हेवी-टेल्ड वितरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Probability distribution}} {{too technical|date=May 2020}} संभाव्यता सिद्धांत में, भारी-पूंछ वा...")
 
No edit summary
 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Probability distribution}}
{{Short description|Probability distribution}}
{{too technical|date=May 2020}}
संभाव्यता सिद्धांत में, '''हेवी-टेल्ड वितरण''' संभाव्यता वितरण होते हैं जिनकी टेल घातीय रूप से सीमित नहीं होती हैं:<ref name="Asmussen">{{Cite book | doi = 10.1007/0-387-21525-5_10 | first = S. R. | last = Asmussen| chapter = Steady-State Properties of GI/G/1 | title = अनुप्रयुक्त संभाव्यता और कतारें| series = Stochastic Modelling and Applied Probability | volume = 51 | pages = 266–301 | year = 2003 | isbn = 978-0-387-00211-8 }}</ref> अर्थात्, उनके पास घातीय वितरण की तुलना में भारी टेल हैं। कई अनुप्रयोगों में यह वितरण की दाहिनी टेल है जो रुचि की है, लेकिन एक वितरण में भारी बाईं टेल हो सकती है, या दोनों टेल भारी हो सकती हैं।
संभाव्यता सिद्धांत में, भारी-पूंछ वाले वितरण संभाव्यता वितरण होते हैं जिनकी पूंछ घातीय रूप से सीमित नहीं होती हैं:<ref name="Asmussen">{{Cite book | doi = 10.1007/0-387-21525-5_10 | first = S. R. | last = Asmussen| chapter = Steady-State Properties of GI/G/1 | title = अनुप्रयुक्त संभाव्यता और कतारें| series = Stochastic Modelling and Applied Probability | volume = 51 | pages = 266–301 | year = 2003 | isbn = 978-0-387-00211-8 }}</ref> अर्थात्, उनके पास घातीय वितरण की तुलना में भारी पूंछ हैं। कई अनुप्रयोगों में यह वितरण की दाहिनी पूंछ है जो रुचि की है, लेकिन एक वितरण में भारी बाईं पूंछ हो सकती है, या दोनों पूंछ भारी हो सकती हैं।


भारी-पूंछ वाले वितरणों के तीन महत्वपूर्ण उपवर्ग हैं: वसा-पूंछ वाले वितरण, लंबी-पूंछ वाले वितरण, और उपघातांकीय वितरण। व्यवहार में, आमतौर पर उपयोग किए जाने वाले सभी हेवी-टेल्ड वितरण [[जोसेफ ट्यूगल्स]] द्वारा शुरू किए गए सबएक्सपोनेंशियल वर्ग से संबंधित हैं।<ref name=subexp></ref>
हेवी-टेल्ड वितरणों के तीन महत्वपूर्ण उपवर्ग हैं: फैट-टेल वितरण, हेवी-टेल्ड वितरण, और उपघातांकीय वितरण। व्यवहार में, सामान्यतः उपयोग किए जाने वाले सभी हेवी-टेल्ड वितरण [[जोसेफ ट्यूगल्स]] द्वारा प्रारम्भ किए गए '''सबएक्सपोनेंशियल वितरण''' से संबंधित हैं।<ref name=subexp></ref>
हेवी-टेल्ड शब्द के प्रयोग पर अभी भी कुछ विसंगति है। दो अन्य परिभाषाएँ प्रयोग में हैं। कुछ लेखक इस शब्द का उपयोग उन वितरणों को संदर्भित करने के लिए करते हैं जिनकी सारी शक्ति [[क्षण (गणित)]] सीमित नहीं है; और कुछ अन्य उन वितरणों के लिए जिनमें कोई सीमित भिन्नता नहीं है। इस आलेख में दी गई परिभाषा उपयोग में सबसे सामान्य है, और इसमें वैकल्पिक परिभाषाओं में शामिल सभी वितरण शामिल हैं, साथ ही [[लॉग-सामान्य]] जैसे वितरण भी शामिल हैं जिनमें उनके सभी शक्ति क्षण होते हैं, फिर भी जिन्हें आम तौर पर भारी-पूंछ माना जाता है . (कभी-कभी, हेवी-टेल्ड का उपयोग किसी भी वितरण के लिए किया जाता है जिसमें सामान्य वितरण की तुलना में भारी टेल होते हैं।)
 
'''हेवी-टेल्ड''' शब्द के प्रयोग पर अभी भी कुछ विसंगति है। दो अन्य परिभाषाएँ प्रयोग में हैं। कुछ लेखक इस शब्द का उपयोग उन वितरणों को संदर्भित करने के लिए करते हैं जिनकी सारी शक्ति [[क्षण (गणित)]] सीमित नहीं है; और कुछ अन्य उन वितरणों के लिए जिनमें कोई सीमित भिन्नता नहीं है। इस आलेख में दी गई परिभाषा उपयोग में सबसे सामान्य है, और इसमें वैकल्पिक परिभाषाओं में सम्मिलित सभी वितरण सम्मिलित हैं, साथ ही [[लॉग-सामान्य]] जैसे वितरण भी सम्मिलित हैं जिनमें उनके सभी शक्ति क्षण होते हैं, फिर भी जिन्हें सामान्यतः हेवी-टेल्ड माना जाता है . (कभी-कभी, हेवी-टेल्ड का उपयोग किसी भी वितरण के लिए किया जाता है जिसमें सामान्य वितरण की तुलना में भारी टेल होते हैं।)


==परिभाषाएँ==
==परिभाषाएँ==
Line 10: Line 10:
===हैवी-टेल्ड वितरण की परिभाषा===
===हैवी-टेल्ड वितरण की परिभाषा===


संचयी वितरण फलन F के साथ एक यादृच्छिक चर<sub>X</sub>(t), सभी t>0 के लिए अनंत है।<ref name="ReferenceA">Rolski, Schmidli, Scmidt, Teugels, ''Stochastic Processes for Insurance and Finance'', 1999</ref>
संचयी वितरण फलन F एक यादृच्छिक चर X के साथ ''X'', ''M<sub>X</sub>''(''t''),<sub>X</sub>(t), सभी t>0 के लिए अनंत है।<ref name="ReferenceA">Rolski, Schmidli, Scmidt, Teugels, ''Stochastic Processes for Insurance and Finance'', 1999</ref>
इसका मत
 
