एक बहुपद की घात: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Mathematical concept}}
{{short description|Mathematical concept}}
गणित में, एक [[ बहुपद |बहुपद]] की घात, शून्य गुणांकों वाले बहुपद मोनोमियल (अलग-अलग शब्दों) की उच्चतम घात होती है। एक शब्द की घात उस में दिखाई देने वाले [[ चर (गणित) |चर (गणित)]] के प्रतिपादकों का योग है, और इस प्रकार एक गैर नकारात्मक [[ पूर्णांक | पूर्णांक]] है।एक बहुपदी बहुपद के लिए, बहुपद की  घात केवल बहुपद में उत्पन्न उच्चतम प्रतिपादक है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Polynomial Degree|url=https://mathworld.wolfram.com/PolynomialDegree.html|access-date=2020-08-31|website=mathworld.wolfram.com|language=en}}</ref><ref name=":0">{{Cite web|title=Degree (of an Expression)|url=https://www.mathsisfun.com/algebra/degree-expression.html|access-date=2020-08-31|website=www.mathsisfun.com}}</ref> शब्द क्रम का प्रयोग घात के पर्यायार्थ के रूप में किया गया है, लेकिन आजकल, यह अनेक अन्य अवधारणाओं के संदर्भ में ((बहुपद) बहुविकल्पी व्यवस्था को दर्शाता है।)
गणित में, एक [[ बहुपद |बहुपद]] की घात, शून्य गुणांकों वाले बहुपद मोनोमियल(अलग-अलग शब्दों) की उच्चतम घात होती है। एक शब्द की घात उस में दिखाई देने वाले [[ चर (गणित) |चर (गणित)]] के प्रतिपादकों का योग है, और इस प्रकार एक गैर नकारात्मक [[ पूर्णांक | पूर्णांक]] है। एक बहुपद के लिए, बहुपद की  घात केवल बहुपद में उत्पन्न उच्चतम प्रतिपादक है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Polynomial Degree|url=https://mathworld.wolfram.com/PolynomialDegree.html|access-date=2020-08-31|website=mathworld.wolfram.com|language=en}}</ref><ref name=":0">{{Cite web|title=Degree (of an Expression)|url=https://www.mathsisfun.com/algebra/degree-expression.html|access-date=2020-08-31|website=www.mathsisfun.com}}</ref> शब्द क्रम का प्रयोग घात के पर्यायार्थ के रूप में किया गया है, लेकिन आजकल, यह अनेक अन्य अवधारणाओं के संदर्भ में(बहुपद) बहुविकल्पी व्यवस्था को दर्शाता है।)


उदाहरण के लिए, बहुपद  <math>7x^2y^3 + 4x - 9,</math> जो भी लिखा जा सकता है <math>7x^2y^3 + 4x^1y^0 - 9x^0y^0,</math> तीन शब्द है। पहले पद का घात 5 है ([[ घातांक ]] 2 और 3 का योग), दूसरे पद का घात 1 है, और अंतिम पद का घात 0 है। इसलिए बहुपद की  घात 5 है जो किसी भी पद की उच्चतम घात है।
उदाहरण के लिए, बहुपद  <math>7x^2y^3 + 4x - 9,</math> जो भी लिखा जा सकता है <math>7x^2y^3 + 4x^1y^0 - 9x^0y^0,</math> तीन शब्द है। पहले पद का घात 5 है([[ घातांक ]] 2 और 3 का योग), दूसरे पद का घात 1 है, और अंतिम पद का घात 0 है। इसलिए बहुपद की  घात 5 है जो किसी भी पद की उच्चतम घात है।


एक बहुपद की  घात निर्धारित करने के लिए जो मानक रूप में नहीं है, जैसे कि <math>(x+1)^2 - (x-1)^2</math>, कोई भी इसे उत्पादों ([[ वितरण |वितरण]] द्वारा) के विस्तार और समान शर्तों के संयोजन द्वारा मानक रूप में रख सकता है; उदाहरण के लिए, <math>(x+1)^2 - (x-1)^2 = 4x</math> की  घात 1 है, चूंकि प्रत्येक शिखर की  घात 2 है। चूंकि, यह तब आवश्यक नहीं है जब बहुपद को मानक रूप में एक उत्पाद के रूप में लिखा जाता है क्योंकि एक उत्पाद की  घात कारकों की  घात का योग है।
एक बहुपद की  घात निर्धारित करने के लिए जो मानक रूप में नहीं है, जैसे कि <math>(x+1)^2 - (x-1)^2</math>, कोई भी इसे उत्पादों ([[ वितरण |वितरण]] द्वारा) के विस्तार और समान शर्तों के संयोजन द्वारा मानक रूप में रख सकता है; उदाहरण के लिए, <math>(x+1)^2 - (x-1)^2 = 4x</math> की  घात 1 है, चूंकि प्रत्येक शिखर की  घात 2 है। चूंकि, यह तब आवश्यक नहीं है जब बहुपद को मानक रूप में एक उत्पाद के रूप में लिखा जाता है क्योंकि एक उत्पाद की  घात कारकों की  घात का योग है।
Line 134: Line 134:
*{{Citation |last=Shafarevich |first=Igor R. |author-link=Igor Shafarevich |year=2003 |title=Discourses on Algebra |publisher=Springer Science & Business Media |url=https://books.google.com/books?id=hpkkJgU8rwcC&q=%22the+degree+of+the+polynomial+is+undefined%22&pg=PA27 }}
*{{Citation |last=Shafarevich |first=Igor R. |author-link=Igor Shafarevich |year=2003 |title=Discourses on Algebra |publisher=Springer Science & Business Media |url=https://books.google.com/books?id=hpkkJgU8rwcC&q=%22the+degree+of+the+polynomial+is+undefined%22&pg=PA27 }}


