मानक भाग फ़ंक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Function from the limited hyperreal to the real numbers}}
{{Short description|Function from the limited hyperreal to the real numbers}}
गैरमनाक विश्लेषण में, '''मानक भाग फलन''' सीमित (परिमित) अतियथार्थवादी संख्याओं से वास्तविक संख्याओं तक का फलन है। जिससे संक्षेप में, मानक भाग फलन परिमित अतियथार्थवादी को निकटतम वास्तविक मानक भाग फलन तक पूर्णांकित करता है। यह ऐसे हर अतियथार्थ से संबद्ध है <math>x</math>, जिसके लिए एकदिवसीय वास्तविक संख्या <math>x_0</math> उससे अनंतता के समीप होती है, अर्थात <math>x-x_0</math> अतिसूक्ष्म है। इस प्रकार,यह [[पियरे डी फ़र्मेट]] ने प्रस्तुत किए गए [[पर्याप्तता]] की ऐतिहासिक अवधारणा का गणितीय कार्यान्वयन है,<ref>Karin Usadi Katz and [[Mikhail Katz|Mikhail G. Katz]] (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. [[Foundations of Science]]. {{doi|10.1007/s10699-011-9223-1}} [https://doi.org/10.1007%2Fs10699-011-9223-1] See [https://arxiv.org/abs/1104.0375 arxiv]. The authors refer to the Fermat-Robinson standard part.</ref> मानक भाग फलन इसके साथ ही [[ लाइबनिट्स |लाइबनिट्स]] का [[समरूपता का पारलौकिक नियम]] होता है.  
गैरमनाक विश्लेषण में, '''मानक भाग फलन''' सीमित (परिमित) अतियथार्थवादी संख्याओं से वास्तविक संख्याओं तक का फलन है। जिससे संक्षेप में, मानक भाग फलन परिमित अतियथार्थवादी को निकटतम वास्तविक मानक भाग फलन तक पूर्णांकित करता है। यह ऐसे हर अतियथार्थ से संबद्ध है <math>x</math>, जिसके लिए एकदिवसीय वास्तविक संख्या <math>x_0</math> उससे अनंतता के समीप होती है, अर्थात <math>x-x_0</math> अतिसूक्ष्म है। इस प्रकार,यह [[पियरे डी फ़र्मेट]] ने प्रस्तुत किए गए [[पर्याप्तता]] की ऐतिहासिक अवधारणा का गणितीय कार्यान्वयन है,<ref>Karin Usadi Katz and [[Mikhail Katz|Mikhail G. Katz]] (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. [[Foundations of Science]]. {{doi|10.1007/s10699-011-9223-1}} [https://doi.org/10.1007%2Fs10699-011-9223-1] See [https://arxiv.org/abs/1104.0375 arxiv]. The authors refer to the Fermat-Robinson standard part.</ref> मानक भाग फलन इसके साथ ही [[ लाइबनिट्स |लाइबनिट्स]] का [[समरूपता का पारलौकिक नियम]] होता है.  


मानक भाग फलन को सबसे पहले [[अब्राहम रॉबिन्सन]] द्वारा परिभाषित किया गया था, जिन्होंने अंकन <math>{}^{\circ}x</math> का उपयोग किया था, अतियथार्थवादी <math>x</math> के मानक भाग के लिए (रॉबिन्सन 1974 देखे गए है )। यह अवधारणा गैरमानक विश्लेषण में कैलकुलस की अवधारणाओं पर होती है | जैसे यह निरंतरता, व्युत्पन्न और अभिन्न को परिभाषित करने में महत्वपूर्ण भूमिका निभाती है। इस प्रकार मानक भाग फलन परिमित सिद्धांत अतिसूक्ष्म के साथ गणनाओं का कठोर औपचारिकीकरण है। जिसके x के मानक भाग को कभी-कभी इसकी 'छाया' भी कहा जाता है।
मानक भाग फलन को सबसे पहले [[अब्राहम रॉबिन्सन]] द्वारा परिभाषित किया गया था, जिन्होंने अंकन <math>{}^{\circ}x</math> का उपयोग किया था, अतियथार्थवादी <math>x</math> के मानक भाग के लिए (रॉबिन्सन 1974 देखे गए है )। यह अवधारणा गैरमानक विश्लेषण में कैलकुलस की अवधारणाओं पर होती है जैसे यह निरंतरता, व्युत्पन्न और अभिन्न को परिभाषित करने में महत्वपूर्ण भूमिका निभाती है। इस प्रकार मानक भाग फलन परिमित सिद्धांत अतिसूक्ष्म के साथ गणनाओं का कठोर औपचारिकीकरण है। जिसके x के मानक भाग को कभी-कभी इसकी 'छाया' भी कहा जाता है।