इसका मतलब
:<math>
:<math>
\int_{-\infty}^\infty e^{t x} \,dF(x) = \infty \quad \mbox{for all } t>0.
\int_{-\infty}^\infty e^{t x} \,dF(x) = \infty \quad \mbox{for all } t>0.
</math> <ref>S. Foss, D. Korshunov, S. Zachary, ''An Introduction to Heavy-Tailed and Subexponential Distributions'', Springer Science & Business Media, 21 May 2013</ref>
</math> <ref>S. Foss, D. Korshunov, S. Zachary, ''An Introduction to Heavy-Tailed and Subexponential Distributions'', Springer Science & Business Media, 21 May 2013</ref>
इसे टेल डिस्ट्रीब्यूशन फ़ंक्शन के संदर्भ में भी लिखा गया है
इसे टेल डिस्ट्रीब्यूशन फलन के संदर्भ में भी लिखा गया है


: <math>\overline{F}(x) \equiv \Pr[X>x] \, </math>
: <math>\overline{F}(x) \equiv \Pr[X>x] \, </math>
Line 22: Line 23:
:<math>
:<math>
\lim_{x \to \infty} e^{t x}\overline{F}(x) = \infty \quad \mbox{for all } t >0.\,
\lim_{x \to \infty} e^{t x}\overline{F}(x) = \infty \quad \mbox{for all } t >0.\,
</math>
</math><br />
 
===दीर्घ-टेल वितरण की परिभाषा===
 
===दीर्घ-पूंछ वितरण की परिभाषा===


संचयी वितरण फ़ंक्शन F के साथ एक यादृच्छिक चर X के वितरण को एक लंबी दाहिनी पूंछ कहा जाता है<ref name="Asmussen"/>यदि सभी t > 0 के लिए,
संचयी वितरण फलन F के साथ एक यादृच्छिक चर X के वितरण को एक लंबी दाहिनी टेल कहा जाता है<ref name="Asmussen"/>यदि सभी t > 0 के लिए,


:<math>
:<math>
Line 37: Line 36:
\overline{F}(x+t) \sim \overline{F}(x) \quad \mbox{as } x \to \infty. \,
\overline{F}(x+t) \sim \overline{F}(x) \quad \mbox{as } x \to \infty. \,
</math>
</math>
इसमें दाएं-पूंछ वाली लंबी-पूंछ वाली वितरित मात्रा के लिए सहज व्याख्या है कि यदि लंबी-पूंछ वाली मात्रा कुछ उच्च स्तर से अधिक हो जाती है, तो संभावना 1 तक पहुंच जाती है कि यह किसी अन्य उच्च स्तर से अधिक हो जाएगी।
इसमें दाएं-टेल वाली हेवी-टेल्ड वाली वितरित मात्रा के लिए सहज व्याख्या है कि यदि हेवी-टेल्ड वाली मात्रा कुछ उच्च स्तर से अधिक हो जाती है, तो संभावना 1 तक पहुंच जाती है कि यह किसी अन्य उच्च स्तर से अधिक हो जाएगी।


सभी लंबी-पूंछ वाले वितरण भारी-पूंछ वाले होते हैं, लेकिन इसका विपरीत गलत है, और भारी-पूंछ वाले वितरणों का निर्माण करना संभव है जो लंबी-पूंछ वाले नहीं हैं।
सभी हेवी-टेल्ड वाले वितरण हेवी-टेल्ड वाले होते हैं, लेकिन इसका विपरीत गलत है, और हेवी-टेल्ड वाले वितरणों का निर्माण करना संभव है जो हेवी-टेल्ड वाले नहीं हैं।


===उपघातांकीय वितरण===
==='''सबएक्सपोनेंशियल''' वितरण===


सबएक्सपोनेंशियलिटी को संभाव्यता वितरण के कनवल्शन के संदर्भ में परिभाषित किया गया है। दो स्वतंत्र, समान रूप से वितरित [[यादृच्छिक चर]] के लिए <math> X_1,X_2</math> एक सामान्य वितरण फ़ंक्शन के साथ <math>F</math>, का कनवल्शन <math>F</math> स्वयं के साथ, लिखा हुआ <math>F^{*2}</math> और कनवल्शन स्क्वायर कहा जाता है, इसे लेबेस्गु-स्टिल्टजेस एकीकरण का उपयोग करके परिभाषित किया गया है:
सबएक्सपोनेंशियलिटी को संभाव्यता वितरण के कनवल्शन के संदर्भ में परिभाषित किया गया है। दो स्वतंत्र, समान रूप से वितरित [[यादृच्छिक चर]] के लिए <math> X_1,X_2</math> एक सामान्य वितरण फलन के साथ <math>F</math>, का कनवल्शन <math>F</math> स्वयं के साथ, लिखा हुआ <math>F^{*2}</math> और कनवल्शन स्क्वायर कहा जाता है, इसे लेबेस्गु-स्टिल्टजेस एकीकरण का उपयोग करके परिभाषित किया गया है:


:<math>
:<math>
\Pr[X_1+X_2 \leq x] = F^{*2}(x) = \int_{0}^x F(x-y)\,dF(y),
\Pr[X_1+X_2 \leq x] = F^{*2}(x) = \int_{0}^x F(x-y)\,dF(y),
</math>
</math>
और एन-फोल्ड कनवल्शन <math>F^{*n}</math> नियम द्वारा आगमनात्मक रूप से परिभाषित किया गया है:
और ''n''-फोल्ड कनवल्शन <math>F^{*n}</math> नियम द्वारा आगमनात्मक रूप से परिभाषित किया गया है:
:<math>
:<math>
F^{*n}(x) = \int_{0}^x F(x-y)\,dF^{*n-1}(y).
F^{*n}(x) = \int_{0}^x F(x-y)\,dF^{*n-1}(y).
</math>
</math>
पूंछ वितरण समारोह <math>\overline{F}</math> परिभाषित किया जाता है <math>\overline{F}(x) = 1-F(x)</math>.
टेल वितरण फलन <math>\overline{F}</math> परिभाषित किया जाता है <math>\overline{F}(x) = 1-F(x)</math>.


