प्रतीकात्मक गतिशीलता: Difference between revisions
m (6 revisions imported from alpha:प्रतीकात्मक_गतिशीलता) |
No edit summary |
||
Line 58: | Line 58: | ||
* [http://chaosbook.org/ ChaosBook.org] अध्याय "संक्रमण ग्राफ़" | * [http://chaosbook.org/ ChaosBook.org] अध्याय "संक्रमण ग्राफ़" | ||
* [https://www.chaos-math.org/en/chaos-v-billiards.html कैओस वी: ड्यूहेम्स बुल से तीन-बम्पर बिलियर्ड प्रणाली और इसकी प्रतीकात्मक गतिशीलता का अनुकरण] | * [https://www.chaos-math.org/en/chaos-v-billiards.html कैओस वी: ड्यूहेम्स बुल से तीन-बम्पर बिलियर्ड प्रणाली और इसकी प्रतीकात्मक गतिशीलता का अनुकरण] | ||
[[Category:CS1 errors]] | |||
[[Category: | |||
[[Category:Created On 21/07/2023]] | [[Category:Created On 21/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:गतिशील प्रणालियाँ]] | |||
[[Category:प्रतीकात्मक गतिशीलता| प्रतीकात्मक गतिशीलता]] | |||
[[Category:शब्दों पर संयोजकता]] |
Latest revision as of 10:00, 2 August 2023
गणित में, प्रतीकात्मक गतिशीलता असतत स्थान द्वारा टोपोलॉजिकल या चिकनी गतिशील प्रणाली को मॉडलिंग करने का अभ्यास है जिसमें अमूर्त प्रतीकों के अनंत अनुक्रम होते हैं, जिनमें से प्रत्येक शिफ्ट ऑपरेटर द्वारा दी गई गतिशीलता (विकास) के साथ पद्धति की स्थिति से मेल खाता है। इस प्रकार औपचारिक रूप से, मार्कोव विभाजन का उपयोग सुचारू प्रणाली के लिए सीमित आवरण प्रदान करने के लिए किया जाता है; कवर का प्रत्येक समूह एकल प्रतीक के साथ जुड़ा हुआ है, और प्रतीकों के अनुक्रम के परिणामस्वरूप पद्धति का प्रक्षेपवक्र कवरिंग समूह से दूसरे तक चलता है।
इतिहास
यह विचार नकारात्मक वक्रता की सतहों पर भू-भौतिकी पर जैक्स हैडामर्ड के सत्र 1898 के पेपर पर आधारित है।[1] इस प्रकार इसे सत्र 1921 में मार्स्टन मोर्स द्वारा गैर-आवधिक आवर्ती जियोडेसिक के निर्माण के लिए प्रयुक्त किया गया था। संबंधित कार्य सत्र 1924 में एमिल आर्टिन द्वारा किया गया था (पद्धति के लिए जिसे वर्तमान आर्टिन बिलियर्ड्स कहा जाता है), पेक्का मायरबर्ग, पॉल कोबे, जैकब नीलसन (गणितज्ञ), जी ए हेडलंड।
पहला औपचारिक उपचार मोर्स और हेडलंड ने अपने सत्र 1938 के पेपर में विकसित किया था।[2] इस प्रकार जॉर्ज बिरखॉफ़, नॉर्मन लेविंसन और जोड़ी मैरी कार्टराईट और जे. ई. लिटिलवुड ने गैर-स्वायत्त दूसरे क्रम के अंतर समीकरणों के गुणात्मक विश्लेषण के लिए समान तरीकों को प्रयुक्त किया है।
क्लाउड शैनन ने अपने सत्र 1948 के पेपर संचार के गणितीय सिद्धांत में प्रतीकात्मक अनुक्रमों और परिमित प्रकार के बदलाव का उपयोग किया जिसने सूचना सिद्धांत को जन्म दिया।
सत्र 1960 के दशक के उत्तरार्ध के समय रॉय एडलर और बेंजामिन वीस द्वारा हाइपरबोलिक टोरल ऑटोमोर्फिज्म के लिए प्रतीकात्मक गतिशीलता की पद्धति विकसित की गई थी,[3] और याकोव सिनाई द्वारा एनोसोव भिन्नता के लिए जिन्होंने गिब्स उपायों के निर्माण के लिए प्रतीकात्मक मॉडल का उपयोग किया था।[4] इस प्रकार 1970 के दशक की शुरुआत में इस सिद्धांत को मरीना रैटनर द्वारा एनोसोव प्रवाह तक और रूफस बोवेन द्वारा एक्सिओम ए डिफियोमोर्फिज्म और प्रवाह तक विस्तारित किया गया था।
प्रतीकात्मक गतिशीलता के तरीकों का शानदार अनुप्रयोग अंतराल के निरंतर मानचित्र की आवधिक कक्षाओं के बारे में शारकोव्स्की (1964) का प्रमेय है।