==परिभाषा==
==परिभाषा==
[[File:Standard part function with two continua.svg|360px|thumb|right|मानक भाग फलन परिमित अतियथार्थवादी को निकटतम वास्तविक संख्या तक पूर्णांकित करता है। अत्यणु माइक्रोस्कोप का उपयोग मानक वास्तविक के अत्यणु पड़ोस को देखने के लिए किया जाता है।]]मानक भाग फलन सीमित गैरमानक विश्लेषण मुख्य रूप से जोड़ी से संबंधित है <math>\R \subseteq {}^*\R</math>, जहां अतियथार्थवादी संख्याएं हैं |इस प्रकार <math>{}^*\R</math> वास्तविकताओं का क्रमबद्ध मैदान विस्तार होता है। इसलिए <math>\R</math>, और वास्तविक के अतिरिक्त, अनन्तिम भी सम्मिलित हैं। जिससे अतियथार्थवादी लाइन में प्रत्येक वास्तविक संख्या में अतियथार्थवादी्स की संख्याओं का संग्रह होता है (जिसे इकाई (गैरमानक विश्लेषण कहा जाता है),जिससे या प्रभामंडल कहा जाता है)। मानक भाग फलन विकट से संबद्ध होता है: यह परिमित अतियथार्थवादी संख्या ''x'', अद्वितीय मानक वास्तविक संख्या ''x''<sub>0</sub> वह इसके असीम रूप से समीप है। इस प्रकार यह सम्बन्ध को प्रतीकात्मक रूप से लिखकर व्यक्त किया जाता है
[[File:Standard part function with two continua.svg|360px|thumb|right|मानक भाग फलन परिमित अतियथार्थवादी को निकटतम वास्तविक संख्या तक पूर्णांकित करता है। अत्यणु माइक्रोस्कोप का उपयोग मानक वास्तविक के अत्यणु निकटतम को देखने के लिए किया जाता है।]]गैरमानक विश्लेषण मुख्य रूप से युग्म <math>\R \subseteq {}^*\R</math> से संबंधित है , जहां अतियथार्थवादी संख्याएं हैं।<math>{}^*\R</math> वास्तविकताओं का क्रमबद्ध फील्ड विस्तार होता है। इसलिए <math>\R</math>, और वास्तविक के अतिरिक्त, अनन्तिम भी सम्मिलित हैं। जिससे अतियथार्थवादी लाइन में प्रत्येक वास्तविक संख्या में अतियथार्थवादी्स की संख्याओं का संग्रह होता है (जिसे इकाई (गैरमानक विश्लेषण कहा जाता है),जिससे या प्रभामंडल कहा जाता है)। मानक भाग फलन विकट से संबद्ध होता है: यह परिमित अतियथार्थवादी संख्या ''x'', अद्वितीय मानक वास्तविक संख्या ''x''<sub>0</sub> वह इसके असीम रूप से समीप है। इस प्रकार यह सम्बन्ध को प्रतीकात्मक रूप से लिखकर व्यक्त किया जाता है


:<math>\operatorname{st}(x) = x_0.</math>
:<math>\operatorname{st}(x) = x_0.</math>
मानक भाग फलन किसी भी अतिसूक्ष्म का मानक भाग 0 है। इस प्रकार यदि N अनन्त [[अतिप्राकृतिक]] है, तब 1/N अतिसूक्ष्म है, और {{nowrap|1=st(1/''N'') = 0.}}
मानक भाग फलन किसी भी अतिसूक्ष्म का मानक भाग 0 होता है। इसलिए यदि N अनन्त [[अतिप्राकृतिक]] है, तब 1/N अतिसूक्ष्म होता है, और {{nowrap|1=st(1/''N'') = 0.}}होता है।