एक वितरण <math>F</math> सकारात्मक अर्ध-रेखा पर उप-घातांकीय है<ref name="Asmussen"/><ref>{{Cite web|url=https://www.researchgate.net/publication/242637603|title=स्वतंत्र सकारात्मक यादृच्छिक चर के योग पर एक प्रमेय और यादृच्छिक प्रक्रियाओं की शाखाओं में इसके अनुप्रयोग|last=Chistyakov|first=V. P.|date=1964|website=ResearchGate|language=en|access-date=April 7, 2019}}</ref><ref name=subexp>{{Cite journal|url=https://projecteuclid.org/download/pdf_1/euclid.aop/1176996225|title=उपघातांकीय वितरण का वर्ग|last=Teugels|first=Jozef L.|date=1975|journal=Annals of Probability|volume=3 |issue=6 |doi=10.1214/aop/1176996225 |publication-place=[[KU Leuven|University of Louvain]]|access-date=April 7, 2019|doi-access=free}}</ref> अगर
एक वितरण <math>F</math> घनात्मक अर्ध-रेखा पर उप-घातांकीय है<ref name="Asmussen"/><ref>{{Cite web|url=https://www.researchgate.net/publication/242637603|title=स्वतंत्र सकारात्मक यादृच्छिक चर के योग पर एक प्रमेय और यादृच्छिक प्रक्रियाओं की शाखाओं में इसके अनुप्रयोग|last=Chistyakov|first=V. P.|date=1964|website=ResearchGate|language=en|access-date=April 7, 2019}}</ref><ref name=subexp>{{Cite journal|url=https://projecteuclid.org/download/pdf_1/euclid.aop/1176996225|title=उपघातांकीय वितरण का वर्ग|last=Teugels|first=Jozef L.|date=1975|journal=Annals of Probability|volume=3 |issue=6 |doi=10.1214/aop/1176996225 |publication-place=[[KU Leuven|University of Louvain]]|access-date=April 7, 2019|doi-access=free}}</ref> अगर


:<math>
:<math>
Line 69: Line 68:
\Pr[X_1+ \cdots +X_n>x] \sim \Pr[\max(X_1, \ldots,X_n)>x] \quad \text{as } x \to \infty.  
\Pr[X_1+ \cdots +X_n>x] \sim \Pr[\max(X_1, \ldots,X_n)>x] \quad \text{as } x \to \infty.  
</math>
</math>
इसे अक्सर एकल बड़ी छलांग के सिद्धांत के रूप में जाना जाता है<ref>{{Cite journal | last1 = Foss | first1 = S. | last2 = Konstantopoulos | first2 = T. | last3 = Zachary | first3 = S. | doi = 10.1007/s10959-007-0081-2 | title = असतत और निरंतर समय संशोधित भारी-पूंछ वृद्धि के साथ यादृच्छिक चलता है| journal = Journal of Theoretical Probability| volume = 20 | issue = 3 | pages = 581 | year = 2007 | arxiv = math/0509605| url = http://www.math.nsc.ru/LBRT/v1/foss/fkz_revised.pdf| citeseerx = 10.1.1.210.1699 | s2cid = 3047753 }}</ref> या प्रलय सिद्धांत.<ref>{{cite web| url = http://rigorandrelevance.wordpress.com/2014/01/09/catastrophes-conspiracies-and-subexponential-distributions-part-iii/ | title = आपदाएँ, षडयंत्र, और उपघातांकीय वितरण (भाग III)| first = Adam | last = Wierman | author-link = Adam Wierman | date = January 9, 2014 | access-date = January 9, 2014 | website = Rigor + Relevance blog | publisher = RSRG, Caltech}}</ref>
इसे प्रायः सिंगल बिग जम्प के सिद्धांत के रूप में जाना जाता है<ref>{{Cite journal | last1 = Foss | first1 = S. | last2 = Konstantopoulos | first2 = T. | last3 = Zachary | first3 = S. | doi = 10.1007/s10959-007-0081-2 | title = असतत और निरंतर समय संशोधित भारी-पूंछ वृद्धि के साथ यादृच्छिक चलता है| journal = Journal of Theoretical Probability| volume = 20 | issue = 3 | pages = 581 | year = 2007 | arxiv = math/0509605| url = http://www.math.nsc.ru/LBRT/v1/foss/fkz_revised.pdf| citeseerx = 10.1.1.210.1699 | s2cid = 3047753 }}</ref> या प्रलय सिद्धांत.<ref>{{cite web| url = http://rigorandrelevance.wordpress.com/2014/01/09/catastrophes-conspiracies-and-subexponential-distributions-part-iii/ | title = आपदाएँ, षडयंत्र, और उपघातांकीय वितरण (भाग III)| first = Adam | last = Wierman | author-link = Adam Wierman | date = January 9, 2014 | access-date = January 9, 2014 | website = Rigor + Relevance blog | publisher = RSRG, Caltech}}</ref>
एक वितरण <math>F</math> संपूर्ण वास्तविक रेखा पर यदि वितरण उपघातांकीय है
एक वितरण <math>F</math> संपूर्ण वास्तविक रेखा पर यदि वितरण उपघातांकीय है
<math>F I([0,\infty))</math> है।<ref>{{cite journal | last = Willekens | first =  E. | title = वास्तविक रेखा पर उपघातांकीयता| journal = Technical Report | publisher = K.U. Leuven | year = 1986}}</ref> यहाँ <math>I([0,\infty))</math> सकारात्मक अर्ध-रेखा का [[सूचक कार्य]] है। वैकल्पिक रूप से, एक यादृच्छिक चर <math>X</math> वास्तविक रेखा पर समर्थित उपघातीय है यदि और केवल यदि <math>X^+ = \max(0,X)</math> उपघातीय है.
<math>F I([0,\infty))</math> है।<ref>{{cite journal | last = Willekens | first =  E. | title = वास्तविक रेखा पर उपघातांकीयता| journal = Technical Report | publisher = K.U. Leuven | year = 1986}}</ref> यहाँ <math>I([0,\infty))</math> घनात्मक अर्ध-रेखा का [[सूचक कार्य]] है। वैकल्पिक रूप से, एक यादृच्छिक चर <math>X</math> वास्तविक रेखा पर समर्थित उपघातीय है यदि और केवल यदि <math>X^+ = \max(0,X)</math> उपघातीय है.


सभी उप-घातीय वितरण लंबी-पूंछ वाले होते हैं, लेकिन ऐसे लंबी-पूंछ वाले वितरणों के उदाहरण बनाए जा सकते हैं जो उप-घातांकीय नहीं होते हैं।
सभी उप-घातीय वितरण हेवी-टेल्ड वाले होते हैं, लेकिन ऐसे हेवी-टेल्ड वाले वितरणों के उदाहरण बनाए जा सकते हैं जो उप-घातांकीय नहीं होते हैं।


==सामान्य भारी-पूंछ वाले वितरण==
==सामान्य हेवी-टेल्ड वाले वितरण==


आमतौर पर उपयोग किए जाने वाले सभी हेवी-टेल्ड वितरण उप-घातांकीय होते हैं।<ref name="Embrechts"/>
सामान्यतः उपयोग किए जाने वाले सभी हेवी-टेल्ड वितरण उप-घातांकीय होते हैं।<ref name="Embrechts"/>


