।
|
because |
|
|
because |
|
|
because |
|
|
because |
|
|
because |
|
|
because |
|
जहाँ , , और धनात्मक वास्तविक संख्याएँ हैं और , और और वास्तविक संख्याएँ हैं.
नियम घातांक को समाप्त करने और सूचकांकों के उचित नियम के परिणामस्वरूप होते हैं। पहले नियम से प्रारंभिक :
शक्तियों के लिए नियम सूचकांकों के अन्य नियमों का शोषण करता है:
भागफल से संबंधित नियम इस प्रकार है:
इसी प्रकार, मूल नियम को पारस्परिक शक्ति के रूप में जड़ को फिर से लिखकर प्राप्त किया जाता है:
उत्पाद, भागफल और शक्ति नियमों की व्युत्पत्ति
ये तीन मुख्य लघुगणक नियम/नियम/सिद्धांत हैं,[3] जिससे ऊपर सूचीबद्ध अन्य गुण सिद्ध किये जा सकता है। इनमें से प्रत्येक लघुगणक गुण उनके संबंधित घातांक नियम के अनुरूप हैं, और उनकी व्युत्पत्ति/प्रमाण उन तथ्यों पर निर्भर होंगे। प्रत्येक लघुगणक नियम को प्राप्त/सिद्ध करने के कई विधि हैं - यह केवल एक संभावित विधि है।
किसी उत्पाद का लघुगणक
किसी उत्पाद का लघुगणक नियम को औपचारिक रूप से बताने के लिए:
व्युत्पत्ति:
मान लीजिए , जहां और मान लीजिए हम व्यंजकों और } को संबंधित करना चाहते हैं। इसे घातांक के संदर्भ में पुनः लिखकर अधिक आसानी से किया जा सकता है, जिसके गुणों को हम पहले से ही जानते हैं। इसके अतिरिक्त, चूँकि हम अधिकांशतः और का उल्लेख करने जा रहे हैं, हम उनके साथ काम करना आसान बनाने के लिए उन्हें कुछ परिवर्तनीय नाम देंगे: चलो , और जाने .है
इन्हें घातांक के रूप में पुनः लिखते हुए, हम इसे देखते हैं
यहां से, हम संबंधित हो सकते हैं (अर्थात। ) और (अर्थात। ) घातांक नियमों का उपयोग करते हुए
लघुगणक को पुनर्प्राप्त करने के लिए, हम आवेदन करते हैं समानता के दोनों पक्षों के लिए.
पहले से लघुगणक गुणों में से एक का उपयोग करके दाईं ओर को सरल बनाया जा सकता है: हम यह जानते हैं की , दे रहा है
अब हम अपने समीकरण में और के मानों को पुनः प्रतिस्थापित करते हैं, इसलिए हमारी अंतिम अभिव्यक्ति केवल , , और के संदर्भ में है।
इससे व्युत्पत्ति पूर्ण हो जाती है।
भागफल का लघुगणक
भागफल नियम के लघुगणक को औपचारिक रूप से बताने के लिए:
व्युत्पत्ति:
माना ` , जहाँ , और जाने .
भागफल नियम के लघुगणक को औपचारिक रूप से बताने के लिए: और । इसे घातांक के संदर्भ में पुनः लिखकर अधिक आसानी से किया जा सकता है, जिसके गुणों को हम पहले से ही जानते हैं। इसके अतिरिक्त, चूँकि हम अधिकांशतः और का उल्लेख करने जा रहे हैं, हम उनके साथ काम करना आसान बनाने के लिए उन्हें कुछ परिवर्तनीय नाम देंगे: चलो , और जाने है ।
इन्हें घातांक के रूप में पुनः लिखने पर, हम देखते हैं कि:
यहां से, हम संबंधित हो सकते हैं (अर्थात। ) और (अर्थात। ) घातांक नियमों का उपयोग करते हुए
लघुगणक को पुनर्प्राप्त करने के लिए, हम आवेदन करते हैं समानता के दोनों पक्षों के लिए.