यदि अतियथार्थवादी <math>u</math> कॉची अनुक्रम द्वारा दर्शाया गया है <math>\langle u_n:n\in\mathbb{N} \rangle</math> फिर, [[अल्ट्रापावर]] निर्माण में
यदि अतियथार्थवादी <math>u</math> कॉची अनुक्रम द्वारा नियमित किया गया है, फिर <math>\langle u_n:n\in\mathbb{N} \rangle</math> [[अल्ट्रापावर]] निर्माण में
:<math>\operatorname{st}(u) = \lim_{n\to\infty} u_n.</math>
:<math>\operatorname{st}(u) = \lim_{n\to\infty} u_n.</math>
जिससे अधिक सामान्यतः, प्रत्येक परिमित <math>u \in {}^*\R</math> उपसमुच्चय पर [[डेडेकाइंड कट]] को परिभाषित करता है <math>\R\subseteq{}^*\R</math> (कुल आदेश के माध्यम से <math>{}^{\ast}\R</math>) और संगत वास्तविक संख्या ''u'' का मानक भाग है।
जिससे अधिक सामान्यतः, प्रत्येक परिमित <math>u \in {}^*\R</math> उपसमुच्चय पर [[डेडेकाइंड कट]] को परिभाषित करता है <math>\R\subseteq{}^*\R</math> (कुल आदेश के माध्यम से <math>{}^{\ast}\R</math>) और संगत वास्तविक संख्या ''u'' का मानक भाग है।


==आंतरिक नहीं==
==आंतरिक नहीं==
मानक भाग फलन "st" को [[आंतरिक सेट|आंतरिक समुच्चय]] द्वारा परिभाषित नहीं किया गया है। इसे समझाने के अनेक विधि हैं। संभवतः सबसे सरल यह है कि इसका डोमेन एल, जो सीमित (अर्थात परिमित) अतियथार्थवादी का संग्रह है, आंतरिक समुच्चय नहीं है। अर्थात्, चूँकि L घिरा हुआ है (उदाहरण के लिए, किसी अनंत अति प्राकृतिक द्वारा), यदि L आंतरिक होता तब L की न्यूनतम ऊपरी सीमा होती है, किन्तु L की न्यूनतम ऊपरी सीमा नहीं होती है। वैकल्पिक रूप से, st की सीमा है <math>\R\subseteq {}^*\R</math>, जो आंतरिक नहीं है; मानक भाग फलन वास्तव में प्रत्येक आंतरिक समुच्चय <math>{}^*\R</math> वह उपसमुच्चय है <math>\R</math> आवश्यक रूप से परिमित है, (गोल्डब्लैट, 1998) मैं देखे गए परिणाम के अनुसार हुआ है |
मानक भाग फलन "st" को [[आंतरिक सेट|आंतरिक समुच्चय]] द्वारा परिभाषित नहीं किया गया है। इसे समझाने के अनेक विधि हैं। संभवतः सबसे सामान्य विधि यह है कि इसका डोमेन L, जो सीमित (अर्थात परिमित) अतियथार्थवादी का संग्रह है, आंतरिक समुच्चय नहीं है। अर्थात्, चूँकि L सीमित है। (उदाहरण के लिए, किसी अनंत अति प्राकृतिक द्वारा), यदि L आंतरिक होता तब L की न्यूनतम ऊपरी सीमा होती है, किन्तु L की न्यूनतम ऊपरी सीमा नहीं होती है। वैकल्पिक रूप से, st की सीमा है <math>\R\subseteq {}^*\R</math>, जो आंतरिक नहीं है; मानक भाग फलन वास्तव में प्रत्येक आंतरिक समुच्चय <math>{}^*\R</math> वह उपसमुच्चय है <math>\R</math> आवश्यक रूप से परिमित है, (गोल्डब्लैट, 1998) मैं देखे गए परिणाम के अनुसार हुआ है


==अनुप्रयोग==
==अनुप्रयोग==
मानक भाग फलन सीमित कैलकुलस की सभी पारंपरिक धारणाओं को मानक भाग फलन के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है।
कैलकुलस की सभी पारंपरिक धारणाओं को मानक भाग फलन के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है।