जो एक-पूंछ वाले हैं उनमें शामिल हैं:
जो एक-टेल वाले हैं उनमें सम्मिलित हैं:
*[[पेरेटो वितरण]];
*[[पेरेटो वितरण]];
*[[लॉग-सामान्य वितरण]];
*[[लॉग-सामान्य वितरण]];
Line 89: Line 88:
*फ़्रेचेट वितरण;
*फ़्रेचेट वितरण;
*क्यू-गाऊसियन वितरण
*क्यू-गाऊसियन वितरण
*[[लॉग-कॉची वितरण]], जिसे कभी-कभी सुपर-भारी पूंछ के रूप में वर्णित किया जाता है क्योंकि यह पैरेटो वितरण की तुलना में भारी पूंछ पैदा करने वाले लघुगणकीय विकास को प्रदर्शित करता है।<ref>{{cite book|title=Laws of Small Numbers: Extremes and Rare Events|author=Falk, M., Hüsler, J. & Reiss, R.|page=80|year=2010|publisher=Springer|isbn=978-3-0348-0008-2}}</ref><ref>{{cite web|title=भारी और अति-भारी पूंछ वाले वितरणों के लिए सांख्यिकीय अनुमान|url=http://docentes.deio.fc.ul.pt/fragaalves/SuperHeavy.pdf|author=Alves, M.I.F., de Haan, L. & Neves, C.|date=March 10, 2006|access-date=November 1, 2011|archive-url=https://web.archive.org/web/20070623175435/http://docentes.deio.fc.ul.pt/fragaalves/SuperHeavy.pdf|archive-date=June 23, 2007|url-status=dead}}</ref>
*[[लॉग-कॉची वितरण]], जिसे कभी-कभी <nowiki>''</nowiki>सुपर-भारी टेल<nowiki>''</nowiki> के रूप में वर्णित किया जाता है क्योंकि यह पैरेटो वितरण की तुलना में भारी टेल  उत्पादन करने वाले लघुगणकीय विकास को प्रदर्शित करता है।<ref>{{cite book|title=Laws of Small Numbers: Extremes and Rare Events|author=Falk, M., Hüsler, J. & Reiss, R.|page=80|year=2010|publisher=Springer|isbn=978-3-0348-0008-2}}</ref><ref>{{cite web|title=भारी और अति-भारी पूंछ वाले वितरणों के लिए सांख्यिकीय अनुमान|url=http://docentes.deio.fc.ul.pt/fragaalves/SuperHeavy.pdf|author=Alves, M.I.F., de Haan, L. & Neves, C.|date=March 10, 2006|access-date=November 1, 2011|archive-url=https://web.archive.org/web/20070623175435/http://docentes.deio.fc.ul.pt/fragaalves/SuperHeavy.pdf|archive-date=June 23, 2007|url-status=dead}}</ref>
जो दो-पूंछ वाले हैं उनमें शामिल हैं:
जो दो-टेल वाले हैं उनमें सम्मिलित हैं:
*[[कॉची वितरण]], स्वयं [[स्थिर वितरण]] और टी-वितरण दोनों का एक विशेष मामला है;
*[[कॉची वितरण]], स्वयं [[स्थिर वितरण]] और टी-वितरण दोनों का एक विशेष स्थिति है;
*स्थिर वितरण का परिवार,<ref>{{cite web| author=John P. Nolan| title=Stable Distributions: Models for Heavy Tailed Data| year=2009| url=http://academic2.american.edu/~jpnolan/stable/chap1.pdf| access-date=2009-02-21| archive-date=2011-07-17| archive-url=https://web.archive.org/web/20110717003439/http://academic2.american.edu/~jpnolan/stable/chap1.pdf| url-status=dead}}</ref> उस परिवार के भीतर सामान्य वितरण के विशेष मामले को छोड़कर। कुछ स्थिर वितरण एकतरफ़ा होते हैं (या आधी-रेखा द्वारा समर्थित होते हैं), उदाहरण के लिए देखें। लेवी वितरण. लंबी-पूंछ वाले वितरण और अस्थिरता क्लस्टरिंग वाले वित्तीय मॉडल भी देखें।
*स्थिर वितरण का समूह,<ref>{{cite web| author=John P. Nolan| title=Stable Distributions: Models for Heavy Tailed Data| year=2009| url=http://academic2.american.edu/~jpnolan/stable/chap1.pdf| access-date=2009-02-21| archive-date=2011-07-17| archive-url=https://web.archive.org/web/20110717003439/http://academic2.american.edu/~jpnolan/stable/chap1.pdf| url-status=dead}}</ref> उस समूह के भीतर सामान्य वितरण के विशेष मामले को छोड़कर। कुछ स्थिर वितरण एकतरफ़ा होते हैं (या आधी-रेखा द्वारा समर्थित होते हैं), उदाहरण के लिए देखें। लेवी वितरण. ''हेवी-टेल्ड वाले वितरण और अस्थिरता क्लस्टरिंग वाले वित्तीय मॉडल'' भी देखें।
*छात्र का t-वितरण|t-वितरण।
*छात्र का t-वितरण t-वितरण।
*तिरछा लॉगनॉर्मल कैस्केड वितरण।<ref>{{cite web | author=Stephen Lihn | title=तिरछा लॉगनॉर्मल कैस्केड वितरण| year=2009 | url=http://www.skew-lognormal-cascade-distribution.org/ | access-date=2009-06-12 | archive-url=https://web.archive.org/web/20140407075213/http://www.skew-lognormal-cascade-distribution.org/ | archive-date=2014-04-07 | url-status=dead }}</ref>
*स्क्यू लॉगनॉर्मल कैस्केड वितरण।<ref>{{cite web | author=Stephen Lihn | title=तिरछा लॉगनॉर्मल कैस्केड वितरण| year=2009 | url=http://www.skew-lognormal-cascade-distribution.org/ | access-date=2009-06-12 | archive-url=https://web.archive.org/web/20140407075213/http://www.skew-lognormal-cascade-distribution.org/ | archive-date=2014-04-07 | url-status=dead }}</ref>
 