उदाहरण
हेटरोक्लिनिक कक्षाएँ और होमोक्लिनिक कक्षाएँ जैसी अवधारणाओं का प्रतीकात्मक गतिशीलता में विशेष रूप से सरल प्रतिनिधित्व है।
यात्रा कार्यक्रम
विभाजन के संबंध में बिंदु का यात्रा कार्यक्रम प्रतीकों का क्रम है। यह बिंदु की गतिशीलता का वर्णन करता है। [5]
अनुप्रयोग
प्रतीकात्मक गतिशीलता की उत्पत्ति सामान्य गतिशील प्रणालियों का अध्ययन करने की विधि के रूप में हुई; वर्तमान इसकी विधियों और विचारों को डेटा भंडारण उपकरण और डेटा ट्रांसमिशन, रैखिक बीजगणित, ग्रहों की गति और अनेक अन्य क्षेत्रों में महत्वपूर्ण अनुप्रयोग मिल गए हैं। इस प्रकार प्रतीकात्मक गतिशीलता में विशिष्ट विशेषता यह है कि समय को भिन्न-भिन्न समय अंतरालों में मापा जाता है। इसलिए प्रत्येक समय अंतराल पर पद्धति एक विशेष स्थिति में होता है। प्रत्येक राज्य प्रतीक के साथ जुड़ा हुआ है और पद्धतिके विकास को प्रतीकों के अनंत अनुक्रम द्वारा वर्णित किया गया है - जिसे स्ट्रिंग (कंप्यूटर विज्ञान) के रूप में प्रभावी ढंग से दर्शाया गया है। इस प्रकार यदि पद्धति की स्थिति स्वाभाविक रूप से भिन्न नहीं है, तो पद्धति का मोटे तौर पर विवरण प्राप्त करने के लिए राज्य वेक्टर को अलग किया जाना चाहिए।
यह भी देखें
- उपाय-संरक्षण गतिशील प्रणाली
- कॉम्बिनेटरिक्स और डायनेमिक सिस्टम
- स्थान बदलें
- परिमित प्रकार का बदलाव
- समष्टि गतिशीलता
- अंकगणितीय गतिशीलता
संदर्भ
- ↑ Hadamard, J. (1898). "Les surfaces à courbures opposées et leurs lignes géodésiques" (PDF). J. Math. Pures Appl. 5 (4): 27–73.
- ↑ Morse, M.; Hedlund, G. A. (1938). "प्रतीकात्मक गतिशीलता". American Journal of Mathematics. 60 (4): 815–866. doi:10.2307/2371264. JSTOR 2371264.
- ↑ Adler, R.; Weiss, B. (1967). "एन्ट्रॉपी, टोरस के ऑटोमोर्फिज्म के लिए एक पूर्ण मीट्रिक अपरिवर्तनीय". PNAS. 57 (6): 1573–1576. Bibcode:1967PNAS...57.1573A. doi:10.1073/pnas.57.6.1573. JSTOR 57985. PMC 224513. PMID 16591564.
- ↑ Sinai, Y. (1968). "मार्कोव विभाजन का निर्माण". Funkcional. Anal. I Priložen. 2 (3): 70–80.
- ↑ Mathematics of Complexity and Dynamical Systems by Robert A. Meyers. Springer Science & Business Media, 2011, ISBN 1461418054, 9781461418054
अग्रिम पठन
- Hao, Bailin (1989). विघटनकारी प्रणालियों में प्राथमिक प्रतीकात्मक गतिशीलता और अराजकता. विश्व वैज्ञानिक. ISBN 9971-5-0682-3. Archived from the original on 2009-12-05. Retrieved 2009-12-02.
{{cite book}}
: Invalid|url-status=मृत
(help) - ब्रूस किचन, प्रतीकात्मक गतिशीलता। एक तरफा, दो तरफा और गणनीय राज्य मार्कोव बदलाव। यूनिवर्सिटेक्ट, स्प्रिंगर-वेरलाग, बर्लिन, 1998. x+252 pp. ISBN 3-540-62738-3 MR1484730
- लिंड, डगलस; मार्कस, ब्रायन (1995). प्रतीकात्मक गतिशीलता और कोडिंग का परिचय. कैम्ब्रिज यूनिवर्सिटी प्रेस. ISBN 0-521-55124-2. MR 1369092. Zbl 1106.37301.
- जी. ए. हेडलंड, शिफ्ट डायनामिकल पद्धतिकी एंडोमोर्फिज्म और ऑटोमोर्फिज्म. गणित। पद्धतिसिद्धांत, Vol. 3, No. 4 (1969) 320–3751
- Teschl, गेराल्ड (2012). साधारण विभेदक समीकरण और गतिशील प्रणालियाँ. प्रोविडेंस: अमेरिकन गणितीय सोसायटी. ISBN 978-0-8218-8328-0.
- "प्रतीकात्मक गतिशीलता". Scholarpedia.