===व्युत्पन्न===
===व्युत्पन्न===
मानक भाग फलन का उपयोग किसी फलन f के व्युत्पन्न को परिभाषित करने के लिए किया जाता है। यदि f वास्तविक फलन है, और h अतिसूक्ष्म है, और यदि f′(x) उपस्थित है, तब
मानक भाग फलन का उपयोग किसी फलन f के व्युत्पन्न को परिभाषित करने के लिए किया जाता है। यदि f वास्तविक फलन है, और h अतिसूक्ष्म है, और यदि f′(x) उपस्थित है, तब निम्नलिखित रूप से हम विभाजक को परिभाषित करते हैं:
:<math>f'(x) = \operatorname{st}\left(\frac {f(x+h)-f(x)}h\right).</math>
:<math>f'(x) = \operatorname{st}\left(\frac {f(x+h)-f(x)}h\right).</math>
वैकल्पिक रूप से, यदि <math>y=f(x)</math>, कोई अतिसूक्ष्म वृद्धि लेता है <math>\Delta x</math>, और संगत कैलकुलस करता है <math>\Delta y=f(x+\Delta x)-f(x)</math>. अनुपात बनता है <math display="inline">\frac{\Delta y}{\Delta x}</math>. फिर व्युत्पन्न को अनुपात के मानक भाग के रूप में परिभाषित किया गया है:
वैकल्पिक रूप से, यदि <math>y=f(x)</math>, कोई अतिसूक्ष्म वृद्धि लेता है <math>\Delta x</math>, और संगत कैलकुलस करता है <math>\Delta y=f(x+\Delta x)-f(x)</math>. अनुपात बनता है <math display="inline">\frac{\Delta y}{\Delta x}</math>. फिर व्युत्पन्न को अनुपात के मानक भाग के रूप में परिभाषित किया गया है:
:<math>\frac{dy}{dx}=\operatorname{st}\left( \frac{\Delta y}{\Delta x} \right) .</math>
:<math>\frac{dy}{dx}=\operatorname{st}\left( \frac{\Delta y}{\Delta x} \right) .</math>
===अभिन्न===
===अभिन्न===
फलन दिया गया <math>f</math> पर <math>[a,b]</math>, अभिन्न को परिभाषित करता है <math display="inline">\int_a^b f(x)\,dx</math> अनंत अवशेष योग के मानक भाग के रूप में <math>S(f,a,b,\Delta x)</math> जब का मूल्य <math>\Delta x</math> अंतराल [''a'',''b''] के अतिपरिमित समुच्चय विभाजन का शोषण करते हुए, इसे असीम रूप से छोटा माना जाता है।
फलन <math>f</math> को <math>[a,b]</math> पर, अनंतता मानते हुए, अंतर्वाल <math>[a,b]</math>, के अति परिमित विभाजन का उपयोग करके, अनंत रीमैन योग के मानक भाग के रूप में परिभाषित किया जाता है। <math display="inline">\int_a^b f(x)\,dx</math> जब <math>\Delta x</math> की मूल्य अनंतता मानी जाती है, तो निम्नलिखित रूप से हम अनंत रीमैन योग का मानक भाग निकालते हैं:
 
<math>S(f,a,b,\Delta x)</math>  


===सीमा===
===सीमा===
क्रम दिया गया है <math>(u_n)</math>, इसकी सीमा परिभाषित की गई है <math display="inline">\lim_{n\to\infty} u_n = \operatorname{st}(u_H)</math> यहाँ <math>H \in {}^*\N \setminus \N</math> अनंत सूचकांक है. यहां कहा जाता है कि यदि मानक भाग समान है, तब मानक भाग फलन चुने गए अनंत सूचकांक की आशंका किए बिना सीमा उपस्थित है।
अनुक्रम <math>(u_n)</math>के लिए, उसकी सीमा निम्नलिखित रूप से परिभाषित की जाती है: <math display="inline">\lim_{n\to\infty} u_n = \operatorname{st}(u_H)</math> यहाँ <math>H \in {}^*\N \setminus \N</math> अनंत अनुक्रम का अनुकरण है। यहां सीमा उपस्थित है यदि मानक अंश हर अनंत अनुक्रम के लिए चुने गए अनंतिम सूचकांक के अतिरिक्त भी समान होता है।


===निरंतरता===
===निरंतरता===
मानक भाग फलन सीमित वास्तविक फलन <math>f</math> वास्तविक बिंदु पर निरंतर है <math>x</math> यदि रचना <math>\operatorname{st}\circ f</math> के प्रभामंडल (गणित) पर स्थिर है <math>x</math>. अधिक विवरण के लिए [[सूक्ष्म निरंतरता]] देखें गए है।
मानक भाग फलन सीमित वास्तविक फलन <math>f</math> वास्तविक बिंदु <math>x</math> पर निरंतर होता  है  यदि रचना <math>\operatorname{st}\circ f</math> के प्रभामंडल (गणित) पर <math>x</math> स्थिर है  अधिक विवरण के लिए [[सूक्ष्म निरंतरता]] देखें गए है।