== फैट-टेल्ड वाले वितरण से संबंध ==
 
फैट-टेल्ड वितरण एक ऐसा वितरण है जिसके लिए संभाव्यता घनत्व फलन, बड़े x के लिए, एक शक्ति के रूप में शून्य हो जाता है <math>x^{-a}</math>. चूँकि ऐसी शक्ति हमेशा एक घातीय वितरण की संभाव्यता घनत्व फलन द्वारा नीचे बंधी होती है, फैट-टेल्ड वाले वितरण हमेशा हेवी-टेल्ड वाले होते हैं। हालाँकि, कुछ वितरणों में एक टेल होती है जो एक घातीय फलन की तुलना में धीमी गति से शून्य पर जाती है (जिसका अर्थ है कि वे हेवी-टेल्ड वाले हैं), लेकिन शक्ति से तेज़ हैं (जिसका अर्थ है कि वे फैट-टेल्ड वाले नहीं हैं)। एक उदाहरण लॉग-सामान्य वितरण हैl हालाँकि, कई अन्य हेवी-टेल्ड वितरण जैसे कि लॉग-लॉजिस्टिक डिस्ट्रीब्यूशन, लॉग-लॉजिस्टिक और पेरेटो डिस्ट्रीब्यूशन डिस्ट्रीब्यूशन भी फैट-टेल्ड हैं।
== मोटी पूंछ वाले वितरण से संबंध ==
फैट-टेल्ड वितरण एक ऐसा वितरण है जिसके लिए संभाव्यता घनत्व फ़ंक्शन, बड़े x के लिए, एक शक्ति के रूप में शून्य हो जाता है <math>x^{-a}</math>. चूँकि ऐसी शक्ति हमेशा एक घातीय वितरण की संभाव्यता घनत्व फ़ंक्शन द्वारा नीचे बंधी होती है, वसा-पूंछ वाले वितरण हमेशा भारी-पूंछ वाले होते हैं। हालाँकि, कुछ वितरणों में एक टेल होती है जो एक घातीय फ़ंक्शन की तुलना में धीमी गति से शून्य पर जाती है (जिसका अर्थ है कि वे भारी-पूंछ वाले हैं), लेकिन एक शक्ति से तेज़ हैं (जिसका अर्थ है कि वे मोटे-पूंछ वाले नहीं हैं)। एक उदाहरण लॉग-सामान्य वितरण है {{Contradict-inline|article=fat-tailed distribution|section=|reason=Fat-tailed page says log-normals are in fact fat-tailed.|date=June 2019}}. हालाँकि, कई अन्य हेवी-टेल्ड वितरण जैसे कि लॉग-लॉजिस्टिक डिस्ट्रीब्यूशन|लॉग-लॉजिस्टिक और पेरेटो डिस्ट्रीब्यूशन डिस्ट्रीब्यूशन भी फैट-टेल्ड हैं।


== टेल-इंडेक्स का अनुमान लगाना ==
== टेल-इंडेक्स का अनुमान लगाना ==
Line 108: Line 105:
| series=London: CRC
| series=London: CRC
| isbn=978-1-43983-574-6  
| isbn=978-1-43983-574-6  
}}</ref> टेल-इंडेक्स अनुमान की समस्या के लिए दृष्टिकोण।{{definition|date=January 2018}}
}}</ref> टेल-इंडेक्स अनुमान की समस्या के लिए दृष्टिकोण।


पैरामीट्रिक दृष्टिकोण का उपयोग करके टेल-इंडेक्स का अनुमान लगाने के लिए, कुछ लेखक [[जीईवी वितरण]] या पेरेटो वितरण का उपयोग करते हैं; वे अधिकतम संभावना अनुमानक (एमएलई) लागू कर सकते हैं।
पैरामीट्रिक दृष्टिकोण का उपयोग करके टेल-इंडेक्स का अनुमान लगाने के लिए, कुछ लेखक [[जीईवी वितरण]] या पेरेटो वितरण का उपयोग करते हैं; वे अधिकतम संभावना अनुमानक (एमएलई) लागू कर सकते हैं।
Line 114: Line 111:
=== पिकैंड का टेल-इंडेक्स अनुमानक ===
=== पिकैंड का टेल-इंडेक्स अनुमानक ===


साथ <math>(X_n , n \geq 1)</math> स्वतंत्र और समान घनत्व फ़ंक्शन का एक यादृच्छिक अनुक्रम <math>F \in D(H(\xi))</math>, अधिकतम आकर्षण डोमेन<ref name=Pickands>{{cite journal|last=Pickands III|first=James|title=चरम क्रम सांख्यिकी का उपयोग करके सांख्यिकीय अनुमान|journal=The Annals of Statistics|date=Jan 1975|volume=3|issue=1|pages=119–131|jstor=2958083|doi=10.1214/aos/1176343003|doi-access=free}}</ref> सामान्यीकृत चरम मूल्य घनत्व का <math> H </math>, कहाँ <math>\xi \in \mathbb{R}</math>. अगर <math>\lim_{n\to\infty} k(n) = \infty  </math> और  <math>\lim_{n\to\infty} \frac{k(n)}{n}= 0</math>, तो पिकैंड्स टेल-इंडेक्स अनुमान है<ref name="Embrechts"/><ref name="Pickands"/>:<math>
साथ <math>(X_n , n \geq 1)</math> स्वतंत्र और समान घनत्व फलन का एक यादृच्छिक अनुक्रम <math>F \in D(H(\xi))</math>, अधिकतम आकर्षण डोमेन<ref name=Pickands>{{cite journal|last=Pickands III|first=James|title=चरम क्रम सांख्यिकी का उपयोग करके सांख्यिकीय अनुमान|journal=The Annals of Statistics|date=Jan 1975|volume=3|issue=1|pages=119–131|jstor=2958083|doi=10.1214/aos/1176343003|doi-access=free}}</ref> सामान्यीकृत चरम मूल्य घनत्व का <math> H </math>, जहाँ <math>\xi \in \mathbb{R}</math>. अगर <math>\lim_{n\to\infty} k(n) = \infty  </math> और  <math>\lim_{n\to\infty} \frac{k(n)}{n}= 0</math>, तो पिकैंड्स टेल-इंडेक्स अनुमान है<ref name="Embrechts"/><ref name="Pickands"/>:<math>
\xi^\text{Pickands}_{(k(n),n)} =\frac{1}{\ln 2} \ln \left(  \frac{X_{(n-k(n)+1,n)} - X_{(n-2k(n)+1,n)}}{X_{(n-2k(n)+1,n)} - X_{(n-4k(n)+1,n)}}\right),
\xi^\text{Pickands}_{(k(n),n)} =\frac{1}{\ln 2} \ln \left(  \frac{X_{(n-k(n)+1,n)} - X_{(n-2k(n)+1,n)}}{X_{(n-2k(n)+1,n)} - X_{(n-4k(n)+1,n)}}\right),
</math>
</math>  
कहाँ <math>X_{(n-k(n)+1,n)}=\max \left(X_{n-k(n)+1},\ldots  ,X_{n}\right)</math>. यह अनुमानक संभाव्यता में परिवर्तित होता है <math>\xi</math>.
 
जहाँ <math>X_{(n-k(n)+1,n)}=\max \left(X_{n-k(n)+1},\ldots  ,X_{n}\right)</math>. यह अनुमानक संभाव्यता में परिवर्तित होता है <math>\xi</math>.