==इस पृष्ठ में अनुपलब्ध आंतरिक लिंक की सूची==
*रैखिक फिल्टर
*मूर्ति प्रोद्योगिकी
*करणीय
*खास समय
*सिग्नल (इलेक्ट्रॉनिक्स)
*लगातार कश्मीर फिल्टर
*चरण विलंब
*एम-व्युत्पन्न फ़िल्टर
*स्थानांतरण प्रकार्य
*बहुपदीय फलन
*लो पास फिल्टर
*अंतःप्रतीक हस्तक्षेप
*फ़िल्टर (प्रकाशिकी)
*युग्मित उपकरण को चार्ज करें
*गांठदार तत्व
*पतली फिल्म थोक ध्वनिक गुंजयमान यंत्र
*लोहा
*परमाणु घड़ी
*फुरियर रूपांतरण
*लहर (फ़िल्टर)
*कार्तीय समन्वय प्रणाली
*अंक शास्त्र
*यूक्लिडियन स्पेस
*मामला
*ब्रम्हांड
*कद
*द्वि-आयामी अंतरिक्ष
*निर्देशांक तरीका
*अदिश (गणित)
*शास्त्रीय हैमिल्टनियन quaternions
*quaternions
*पार उत्पाद
*उत्पत्ति (गणित)
*दो प्रतिच्छेद रेखाएँ
*तिरछी रेखाएं
*समानांतर पंक्ति
*रेखीय समीकरण
*समानांतर चतुर्भुज
*वृत्त
*शंकु खंड
*विकृति (गणित)
*निर्देशांक वेक्टर
*लीनियर अलजेब्रा
*सीधा
*भौतिक विज्ञान
*लेट बीजगणित
*एक क्षेत्र पर बीजगणित
*जोड़नेवाला
*समाकृतिकता
*कार्तीय गुणन
*अंदरूनी प्रोडक्ट
*आइंस्टीन योग सम्मेलन
*इकाई वेक्टर
*टुकड़े-टुकड़े चिकना
*द्विभाजित
*आंशिक व्युत्पन्न
*आयतन तत्व
*समारोह (गणित)
*रेखा समाकलन का मौलिक प्रमेय
*खंड अनुसार
*सौम्य सतह
*फ़ानो विमान
*प्रक्षेप्य स्थान
*प्रक्षेप्य ज्यामिति
*चार आयामी अंतरिक्ष
*विद्युत प्रवाह
*उच्च लाभ एंटीना
*सर्वदिशात्मक एंटीना
*गामा किरणें
*विद्युत संकेत
*वाहक लहर
*आयाम अधिमिश्रण
*चैनल क्षमता
*आर्थिक अच्छा
*आधार - सामग्री संकोचन
*शोर उन्मुक्ति
*कॉल चिह्न
*शिशु की देखरेख करने वाला
*आईएसएम बैंड
*लंबी लहर
*एफएम प्रसारण
*सत्य के प्रति निष्ठा
*जमीनी लहर
*कम आवृत्ति
*श्रव्य विकृति
*वह-एएसी
*एमपीईजी-4
*संशोधित असतत कोसाइन परिवर्तन
*भू-स्थिर
*प्रत्यक्ष प्रसारण उपग्रह टेलीविजन
*माध्यमिक आवृत्ति
*परमाणु घड़ी
*बीपीसी (समय संकेत)
*फुल डुप्लेक्स
*बिट प्रति सेकंड
*पहला प्रतिसादकर्ता
*हवाई गलियारा
*नागरिक बंद
*विविधता स्वागत
*शून्य (रेडियो)
*बिजली का मीटर
*जमीन (बिजली)
*हवाई अड्डे की निगरानी रडार
*altimeter
*समुद्री रडार
*देशान्तर
*तोपखाने का खोल
*बचाव बीकन का संकेत देने वाली आपातकालीन स्थिति
*अंतर्राष्ट्रीय कॉस्पास-सरसैट कार्यक्रम
*संरक्षण जीवविज्ञान
*हवाई आलोक चित्र विद्या
*गैराज का दरवाज़ा
*मुख्य जेब
*अंतरिक्ष-विज्ञान
*ध्वनि-विज्ञान
*निरंतर संकेत
*मिड-रेंज स्पीकर
*फ़िल्टर (सिग्नल प्रोसेसिंग)
*उष्ण ऊर्जा
*विद्युतीय प्रतिरोध
*लंबी लाइन (दूरसंचार)
*इलास्टेंस
*गूंज
*ध्वनिक प्रतिध्वनि
*प्रत्यावर्ती धारा
*आवृत्ति विभाजन बहुसंकेतन
*छवि फ़िल्टर
*वाहक लहर
*ऊष्मा समीकरण
*प्रतिक दर
*विद्युत चालकता