==यह भी देखें==
==यह भी देखें==
Line 44: Line 46:
*[[Robert Goldblatt|Goldblatt, Robert]]. ''Lectures on the [[hyperreal number|hyperreals]]''. An introduction to nonstandard analysis. [[Graduate Texts in Mathematics]], 188. Springer-Verlag, New York, 1998.
*[[Robert Goldblatt|Goldblatt, Robert]]. ''Lectures on the [[hyperreal number|hyperreals]]''. An introduction to nonstandard analysis. [[Graduate Texts in Mathematics]], 188. Springer-Verlag, New York, 1998.
*[[Abraham Robinson]]. Non-standard analysis. Reprint of the second (1974) edition. With a foreword by [[Wilhelmus A. J. Luxemburg]]. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1996. xx+293 pp. {{isbn|0-691-04490-2}}
*[[Abraham Robinson]]. Non-standard analysis. Reprint of the second (1974) edition. With a foreword by [[Wilhelmus A. J. Luxemburg]]. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1996. xx+293 pp. {{isbn|0-691-04490-2}}
[[Category: गणना]] [[Category: अमानक विश्लेषण]] [[Category: वास्तविक बंद क्षेत्र]]


[[Category: Machine Translated Page]]
[[Category:Created On 21/07/2023]]
[[Category:Created On 21/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अमानक विश्लेषण]]
[[Category:गणना]]
[[Category:वास्तविक बंद क्षेत्र]]

Latest revision as of 12:13, 1 August 2023

गैरमनाक विश्लेषण में, मानक भाग फलन सीमित (परिमित) अतियथार्थवादी संख्याओं से वास्तविक संख्याओं तक का फलन है। जिससे संक्षेप में, मानक भाग फलन परिमित अतियथार्थवादी को निकटतम वास्तविक मानक भाग फलन तक पूर्णांकित करता है। यह ऐसे हर अतियथार्थ से संबद्ध है , जिसके लिए एकदिवसीय वास्तविक संख्या उससे अनंतता के समीप होती है, अर्थात अतिसूक्ष्म है। इस प्रकार,यह पियरे डी फ़र्मेट ने प्रस्तुत किए गए पर्याप्तता की ऐतिहासिक अवधारणा का गणितीय कार्यान्वयन है,[1] मानक भाग फलन इसके साथ ही लाइबनिट्स का समरूपता का पारलौकिक नियम होता है.

मानक भाग फलन को सबसे पहले अब्राहम रॉबिन्सन द्वारा परिभाषित किया गया था, जिन्होंने अंकन का उपयोग किया था, अतियथार्थवादी के मानक भाग के लिए (रॉबिन्सन 1974 देखे गए है )। यह अवधारणा गैरमानक विश्लेषण में कैलकुलस की अवधारणाओं पर होती है । जैसे यह निरंतरता, व्युत्पन्न और अभिन्न को परिभाषित करने में महत्वपूर्ण भूमिका निभाती है। इस प्रकार मानक भाग फलन परिमित सिद्धांत अतिसूक्ष्म के साथ गणनाओं का कठोर औपचारिकीकरण है। जिसके x के मानक भाग को कभी-कभी इसकी 'छाया' भी कहा जाता है।

परिभाषा

मानक भाग फलन परिमित अतियथार्थवादी को निकटतम वास्तविक संख्या तक पूर्णांकित करता है। अत्यणु माइक्रोस्कोप का उपयोग मानक वास्तविक के अत्यणु निकटतम को देखने के लिए किया जाता है।