=== हिल का टेल-इंडेक्स अनुमानक ===
=== हिल का टेल-इंडेक्स अनुमानक ===


होने देना <math>(X_t , t \geq 1)</math> वितरण फ़ंक्शन के साथ स्वतंत्र और समान रूप से वितरित यादृच्छिक चर का एक अनुक्रम बनें <math>F \in D(H(\xi))</math>, [[सामान्यीकृत चरम मूल्य वितरण]] के आकर्षण का अधिकतम क्षेत्र <math> H </math>, कहाँ <math>\xi \in \mathbb{R}</math>. नमूना पथ है <math>{X_t: 1 \leq t \leq n}</math> कहाँ <math>n</math> नमूना आकार है. अगर
मान लीजिये <math>(X_t , t \geq 1)</math> वितरण फलन के साथ स्वतंत्र और समान रूप से वितरित यादृच्छिक चर का एक अनुक्रम बनें <math>F \in D(H(\xi))</math>, [[सामान्यीकृत चरम मूल्य वितरण]] के आकर्षण का अधिकतम क्षेत्र <math> H </math>, जहाँ <math>\xi \in \mathbb{R}</math>. नमूना पथ है <math>{X_t: 1 \leq t \leq n}</math> जहाँ <math>n</math> नमूना आकार है. अगर
  <math>\{k(n)\}</math> एक मध्यवर्ती क्रम अनुक्रम है, अर्थात <math>k(n) \in \{1,\ldots,n-1\}, </math>, <math>k(n) \to \infty</math> और  <math>k(n)/n \to 0</math>, तो हिल टेल-इंडेक्स अनुमानक है<ref>Hill B.M. (1975) A simple general approach to inference about  the tail of a distribution. Ann. Stat., v. 3, 1163–1174.</ref>
  <math>\{k(n)\}</math> एक मध्यवर्ती क्रम अनुक्रम है, अर्थात <math>k(n) \in \{1,\ldots,n-1\}, </math>, <math>k(n) \to \infty</math> और  <math>k(n)/n \to 0</math>, तो हिल टेल-इंडेक्स अनुमानक है<ref>Hill B.M. (1975) A simple general approach to inference about  the tail of a distribution. Ann. Stat., v. 3, 1163–1174.</ref>
: <math>
: <math>
\xi^\text{Hill}_{(k(n),n)} = \left(\frac 1 {k(n)} \sum_{i=n-k(n)+1}^n \ln(X_{(i,n)}) - \ln (X_{(n-k(n)+1,n)})\right)^{-1},
\xi^\text{Hill}_{(k(n),n)} = \left(\frac 1 {k(n)} \sum_{i=n-k(n)+1}^n \ln(X_{(i,n)}) - \ln (X_{(n-k(n)+1,n)})\right)^{-1},
</math>
</math>
कहाँ <math>X_{(i,n)}</math> है <math>i</math>-वें क्रम का आँकड़ा <math>X_1, \dots, X_n</math>.
जहाँ <math>X_{(i,n)}</math> है <math>i</math>-वें क्रम का आँकड़ा <math>X_1, \dots, X_n</math>.
यह अनुमानक संभाव्यता में परिवर्तित होता है <math>\xi</math>, और स्पर्शोन्मुख रूप से सामान्य प्रदान किया गया है <math>k(n) \to \infty  </math> उच्च क्रम की नियमित भिन्नता संपत्ति के आधार पर प्रतिबंधित है<ref>Hall, P.(1982) On some estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B., v. 44, 37–42.</ref> .<ref>Haeusler, E. and J. L. Teugels (1985) On asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Stat., v. 13, 743–756.</ref> संगति और स्पर्शोन्मुख सामान्यता आश्रित और विषम अनुक्रमों के एक बड़े वर्ग तक फैली हुई है,<ref>Hsing, T. (1991) On tail index estimation using dependent data. Ann. Stat., v. 19, 1547–1569.</ref><ref>Hill, J. (2010) On tail index estimation for dependent, heterogeneous data. Econometric Th., v. 26, 1398–1436.</ref> चाहे कुछ भी हो <math>X_t</math> देखा जाता है, या मॉडलों और अनुमानकों के एक बड़े वर्ग से अवशिष्ट या फ़िल्टर किए गए डेटा की गणना की जाती है, जिसमें गलत-निर्दिष्ट मॉडल और त्रुटियों वाले मॉडल शामिल हैं जो निर्भर हैं।<ref>Resnick, S. and Starica, C. (1997). Asymptotic behavior of Hill’s estimator for autoregressive data. Comm. Statist. Stochastic Models 13, 703–721.</ref><ref>Ling, S. and Peng, L. (2004). Hill’s estimator for the tail index of an ARMA model. J. Statist. Plann. Inference 123, 279–293.</ref><ref>Hill, J. B. (2015). Tail index estimation for a filtered dependent time series. Stat. Sin. 25, 609–630.</ref> ध्यान दें कि पिकैंड और हिल के टेल-इंडेक्स अनुमानक दोनों आमतौर पर ऑर्डर आंकड़ों के लघुगणक का उपयोग करते हैं।<ref>{{Cite journal |last1=Lee|first1=Seyoon|first2=Joseph H. T. |last2=Kim|  title = Exponentiated generalized Pareto distribution: Properties and applications towards extreme value theory|journal=Communications in Statistics - Theory and Methods|year=2019|volume=48|issue=8|pages=2014–2038|doi=10.1080/03610926.2018.1441418|arxiv=1708.01686|s2cid=88514574 }}</ref>
यह अनुमानक संभाव्यता में परिवर्तित होता है <math>\xi</math>, और स्पर्शोन्मुख रूप से सामान्य प्रदान किया गया है <math>k(n) \to \infty  </math> उच्च क्रम की नियमित भिन्नता संपत्ति के आधार पर प्रतिबंधित है<ref>Hall, P.(1982) On some estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B., v. 44, 37–42.</ref> .<ref>Haeusler, E. and J. L. Teugels (1985) On asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Stat., v. 13, 743–756.</ref> संगति और स्पर्शोन्मुख सामान्यता आश्रित और विषम अनुक्रमों के एक बड़े वर्ग तक फैली हुई है,<ref>Hsing, T. (1991) On tail index estimation using dependent data. Ann. Stat., v. 19, 1547–1569.</ref><ref>Hill, J. (2010) On tail index estimation for dependent, heterogeneous data. Econometric Th., v. 26, 1398–1436.</ref> चाहे कुछ भी हो <math>X_t</math> देखा जाता है, या मॉडलों और अनुमानकों के एक बड़े वर्ग से अवशिष्ट या फ़िल्टर किए गए डेटा की गणना की जाती है, जिसमें गलत-निर्दिष्ट मॉडल और त्रुटियों वाले मॉडल सम्मिलित हैं जो निर्भर हैं।<ref>Resnick, S. and Starica, C. (1997). Asymptotic behavior of Hill’s estimator for autoregressive data. Comm. Statist. Stochastic Models 13, 703–721.</ref><ref>Ling, S. and Peng, L. (2004). Hill’s estimator for the tail index of an ARMA model. J. Statist. Plann. Inference 123, 279–293.</ref><ref>Hill, J. B. (2015). Tail index estimation for a filtered dependent time series. Stat. Sin. 25, 609–630.</ref> ध्यान दें कि पिकैंड और हिल के टेल-इंडेक्स अनुमानक दोनों सामान्यतः ऑर्डर आंकड़ों के लघुगणक का उपयोग करते हैं।<ref>{{Cite journal |last1=Lee|first1=Seyoon|first2=Joseph H. T. |last2=Kim|  title = Exponentiated generalized Pareto distribution: Properties and applications towards extreme value theory|journal=Communications in Statistics - Theory and Methods|year=2019|volume=48|issue=8|pages=2014–2038|doi=10.1080/03610926.2018.1441418|arxiv=1708.01686|s2cid=88514574 }}</ref>
 