*आवृति का उतार - चढ़ाव
*निरंतर कश्मीर फिल्टर
*जटिल विमान
*फासर (साइन वेव्स)
*पोर्ट (सर्किट सिद्धांत)
*लग्रांगियन यांत्रिकी
*जाल विश्लेषण
*पॉइसन इंटीग्रल
*affine परिवर्तन
*तर्कसंगत कार्य
*शोर अनुपात का संकेत
*मिलान फ़िल्टर
*रैखिक-द्विघात-गाऊसी नियंत्रण
*राज्य स्थान (नियंत्रण)
*ऑपरेशनल एंप्लीफायर
*एलटीआई प्रणाली सिद्धांत
*विशिष्ट एकीकृत परिपथ आवेदन
*सतत समय
*एंटी - एलियासिंग फ़िल्टर
*भाजक
*निश्चित बिंदु अंकगणित
*फ्लोटिंग-पॉइंट अंकगणित
*डिजिटल बाइकैड फ़िल्टर
*अनुकूली फिल्टर
*अध्यारोपण सिद्धांत
*कदम की प्रतिक्रिया
*राज्य स्थान (नियंत्रण)
*नियंत्रण प्रणाली
*वोल्टेज नियंत्रित थरथरानवाला
*कंपंडोर
*नमूना और पकड़
*संगणक
*अनेक संभावनाओं में से चुनी हूई प्रक्रिया
*प्रायिकता वितरण
*वर्तमान परिपथ
*गूंज रद्दीकरण
*सुविधा निकासी
*छवि उन्नीतकरण
*एक प्रकार की प्रोग्रामिंग की पर्त
* ओ एस आई मॉडल
*समानता (संचार)
*आंकड़ा अधिग्रहण
*रूपांतरण सिद्धांत
*लीनियर अलजेब्रा
*स्टचास्तिक प्रोसेसेज़
*संभावना
*गैर-स्थानीय साधन
*घटना (सिंक्रनाइज़ेशन आदिम)
*एंटीलोक ब्रेक
*उद्यम प्रणाली
*सुरक्षा-महत्वपूर्ण प्रणाली
*डेटा सामान्य
*आर टी -11
*डंब टर्मिनल
*समय बताना
*सेब II
*जल्द से जल्द समय सीमा पहले शेड्यूलिंग
*अनुकूली विभाजन अनुसूचक
*वीडियो गेम कंसोल की चौथी पीढ़ी
*वीडियो गेम कंसोल की तीसरी पीढ़ी
*नमूनाकरण दर
*अंकगणित औसत
*उच्च प्रदर्शन कंप्यूटिंग
*भयावह विफलता
*हुड विधि
*प्रणाली विश्लेषण
*समय अपरिवर्तनीय
*औद्योगिक नियंत्रण प्रणाली
*निर्देशयोग्य तर्क नियंत्रक
*प्रक्रिया अभियंता)
*नियंत्रण पाश
*संयंत्र (नियंत्रण सिद्धांत)
*क्रूज नियंत्रण
*अनुक्रमिक कार्य चार्ट
*नकारात्मक प्रतिपुष्टि
*अन्देंप्त
*नियंत्रण वॉल्व
*पीआईडी ​​नियंत्रक
*यौगिक
*फिल्टर (सिग्नल प्रोसेसिंग)
*वितरित कोटा पद्धति
*महाकाव्यों
*डूप गति नियंत्रण
*हवाई जहाज
*संक्षिप्त और प्रारंभिकवाद
*मोटर गाड़ी
*संयुक्त राज्य नौसेना
*निर्देशित मिसाइलें
*भूभाग-निम्नलिखित रडार
*अवरक्त किरणे
*प्रेसिजन-निर्देशित युद्धपोत
*विमान भेदी युद्ध
*शाही रूसी नौसेना
*हस्तक्षेप हरा
*सेंट पीटर्सबर्ग
*योण क्षेत्र
*आकाशीय बिजली
*द्वितीय विश्वयुद्ध
*संयुक्त राज्य सेना
*डेथ रे
*पर्ल हार्बर पर हमला
*ओबाउ (नेविगेशन)
*जमीन नियंत्रित दृष्टिकोण
*भूविज्ञानी
*आंधी तूफान
*मौसम पूर्वानुमान
*बहुत बुरा मौसम
*सर्दियों का तूफान
*संकेत पहचान
*बिखरने
*इलेक्ट्रिकल कंडक्टीविटी
*पराबैगनी प्रकाश
*खालीपन
*भूसा (प्रतिमाप)
*पारद्युतिक स्थिरांक
*विद्युत चुम्बकीय विकिरण
*विद्युतीय प्रतिरोध
*प्रतिचुम्बकत्व
*बहुपथ प्रसार
*तरंग दैर्ध्य