पहले से लघुगणक गुणों में से एक का उपयोग करके दाईं ओर को सरल बनाया जा सकता है: हम यह जानते हैं तो , दे रहा है
अब हम अपने समीकरण में और के मानों को पुनः प्रतिस्थापित करते हैं, इसलिए हमारी अंतिम अभिव्यक्ति केवल , , और के संदर्भ में है
इससे व्युत्पत्ति पूर्ण हो जाती है।
घात का लघुगणक
शक्ति का लघुगणक नियम को औपचारिक रूप से बताने के लिए,
व्युत्पत्ति:
मान लीजिए , जहाँ , मान लीजिए , और मान लीजिए इस व्युत्पत्ति के लिए, हम अभिव्यक्ति को सरल बनाना चाहते हैं। ऐसा करने के लिए, हम सरल अभिव्यक्ति से प्रारंभ करते हैं। चूँकि हम अधिकांशतः का उपयोग करेंगे, हम इसे एक नए वेरिएबल के रूप में परिभाषित करेंगे: मान लीजिए है ।
अभिव्यक्ति में अधिक आसानी से परिवर्तन करने के लिए, हम इसे एक घातांक के रूप में फिर से लिखते हैं। परिभाषा से, , तो हमारे पास
उपरोक्त व्युत्पत्तियों के समान, हम एक अन्य घातांक नियम का लाभ उठाते हैं। अपनी अंतिम अभिव्यक्ति में प्राप्त करने के लिए, हम समानता के दोनों पक्षों को की घात तक बढ़ाते हैं।
जहां हमने घातांक नियम का उपयोग किया था।
लघुगणक को पुनः प्राप्त करने के लिए, हम समानता के दोनों पक्षों पर प्रयुक्त करते हैं।
समानता के बाईं ओर को लघुगणक नियम का उपयोग करके सरल बनाया जा सकता है, जो बताता है कि .
मूल मान में को प्रतिस्थापित करना, पुनर्व्यवस्थित करना और सरलीकरण करना
इससे व्युत्पत्ति पूर्ण हो जाती है।
आधार बदलना
आधार लघुगणक सूत्र के परिवर्तन को औपचारिक रूप से बताने के लिए:
यह पहचान कैलकुलेटर पर लघुगणक का मूल्यांकन करने के लिए उपयोगी है। उदाहरण के लिए, अधिकांश कैलकुलेटर में
प्राकृतिक लघुगणक और सामान्य लघुगणक या log
10 के लिए बटन होते हैं किंतु सभी कैलकुलेटर में इच्छित आधार के लघुगणक के लिए बटन नहीं होते हैं।
प्रमाण/व्युत्पत्ति
मान लीजिए , जहां मान लीजिए यहां, और दो आधार हैं जिनका उपयोग हम लघुगणक के लिए करेंगे। वे 1 नहीं हो सकते, क्योंकि 1 के आधार के लिए लघुगणक फलन अच्छी तरह से परिभाषित नहीं है। संख्या वह होगी जिसका लघुगणक मूल्यांकन कर रहा है, इसलिए यह एक सकारात्मक संख्या होनी चाहिए। चूँकि हम शब्द से बार-बार निपटेंगे, इसलिए हम इसे एक नए चर के रूप में परिभाषित करते हैं: मान लीजिए है।
अभिव्यक्ति में अधिक आसानी से परिवर्तन करने के लिए, इसे घातांक के रूप में फिर से लिखा जा सकता है।
समानता के दोनों पक्षों पर
प्रयुक्त करने पर,
अब, एक शक्ति गुण के लघुगणक का उपयोग करते हुए, जो यह बताता है
,
को अलग करने पर, हमें निम्नलिखित प्राप्त होता है:
पुनर्प्रतिस्थापन
समीकरण में वापस,
यह इस बात का प्रमाण पूरा करता है
.
इस सूत्र के कई परिणाम हैं:
जहां
सबस्क्रिप्ट
1, ..., n का कोई क्रमपरिवर्तन है। उदाहरण के लिए
योग/घटाव
निम्नलिखित योग/घटाव नियम संभाव्यता सिद्धांत में विशेष रूप से उपयोगी होता है जब कोई लॉग-संभावनाओं के योग से निपट रहा हो:
|
because
|
|
|
because
|
|
ध्यान दें कि यदि है तो घटाव पहचान परिभाषित नहीं है, क्योंकि शून्य का लघुगणक परिभाषित नहीं है। यह भी ध्यान दें कि, प्रोग्रामिंग करते समय, राउंडिंग त्रुटियों के कारण "1 +" खोने से बचने के लिए, और को समीकरणों के दाईं ओर स्विच करना पड़ सकता है यदि कई प्रोग्रामिंग भाषाओं में एक विशिष्ट log1p(x)
फलन होता है जो बिना अंडरफ्लो (जब छोटा होता है) के बिना की गणना करता है।
समान्यत: अधिक:
घातांक