 
=== टेल-इंडेक्स का अनुपात अनुमानक ===
=== टेल-इंडेक्स का अनुपात अनुमानक ===


Line 137: Line 133:


हिल-प्रकार और आरई-प्रकार के अनुमानकों की तुलना नोवाक में पाई जा सकती है।<ref name="Novak2011"/>
हिल-प्रकार और आरई-प्रकार के अनुमानकों की तुलना नोवाक में पाई जा सकती है।<ref name="Novak2011"/>
===सॉफ़्टवेयर===
===सॉफ़्टवेयर===
* [http://www.cs.bu.edu/~crovella/aest.html aest] {{Webarchive|url=https://web.archive.org/web/20201125013129/http://www.cs.bu.edu/~crovella/aest.html |date=2020-11-25 }}, हेवी-टेल इंडेक्स का अनुमान लगाने के लिए [[सी (प्रोग्रामिंग भाषा)]] उपकरण।<ref>{{Cite journal | last1 = Crovella | first1 = M. E. | last2 = Taqqu | first2 = M. S. | title = स्केलिंग गुणों से हेवी टेल इंडेक्स का अनुमान लगाना| journal = Methodology and Computing in Applied Probability | volume = 1 | pages = 55–79 | year = 1999 | doi = 10.1023/A:1010012224103 | s2cid = 8917289 | url = http://www.cs.bu.edu/~crovella/paper-archive/aest.ps}}</ref>
* [http://www.cs.bu.edu/~crovella/aest.html aest] {{Webarchive|url=https://web.archive.org/web/20201125013129/http://www.cs.bu.edu/~crovella/aest.html |date=2020-11-25 }}, हेवी-टेल इंडेक्स का अनुमान लगाने के लिए [[सी (प्रोग्रामिंग भाषा)]] उपकरण।<ref>{{Cite journal | last1 = Crovella | first1 = M. E. | last2 = Taqqu | first2 = M. S. | title = स्केलिंग गुणों से हेवी टेल इंडेक्स का अनुमान लगाना| journal = Methodology and Computing in Applied Probability | volume = 1 | pages = 55–79 | year = 1999 | doi = 10.1023/A:1010012224103 | s2cid = 8917289 | url = http://www.cs.bu.edu/~crovella/paper-archive/aest.ps}}</ref>
==हैवी-टेल्ड घनत्व का अनुमान==
==हैवी-टेल्ड घनत्व का अनुमान==


Line 152: Line 144:
| series=Chitester: Wiley
| series=Chitester: Wiley
| isbn=978-0-470-72359-3
| isbn=978-0-470-72359-3
}}</ref> ये परिवर्तनीय बैंडविड्थ और लंबी-पूंछ वाले कर्नेल अनुमानकों पर आधारित दृष्टिकोण हैं; प्रारंभिक डेटा पर परिमित या अनंत अंतराल पर एक नए यादृच्छिक चर में परिवर्तन होता है, जो अनुमान के लिए अधिक सुविधाजनक होता है और फिर प्राप्त घनत्व अनुमान का उलटा परिवर्तन होता है; और टुकड़े-टुकड़े करने का दृष्टिकोण जो घनत्व की पूंछ के लिए एक निश्चित पैरामीट्रिक मॉडल और घनत्व के मोड का अनुमान लगाने के लिए एक गैर-पैरामीट्रिक मॉडल प्रदान करता है। गैर-पैरामीट्रिक अनुमानकों को कर्नेल अनुमानकों की बैंडविड्थ और हिस्टोग्राम की बिन चौड़ाई जैसे ट्यूनिंग (स्मूथिंग) मापदंडों के उचित चयन की आवश्यकता होती है। इस तरह के चयन की सुप्रसिद्ध डेटा-संचालित विधियां क्रॉस-सत्यापन और इसके संशोधन, माध्य वर्ग त्रुटि (एमएसई) और इसके स्पर्शोन्मुख और उनकी ऊपरी सीमा को कम करने पर आधारित विधियां हैं।<ref name="WandJon1995">{{cite book
}}</ref> ये परिवर्तनीय बैंडविड्थ और हेवी-टेल्ड वाले कर्नेल अनुमानकों पर आधारित दृष्टिकोण हैं; प्रारंभिक डेटा पर परिमित या अनंत अंतराल पर एक नए यादृच्छिक चर में परिवर्तन होता है, जो अनुमान के लिए अधिक सुविधाजनक होता है और फिर प्राप्त घनत्व अनुमान का उलटा परिवर्तन होता है; और टुकड़े-टुकड़े करने का दृष्टिकोण जो घनत्व की टेल के लिए एक निश्चित पैरामीट्रिक मॉडल और घनत्व के मोड का अनुमान लगाने के लिए एक गैर-पैरामीट्रिक मॉडल प्रदान करता है। गैर-पैरामीट्रिक अनुमानकों को कर्नेल अनुमानकों की बैंडविड्थ और हिस्टोग्राम की बिन चौड़ाई जैसे ट्यूनिंग (स्मूथिंग) मापदंडों के उचित चयन की आवश्यकता होती है। इस तरह के चयन की सुप्रसिद्ध डेटा-संचालित विधियां क्रॉस-सत्यापन और इसके संशोधन, माध्य वर्ग त्रुटि (एमएसई) और इसके स्पर्शोन्मुख और उनकी ऊपरी सीमा को कम करने पर आधारित विधियां हैं।<ref name="WandJon1995">{{cite book
| author=Wand M.P., Jones M.C.  
| author=Wand M.P., Jones M.C.  
| title=Kernel smoothing
| title=Kernel smoothing
Line 165: Line 157:
| isbn=9780387945088
| isbn=9780387945088
}}</ref>
}}</ref>
==यह भी देखें==
==यह भी देखें==
*लेप्टोकर्टिक वितरण
*लेप्टोकर्टिक वितरण
*सामान्यीकृत चरम मूल्य वितरण
*सामान्यीकृत चरम मूल्य वितरण
*[[सामान्यीकृत पेरेटो वितरण]]
*[[सामान्यीकृत पेरेटो वितरण]]
*बाहरी
*आउटलिएर
*[[लंबी पूंछ]]
*[[लंबी पूंछ|लॉन्ग टेल]]
*[[बिजली कानून]]
*[[बिजली कानून|बिजली नियम]]
*[[यादृच्छिकता की सात अवस्थाएँ]]
*[[यादृच्छिकता की सात अवस्थाएँ]]
*वसा-पूंछ वितरण
*फैट-टेल्ड वितरण
** [[तालेब वितरण]] और पवित्र कब्र वितरण
** [[तालेब वितरण]] और हौली ग्रेल वितरण