*अर्ध-सक्रिय रडार होमिंग
*Nyquist आवृत्ति
*ध्रुवीकरण (लहरें)
*अपवर्तक सूचकांक
*नाड़ी पुनरावृत्ति आवृत्ति
*शोर मचाने वाला फ़र्श
*प्रकाश गूंज
*रेत का तूफान
*स्वत: नियंत्रण प्राप्त करें
*जय स्पाइक
*घबराना
*आयनमंडलीय परावर्तन
*वायुमंडलीय वाहिनी
*व्युत्क्रम वर्ग नियम
*इलेक्ट्रानिक युद्ध
*उड़ान का समय
*प्रकाश कि गति
*पूर्व चेतावनी रडार
*रफ़्तार
*निरंतर-लहर रडार
*स्पेकट्रूम विशेष्यग्य
*रेंज अस्पष्टता संकल्प
*मिलान फ़िल्टर
*रोटेशन
*चरणबद्ध व्यूह रचना
*मैमथ राडार
*निगरानी करना
*स्क्रीन
*पतला सरणी अभिशाप
*हवाई रडार प्रणाली
*परिमाणक्रम
*इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स
*क्षितिज राडार के ऊपर
*पल्स बनाने वाला नेटवर्क
*अमेरिका में प्रदूषण की रोकथाम
*आईटी रेडियो विनियम
*रडार संकेत विशेषताएं
*हैस (रडार)
*एवियोनिक्स में एक्रोनिम्स और संक्षिप्ताक्षर
*समय की इकाई
*गुणात्मक प्रतिलोम
*रोशनी
*दिल की आवाज
*हिलाना
*सरल आवर्त गति
*नहीं (पत्र)
*एसआई व्युत्पन्न इकाई
*इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन
*प्रति मिनट धूर्णन
*हवा की लहर
*एक समारोह का तर्क
*चरण (लहरें)
*आयामहीन मात्रा
*असतत समय संकेत
*विशेष मामला
*मध्यम (प्रकाशिकी)
*कोई भी त्रुटि
*ध्वनि की तरंग
*दृश्यमान प्रतिबिम्ब
*लय
*सुनवाई की दहलीज
*प्रजातियाँ
*मुख्य विधुत
*नाबालिग तीसरा
*माप की इकाइयां
*आवधिकता (बहुविकल्पी)
*परिमाण के आदेश (आवृत्ति)
*वर्णक्रमीय घटक
*रैखिक समय-अपरिवर्तनीय प्रणाली
*असतत समय फिल्टर
*ऑटोरेग्रेसिव मॉडल
*डिजिटल डाटा
*डिजिटल देरी लाइन
*बीआईबीओ स्थिरता
*फोरियर श्रेणी
*दोषी
*दशमलव (सिग्नल प्रोसेसिंग)
*असतत फूरियर रूपांतरण
*एफआईआर ट्रांसफर फंक्शन
*3डी परीक्षण मॉडल
*ब्लेंडर (सॉफ्टवेयर)
*वैज्ञानिक दृश्य
*प्रतिपादन (कंप्यूटर ग्राफिक्स)
*विज्ञापन देना
*चलचित्र
*अनुभूति
*निहित सतह
*विमानन
*भूतपूर्व छात्र
*छिपी सतह निर्धारण
*अंतरिक्ष आक्रमणकारी
*लकीर खींचने की क्रिया
*एनएमओएस तर्क
*उच्च संकल्प
*एमओएस मेमोरी
*पूरक राज्य मंत्री
*नक्षत्र-भवन
*वैश्विक चमक
*मैकिंटोश कंप्यूटर
*प्रथम व्यक्ति शूटर
*साधारण मानचित्रण
*हिमयुग (2002 फ़िल्म)
*मेडागास्कर (2005 फ़िल्म)
*बायोइनफॉरमैटिक्स
*शारीरिक रूप से आधारित प्रतिपादन
*हीरे की थाली
*प्रतिबिंब (कंप्यूटर ग्राफिक्स)
*2010 की एनिमेटेड फीचर फिल्मों की सूची
*परिवेशी बाधा
*वास्तविक समय (मीडिया)
*जानकारी
*कंकाल एनिमेशन
*भीड़ अनुकरण
*प्रक्रियात्मक एनिमेशन
*अणु प्रणाली
*कैमरा
*माइक्रोस्कोप
*इंजीनियवलय के चित्र
*रेखापुंज छवि
*नक्शा
*हार्डवेयर एक्सिलरेशन
*अंधेरा
*गैर-समान तर्कसंगत बी-तख़्ता