गैरमानक विश्लेषण मुख्य रूप से युग्म से संबंधित है , जहां अतियथार्थवादी संख्याएं हैं। वास्तविकताओं का क्रमबद्ध फील्ड विस्तार होता है। इसलिए , और वास्तविक के अतिरिक्त, अनन्तिम भी सम्मिलित हैं। जिससे अतियथार्थवादी लाइन में प्रत्येक वास्तविक संख्या में अतियथार्थवादी्स की संख्याओं का संग्रह होता है (जिसे इकाई (गैरमानक विश्लेषण कहा जाता है),जिससे या प्रभामंडल कहा जाता है)। मानक भाग फलन विकट से संबद्ध होता है: यह परिमित अतियथार्थवादी संख्या x, अद्वितीय मानक वास्तविक संख्या x0 वह इसके असीम रूप से समीप है। इस प्रकार यह सम्बन्ध को प्रतीकात्मक रूप से लिखकर व्यक्त किया जाता है

मानक भाग फलन किसी भी अतिसूक्ष्म का मानक भाग 0 होता है। इसलिए यदि N अनन्त अतिप्राकृतिक है, तब 1/N अतिसूक्ष्म होता है, और st(1/N) = 0.होता है।

यदि अतियथार्थवादी कॉची अनुक्रम द्वारा नियमित किया गया है, फिर अल्ट्रापावर निर्माण में

जिससे अधिक सामान्यतः, प्रत्येक परिमित उपसमुच्चय पर डेडेकाइंड कट को परिभाषित करता है (कुल आदेश के माध्यम से ) और संगत वास्तविक संख्या u का मानक भाग है।

आंतरिक नहीं

मानक भाग फलन "st" को आंतरिक समुच्चय द्वारा परिभाषित नहीं किया गया है। इसे समझाने के अनेक विधि हैं। संभवतः सबसे सामान्य विधि यह है कि इसका डोमेन L, जो सीमित (अर्थात परिमित) अतियथार्थवादी का संग्रह है, आंतरिक समुच्चय नहीं है। अर्थात्, चूँकि L सीमित है। (उदाहरण के लिए, किसी अनंत अति प्राकृतिक द्वारा), यदि L आंतरिक होता तब L की न्यूनतम ऊपरी सीमा होती है, किन्तु L की न्यूनतम ऊपरी सीमा नहीं होती है। वैकल्पिक रूप से, st की सीमा है , जो आंतरिक नहीं है; मानक भाग फलन वास्तव में प्रत्येक आंतरिक समुच्चय वह उपसमुच्चय है आवश्यक रूप से परिमित है, (गोल्डब्लैट, 1998) मैं देखे गए परिणाम के अनुसार हुआ है ।

अनुप्रयोग

कैलकुलस की सभी पारंपरिक धारणाओं को मानक भाग फलन के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है।

व्युत्पन्न

मानक भाग फलन का उपयोग किसी फलन f के व्युत्पन्न को परिभाषित करने के लिए किया जाता है। यदि f वास्तविक फलन है, और h अतिसूक्ष्म है, और यदि f′(x) उपस्थित है, तब निम्नलिखित रूप से हम विभाजक को परिभाषित करते हैं:

वैकल्पिक रूप से, यदि , कोई अतिसूक्ष्म वृद्धि लेता है , और संगत कैलकुलस करता है . अनुपात बनता है . फिर व्युत्पन्न को अनुपात के मानक भाग के रूप में परिभाषित किया गया है:

अभिन्न

फलन को पर, अनंतता मानते हुए, अंतर्वाल , के अति परिमित विभाजन का उपयोग करके, अनंत रीमैन योग के मानक भाग के रूप में परिभाषित किया जाता है। जब की मूल्य अनंतता मानी जाती है, तो निम्नलिखित रूप से हम अनंत रीमैन योग का मानक भाग निकालते हैं:

सीमा

अनुक्रम के लिए, उसकी सीमा निम्नलिखित रूप से परिभाषित की जाती है: यहाँ अनंत अनुक्रम का अनुकरण है। यहां सीमा उपस्थित है यदि मानक अंश हर अनंत अनुक्रम के लिए चुने गए अनंतिम सूचकांक के अतिरिक्त भी समान होता है।

निरंतरता

मानक भाग फलन सीमित वास्तविक फलन वास्तविक बिंदु पर निरंतर होता है यदि रचना के प्रभामंडल (गणित) पर स्थिर है अधिक विवरण के लिए सूक्ष्म निरंतरता देखें गए है।

यह भी देखें

टिप्पणियाँ

  1. Karin Usadi Katz and Mikhail G. Katz (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Foundations of Science. doi:10.1007/s10699-011-9223-1 [1] See arxiv. The authors refer to the Fermat-Robinson standard part.

संदर्भ