घातांकों से जुड़ी एक उपयोगी पहचान:
या अधिक सार्वभौमिक रूप से:
अन्य/परिणामी पहचान
असमानताएं
पर आधारित,[4][5] और [6]
सभी के आसपास स्पष्ट हैं, किंतु बड़ी संख्याओं के लिए नहीं।
कलन सर्वसमिकाएँ
अंतिम सीमा को अधिकांशतः संक्षेप में प्रस्तुत किया जाता है क्योंकि लघुगणक x की किसी भी शक्ति या जड़ की तुलना में अधिक धीरे-धीरे बढ़ता है।
लघुगणकीय फलनों के व्युत्पन्न
अभिन्न परिभाषा
लघुगणकीय फलनों का समाकलन
उच्च अभिन्नों को याद रखने के लिए, इसे परिभाषित करना सुविधाजनक है
जहां nवाँ हार्मोनिक संख्या है:
तब
बड़ी संख्याओं का अनुमान लगाना
लघुगणक की पहचान का उपयोग बड़ी संख्याओं का अनुमान लगाने के लिए किया जा सकता है। ध्यान दें कि logb(a) + logb(c) = logb(ac) जहां a, b, और c इच्छित स्थिरांक हैं। मान लीजिए कि कोई 44वें मेरसेन प्राइम, 232,582,657 −1 का अनुमान लगाना चाहता है। आधार-10 लघुगणक प्राप्त करने के लिए, हम 32,582,657 को log10(2) से गुणा करेंगे, जिससे 9,808,357.09543 = 9,808,357 + 0.09543 प्राप्त होगा। फिर हम 109,808,357 × 100.09543 ≈ 1.25 × 109,808,357 प्राप्त कर सकते हैं।
इसी प्रकार, पदों के लघुगणक का योग करके फैक्टोरियल का अनुमान लगाया जा सकता है।
जटिल लघुगणक, लघुगणक फलन का जटिल संख्या एनालॉग है। जटिल तल पर कोई भी एकल मूल्यवान फलन लघुगणक के सामान्य नियमों को संतुष्ट नहीं कर सकता है। चूँकि एक बहुमूल्यवान फलन को परिभाषित किया जा सकता है जो अधिकांश पहचानों को संतुष्ट करता है। इसे रीमैन सतह पर परिभाषित एक फलन के रूप में मानना सामान्य बात है। एक एकल मूल्यवान संस्करण, जिसे लघुगणक का मुख्य मूल्य कहा जाता है, को परिभाषित किया जा सकता है जो ऋणात्मक एक्स अक्ष पर असंतत है, और एकल शाखा कट पर बहुमूल्यवान संस्करण के समान है।
परिभाषाएँ
निम्नलिखित में, फ़ंक्शंस के प्रमुख मान के लिए बड़े अक्षर का उपयोग किया जाता है, और मल्टीवैल्यूड फलन के लिए निचले केस संस्करण का उपयोग किया जाता है। परिभाषाओं और पहचानों का एकल मूल्यवान संस्करण सदैव पहले दिया जाता है, उसके बाद एकाधिक मूल्यवान संस्करणों के लिए एक अलग अनुभाग दिया जाता है।
- ln(r) वास्तविक संख्या r का मानक प्राकृतिक लघुगणक है।
- Arg(z) arg फलन का प्रमुख मान है; इसका मान (−π, π] तक सीमित है। इसकी गणना Arg(x + iy) = atan2(y, x) का उपयोग करके की जा सकती है।
- Log(z) जटिल लघुगणक फलन का मुख्य मान है और इसकी सीमा (−π, π] में काल्पनिक भाग है।
का बहु-मूल्यवान संस्करण log(z) एक समुच्चय है, किंतु इसे ब्रेसिज़ के बिना लिखना आसान है और सूत्रों में इसका उपयोग स्पष्ट नियमों का पालन करता है।
- log(z) सम्मिश्र संख्याओं v का समुच्चय है जो ev = z को संतुष्ट करता है
- arg(z), z पर प्रयुक्त Arg (गणित) फलन के संभावित मानों का समुच्चय है।
जब k कोई पूर्णांक हो:
स्थिरांक
प्रमुख मूल्य प्रपत्र:
किसी भी k पूर्णांक के लिए एकाधिक मान प्रपत्र:
सारांश
प्रमुख मूल्य प्रपत्र:
- [7]
- [7]
एकाधिक मूल्य प्रपत्र:
शक्तियाँ
किसी सम्मिश्र संख्या की सम्मिश्र घात में कई संभावित मान हो सकते हैं।
प्रमुख मूल्य प्रपत्र:
एकाधिक मूल्य प्रपत्र:
जहाँ k1, k2 क्या कोई पूर्णांक हैं:
यह भी देखें
- π से जुड़े सूत्रों की सूची
- लघुगणकीय कार्यों के अभिन्नों की सूची
- गणितीय सर्वसमिकाओं की सूची
- गणित विषयों की सूची
- त्रिकोणमितीय सर्वसमिकाओं की सूची
संदर्भ
बाहरी संबंध