*नक्शा टक्कर
*चुम्बकीय अनुनाद इमेजिंग
*नमूनाकरण (सिग्नल प्रोसेसिंग)
*sculpting
*आधुनिक कला का संग्रहालय
*गेम डेवलपर्स कांफ्रेंस
*शैक्षिक
*आपूर्ती बंद करने की आवृत्ति
*प्रतिक्रिया (इलेक्ट्रॉनिक्स)
*अण्डाकार फिल्टर
*सीरिज़ सर्किट)
*मिलान जेड-ट्रांसफॉर्म विधि
*कंघी फ़िल्टर
*समूह देरी
*सप्टक
*दूसरों से अलग
*लो पास फिल्टर
*निर्देश प्रति सेकंड
*अंकगणित अतिप्रवाह
*चरण (लहरें)
*हस्तक्षेप (लहर प्रसार)
*बीट (ध्वनिक)
*अण्डाकार तर्कसंगत कार्य
*जैकोबी अण्डाकार कार्य
*क्यू कारक
*यूनिट सर्कल
*फी (पत्र)
*सुनहरा अनुपात
*मोनोटोनिक
*Immittance
*ऑप एंप
*आवेग invariance
*बेसेल फलन
*जटिल सन्युग्म
*संकेत प्रतिबिंब
*विद्युतीय ऊर्जा
*इनपुट उपस्थिति
*एकदिश धारा
*जटिल संख्या
*भार प्रतिबाधा
*विद्युतचुंबकीय व्यवधान
*बिजली की आपूर्ति
*आम-कैथोड
*अवमन्दन कारक
*ध्वनिरोधन
*गूंज (घटना)
*फ्रेस्नेल समीकरण
*रोड़ी
*लोडिंग कॉइल
*आर एस होयतो
*लोड हो रहा है कॉइल
*चेबीशेव बहुपद
*एक बंदरगाह
*सकारात्मक-वास्तविक कार्य
*आपूर्ती बंद करने की आवृत्ति
*उच्च मार्ग
*रैखिक फ़िल्टर
*प्रतिक दर
*घेरा
*नॉन-रिटर्न-टू-जीरो
*अनियमित चर
*संघ बाध्य
*एकाधिक आवृत्ति-शिफ्ट कुंजीयन
*COMPARATOR
*द्विआधारी जोड़
*असंबद्ध संचरण
*त्रुटि समारोह
*आपसी जानकारी
*बिखरा हुआ1
*डिजिटल मॉडुलन
*डिमॉड्युलेटर
*कंघा
*खड़ी तरंगें
*नमूना दर
*प्रक्षेप
*ऑडियो सिग्नल प्रोसेसिंग
*खगोल-कंघी
*खास समय
*पोल (जटिल विश्लेषण)
*दुर्लभ
*आरसी सर्किट
*अवरोध
*स्थिर समय
*एक घोड़ा
*पुनरावृत्ति संबंध
*निष्क्रिय फिल्टर
*श्रव्य सीमा
*मिक्सिंग कंसोल
*एसी कपलिंग
*क्यूएससी ऑडियो
*संकट
*दूसरों से अलग
*डीएसएल मॉडम
*फाइबर ऑप्टिक संचार
*व्यावर्तित जोड़ी
*बातचीत का माध्यम
*समाक्षीय तार
*लंबी दूरी का टेलीफोन कनेक्शन
*डाउनस्ट्रीम (कंप्यूटर विज्ञान)
*आवृत्ति द्वैध
*आवृत्ति प्रतिक्रिया
*आकड़ों की योग्यता
*परीक्षण के अंतर्गत उपकरण
*कंघी फिल्टर
*निष्क्रियता (इंजीनियवलय)
*लाभ (इलेक्ट्रॉनिक्स)
*कोने की आवृत्ति
*फील्ड इफ़ेक्ट ट्रांजिस्टर
*कम आवृत्ति दोलन
*एकीकृत परिपथ
*निरंतर-प्रतिरोध नेटवर्क
*यूनिट सर्कल
*अधिकतम प्रयोग करने योग्य आवृत्ति
*विशेषता समीकरण (कलन)
*लहर संख्या
*वेवगाइड (प्रकाशिकी)
*लाप्लासियान
*वेवनंबर
*अपवर्तन तरंग
*एकतरफा बहुपद
*एकपदी की  घात
*एक बहुपद का क्रम (बहुविकल्पी)
*रैखिक प्रकार्य
*कामुक समीकरण
*चतुर्थक कार्य
*क्रमसूचक अंक
*त्रिनाम
*इंटीग्रल डोमेन
*सदिश स्थल
*फील्ड (गणित)
*सेट (गणित)
*वलय (गणित)
*पूर्णांक मॉड्यूल n
*लोगारित्म
*घातांक प्रकार्य
*एल्गोरिदम का विश्लेषण
*बीजगणित का मौलिक प्रमेय


==बाहरी संबंध==
==बाहरी संबंध==

Revision as of 12:00, 9 November 2022

गणित में, एक बहुपद की घात, शून्य गुणांकों वाले बहुपद मोनोमियल(अलग-अलग शब्दों) की उच्चतम घात होती है। एक शब्द की घात उस में दिखाई देने वाले चर (गणित) के प्रतिपादकों का योग है, और इस प्रकार एक गैर नकारात्मक पूर्णांक है। एक बहुपद के लिए, बहुपद की घात केवल बहुपद में उत्पन्न उच्चतम प्रतिपादक है।[1][2] शब्द क्रम का प्रयोग घात के पर्यायार्थ के रूप में किया गया है, लेकिन आजकल, यह अनेक अन्य अवधारणाओं के संदर्भ में(बहुपद) बहुविकल्पी व्यवस्था को दर्शाता है।)

उदाहरण के लिए, बहुपद जो भी लिखा जा सकता है तीन शब्द है। पहले पद का घात 5 है(घातांक 2 और 3 का योग), दूसरे पद का घात 1 है, और अंतिम पद का घात 0 है। इसलिए बहुपद की घात 5 है जो किसी भी पद की उच्चतम घात है।

एक बहुपद की घात निर्धारित करने के लिए जो मानक रूप में नहीं है, जैसे कि , कोई भी इसे उत्पादों (वितरण द्वारा) के विस्तार और समान शर्तों के संयोजन द्वारा मानक रूप में रख सकता है; उदाहरण के लिए, की घात 1 है, चूंकि प्रत्येक शिखर की घात 2 है। चूंकि, यह तब आवश्यक नहीं है जब बहुपद को मानक रूप में एक उत्पाद के रूप में लिखा जाता है क्योंकि एक उत्पाद की घात कारकों की घात का योग है।

घात के अनुसार बहुपदों के नाम

बहुपदों को उनकी घात के अनुसार निम्नलिखित नाम दिए गए हैं:[3][4][5][2]

उच्चतर पद के लिए, कभी-कभी प्रस्ताव रखा जाता है,[7] लेकिन वे शायद ही कभी उपयोग किया जाता है:

  • घात 8 - ओक्टिक
  • घात 9 - नॉनिक
  • घात 10 - डेसिक

तीन से ऊपर की घात के लिए नाम लैटिन क्रम संख्या पर आधारित होते हैं, और अंत-आईसी (ic) में होते हैं। यह चर की संख्या के लिए उपयोग किए जाने वाले नामों से अलग होना चाहिए, एरिटी, जो लैटिन में वितरण संख्या पर आधारित है, और -ary में समाप्त होता है। उदाहरण के लिए, एक घात दो बहुपद जैसे दो चर में दो बहुपद , को "द्विआधारी द्विघात" कहा जाता है: द्विआधारी कारण दो चर, द्विघात घात दो के कारण होता है।[lower-alpha 1] शब्दों की संख्या के लिए भी नाम हैं, जो भी लैटिन वितरक संख्याओं पर आधारित हैं, जो कि -नॉमियल में समाप्त होता है; आम एकपद, द्विपद और (कम सामान्यतः) त्रिपद होते हैं; इस प्रकार एक "द्विआधारी द्विपद" होता है।

उदाहरण

बहुपद एक घन बहुपद हैः बाहर गुणा और एक ही घात के शब्दों का संग्रह के बाद, यह हो जाता है , उच्चतम घातांक 3 के साथ।

बहुपद एक क्विंटिक बहुपद है: समान पदों को मिलाने पर, घात 8 के दो पद रद्द हो जाते हैं, छोड़कर , सर्वोच्च घातांक 5 के साथ।

बहुपद संचालन के तहत व्यवहार

योग की घात, उत्पाद या दो बहुपदों का संयोजन निवेश बहुपदों की घात से दृढ़ता से संबंधित है।[8]

जोड़

दो बहुपदों के योग (या अंतर) की घात उनकी उपाधियों से कम या बराबर है;अर्थात्,

तथा .

उदाहरण के लिए, की घात 2, और 2 ≤ अधिकतम{3, 3} है।

बहुपदों के स्तरों के अलग-अलग होने पर हमेशा समानता कायम रहती है। उदाहरण के लिए, की घात 3 है, और 3 = अधिकतम{3, 2} है।

गुणन

एक गैर शून्य अदिश (गणित) द्वारा एक बहुपद के उत्पाद की घात बहुपद की घात के बराबर है;अर्थात्,

उदाहरण के लिए, की घात 2 है, जो की घात के बराबर है .

इस प्रकार, बहुपदों का सेट (दिए गए क्षेत्र एफ से गुणांक सहित) जिसकी घात दी गई संख्या N से छोटा या उसके बराबर है, एक सदिश स्थान बनाता है;अधिक जानकारी के लिए सदिश रिक्त स्थान के उदाहरण देखें.आम तौर पर दो बहुपदों के उत्पाद की घात एक क्षेत्र या एक अभिन्न डोमेन पर उनकी घात का योग होता है:

.

उदाहरण के लिए, की घात 5 = 3 + 2 है।

बहुपदों के लिए एक मनमाने वलय पर, ऊपर के नियम मान्य नहीं हो सकते, क्योंकि रद्दीकरण के कारण जो दो गैर शून्य स्थिरांक के गुणा करने पर हो सकता है। उदाहरण के लिए, वलय में पूर्णांक मॉडुलो 4, एक है कि , लेकिन , जो कारकों की घात के योग के बराबर नहीं है।

रचना

दो गैर निरंतर बहुपदों और एक क्षेत्र या अभिन्न डोमेन पर उनके संयोजन की घात उनकी घात का उत्पाद है:

.

उदाहरण के लिए:

  • यदि , , फिर , जिसकी घात 6 है।

यह जरूरी नहीं है कि बहुपदों के लिए एक मनमाने वलय पर यह सही नहीं है। उदाहरण के लिए, में , , लेकिन .

शून्य बहुपद की घात

शून्य बहुपद की घात या तो अपरिभाषित छोड़ दिया है, या नकारात्मक होने के लिए परिभाषित किया गया है (आमतौर पर -1 या )[9]

किसी भी निरंतर मूल्य की तरह, मान 0 एक (निरंतर) बहुपद के रूप में माना जा सकता है, शून्य बहुपद कहा जाता है। इसमें कोई शून्येतर शब्द नहीं हैं, और इसलिए पूरी तरह से कहा जा सकता है, इसकी कोई घात भी नहीं है। जैसे, इसकी घात आमतौर पर अपरिभाषित है। उपरोक्त खंड में बहुपदों की मात्रा और उत्पादों के स्तर के लिए प्रस्ताव लागू नहीं होता है अगर इसमें शामिल बहुपदों में से कोई भी शून्य बहुपद है।[10]

तथापि, यह शून्य बहुपद की घात को ऋणात्मक अनंतता परिभाषित करने के लिए सुविधाजनक है, और अंकगणित नियमों को लागू करने के लिए।[11]

तथा

इन उदाहरणों से स्पष्ट किया गया है कि यह विस्तार उपर्युक्त व्यवहार नियमों को कैसे संतुष्ट करता है:

  • योग की घात 3. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .
  • अंतर की घात है . यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .
  • उत्पाद की घात है . यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .

फलन मान से गणना

कई सूत्र मौजूद हैं जो एक बहुपद फलन f की घात का मूल्यांकन करेगा। जो की स्पर्शोन्मुख विश्लेषण पर आधारित है

;

यह लॉग-लॉग प्लॉट के ढलान के अनुमान की विधि का सटीक प्रतिरूप है।

यह सूत्र कुछ ऐसे कार्यों में घात की अवधारणा को सामान्यीकृत करता है जो बहुपद नहीं हैं उदाहरण के लिए:

  • गुणात्मक प्रतिलोम की घात, , -1 है।
  • वर्गमूल की घात, , 1/2 है।
  • लघुगणक की घात, , 0 है।
  • घातीय फलन की घात, , है

सूत्र भी ऐसे कार्यों के कई संयोजनों के लिए समझदार परिणाम देता है, जैसे, की घात है .

f के उसके मूल्यों से घात की गणना करने के लिए एक और सूत्र है।

;

यह दूसरा सूत्र L'Hopital के नियम को पहले सूत्र में लागू करने के बाद आता है। अंतः बोध से यह अधिक होता है कि घात D को व्युत्पन्न में एक अतिरिक्त स्थिर कारक के रूप में प्रदर्शित किया जाता है का .

एक फलन के एसिम्प्टोटिक्स का एक और अधिक बारीक (एक साधारण संख्यात्मक घात से) विवरण बिग ओ नोटेशन का उपयोग करके किया जा सकता है। एल्गोरिदम के विश्लेषण में, उदाहरण के लिए, यह विकास दर के बीच अंतर करने के लिए अक्सर प्रासंगिक है तथा , जो दोनों के रूप में ऊपर सूत्र के अनुसार एक ही घात होने के रूप में बाहर आ जाएगा।

दो या दो से अधिक चरों वाले बहुपदों का विस्तार

दो या दो से अधिक चर में बहुपदों के लिए शब्द की घात इस पद में चर के घातांकों का योग है; घात जिसे (कभी-कभी बहुपद की कुल घात कहा जाता है), बहुपद के सभी पदों की अधिकतम घात होती है। उदाहरण के लिए, बहुपद x2y2 + 3x3 + 4y घात 4, शब्द के रूप में एक ही घात है x2y2 .

चूंकि, चर में एक बहुपद x और y, x में बहुपद जो y में बहुपद हैं के साथ एक बहुपद है, और भी गुणक के साथ y में एक बहुपद जो x में बहुपद हैं। बहुपद की घात 3 में एक्स और घात 2 में y है।

अमूर्त बीजगणित में घात फलन

एक वलय (गणित) R, बहुपद वलय R[x], x में सभी बहुपदों का सेट है जो कि आर में गुणांक है विशेष स्थिति में कि R भी एक क्षेत्र बहुपद वलय है, R[x] एक प्रमुख आदर्श डोमेन है और अधिक महत्वपूर्ण बात यहाँ यूक्लिडियन डोमेन हमारी चर्चा के लिए है।

यह प्रदर्शित किया जा सकता है कि एक क्षेत्र के ऊपर एक बहुपद की घात यूक्लिडियन डोमेन में मानक प्रकार्य की सभी आवश्यकताओं को संतुष्ट करती है। अर्थात्, दो बहुपद f(x) और g(x) उत्पाद की घात f(x)g(x) व्यक्तिगत रूप से f और g दोनों घात से बड़ी होनी चाहिए।वास्तव में कुछ मजबूत धारण:

एक उदाहरण के लिए कि क्यों घात फलन एक वलय पर विफल हो सकता है जो एक क्षेत्र नहीं है निम्नलिखित उदाहरण ले। चलो R = पूर्णांकों का वलय मॉड्यूलर अंकगणित 4, यह वलय एक क्षेत्र नहीं है और अभिन्न डोमेन भी नहीं है क्योंकि 2 × 2 = 4 ≡ 0 (मॉड 4)। इसलिए, मान लीजिए f(x) = g(x) = 2x + 1, फिर, f(x)g(x) = 4x2 + 4x + 1 = 1. इस प्रकार deg(f⋅g) = 0 जो f और g की घात से अधिक नहीं है (जिनमें से प्रत्येक की घात 1 थी)।

चूंकि मानक फलन वलय के शून्य तत्व के लिए परिभाषित नहीं है, हम बहुपद f(x) = 0 की घात को भी अपरिभाषित करने के लिए विचार करते हैं ताकि यह यूक्लिडियन डोमेन में मानक के नियमों का पालन करे।

यह भी देखें

  • हाबिल-रफिनी प्रमेय
  • बीजगणित की मौलिक प्रमेय

टिप्पणियाँ

  1. For simplicity, this is a homogeneous polynomial, with equal degree in both variables separately.
  1. Weisstein, Eric W. "Polynomial Degree". mathworld.wolfram.com (in English). Retrieved 2020-08-31.
  2. 2.0 2.1 "Degree (of an Expression)". www.mathsisfun.com. Retrieved 2020-08-31.
  3. "Names of Polynomials". November 25, 1997. Retrieved 5 February 2012.
  4. Mac Lane and Birkhoff (1999) define "linear", "quadratic", "cubic", "quartic", and "quintic". (p. 107)
  5. King (2009) defines "quadratic", "cubic", "quartic", "quintic", "sextic", "septic", and "octic".
  6. Shafarevich (2003) says of a polynomial of degree zero, : "Such a polynomial is called a constant because if we substitute different values of x in it, we always obtain the same value ." (p. 23)
  7. James Cockle proposed the names "sexic", "septic", "octic", "nonic", and "decic" in 1851. (Mechanics Magazine, Vol. LV, p. 171)
  8. Lang, Serge (2005). Algebra (3rd ed.). Springer. p. 100. ISBN 978-0-387-95385-4.
  9. Shafarevich (2003) says of the zero polynomial: "In this case, we consider that the degree of the polynomial is undefined." (p. 27)
    Childs (1995) uses −1. (p. 233)
    Childs (2009) uses −∞ (p. 287), however he excludes zero polynomials in his Proposition 1 (p. 288) and then explains that the proposition holds for zero polynomials "with the reasonable assumption that + m = for m any integer or m = ".
    Axler (1997) uses −∞. (p. 64)
    Grillet (2007) says: "The degree of the zero polynomial 0 is sometimes left undefined or is variously defined as −1 ∈ or as , as long as deg 0 < deg A for all A ≠ 0." (A is a polynomial.) However, he excludes zero polynomials in his Proposition 5.3. (p. 121)
  10. Barile, Margherita. "Zero Polynomial". MathWorld.
  11. Axler (1997) gives these rules and says: "The 0 polynomial is declared to have degree so that exceptions are not needed for various reasonable results." (p. 64)


संदर्भ


बाहरी संबंध