==संदर्भ==
==संदर्भ==


<references/>
<references/>
[[Category: संभाव्यता वितरण की पूँछें]] [[Category: संभाव्यता वितरण के प्रकार]] [[Category: जिवानांकिकी]] [[Category: जोखिम]]


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 maint]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:जिवानांकिकी]]
[[Category:जोखिम]]
[[Category:संभाव्यता वितरण की पूँछें]]
[[Category:संभाव्यता वितरण के प्रकार]]

Latest revision as of 10:05, 2 August 2023

संभाव्यता सिद्धांत में, हेवी-टेल्ड वितरण संभाव्यता वितरण होते हैं जिनकी टेल घातीय रूप से सीमित नहीं होती हैं:[1] अर्थात्, उनके पास घातीय वितरण की तुलना में भारी टेल हैं। कई अनुप्रयोगों में यह वितरण की दाहिनी टेल है जो रुचि की है, लेकिन एक वितरण में भारी बाईं टेल हो सकती है, या दोनों टेल भारी हो सकती हैं।

हेवी-टेल्ड वितरणों के तीन महत्वपूर्ण उपवर्ग हैं: फैट-टेल वितरण, हेवी-टेल्ड वितरण, और उपघातांकीय वितरण। व्यवहार में, सामान्यतः उपयोग किए जाने वाले सभी हेवी-टेल्ड वितरण जोसेफ ट्यूगल्स द्वारा प्रारम्भ किए गए सबएक्सपोनेंशियल वितरण से संबंधित हैं।[2]

हेवी-टेल्ड शब्द के प्रयोग पर अभी भी कुछ विसंगति है। दो अन्य परिभाषाएँ प्रयोग में हैं। कुछ लेखक इस शब्द का उपयोग उन वितरणों को संदर्भित करने के लिए करते हैं जिनकी सारी शक्ति क्षण (गणित) सीमित नहीं है; और कुछ अन्य उन वितरणों के लिए जिनमें कोई सीमित भिन्नता नहीं है। इस आलेख में दी गई परिभाषा उपयोग में सबसे सामान्य है, और इसमें वैकल्पिक परिभाषाओं में सम्मिलित सभी वितरण सम्मिलित हैं, साथ ही लॉग-सामान्य जैसे वितरण भी सम्मिलित हैं जिनमें उनके सभी शक्ति क्षण होते हैं, फिर भी जिन्हें सामान्यतः हेवी-टेल्ड माना जाता है . (कभी-कभी, हेवी-टेल्ड का उपयोग किसी भी वितरण के लिए किया जाता है जिसमें सामान्य वितरण की तुलना में भारी टेल होते हैं।)

परिभाषाएँ

हैवी-टेल्ड वितरण की परिभाषा

संचयी वितरण फलन F एक यादृच्छिक चर X के साथ X, MX(t),X(t), सभी t>0 के लिए अनंत है।[3]

इसका मतलब

[4]

इसे टेल डिस्ट्रीब्यूशन फलन के संदर्भ में भी लिखा गया है

जैसा


दीर्घ-टेल वितरण की परिभाषा

संचयी वितरण फलन F के साथ एक यादृच्छिक चर X के वितरण को एक लंबी दाहिनी टेल कहा जाता है[1]यदि सभी t > 0 के लिए,

या समकक्ष

इसमें दाएं-टेल वाली हेवी-टेल्ड वाली वितरित मात्रा के लिए सहज व्याख्या है कि यदि हेवी-टेल्ड वाली मात्रा कुछ उच्च स्तर से अधिक हो जाती है, तो संभावना 1 तक पहुंच जाती है कि यह किसी अन्य उच्च स्तर से अधिक हो जाएगी।

सभी हेवी-टेल्ड वाले वितरण हेवी-टेल्ड वाले होते हैं, लेकिन इसका विपरीत गलत है, और हेवी-टेल्ड वाले वितरणों का निर्माण करना संभव है जो हेवी-टेल्ड वाले नहीं हैं।

सबएक्सपोनेंशियल वितरण

सबएक्सपोनेंशियलिटी को संभाव्यता वितरण के कनवल्शन के संदर्भ में परिभाषित किया गया है। दो स्वतंत्र, समान रूप से वितरित यादृच्छिक चर के लिए एक सामान्य वितरण फलन के साथ , का कनवल्शन स्वयं के साथ, लिखा हुआ और कनवल्शन स्क्वायर कहा जाता है, इसे लेबेस्गु-स्टिल्टजेस एकीकरण का उपयोग करके परिभाषित किया गया है:

और n-फोल्ड कनवल्शन नियम द्वारा आगमनात्मक रूप से परिभाषित किया गया है:

टेल वितरण फलन परिभाषित किया जाता है .

एक वितरण घनात्मक अर्ध-रेखा पर उप-घातांकीय है[1][5][2] अगर

यह संकेत करता है[6] वह, किसी के लिए ,

संभाव्य व्याख्या[6]इसमें से वह है, कुल मिलाकर सांख्यिकीय स्वतंत्रता यादृच्छिक चर सामान्य वितरण के साथ ,

इसे प्रायः सिंगल बिग जम्प के सिद्धांत के रूप में जाना जाता है[7] या प्रलय सिद्धांत.[8] एक वितरण संपूर्ण वास्तविक रेखा पर यदि वितरण उपघातांकीय है है।[9] यहाँ घनात्मक अर्ध-रेखा का सूचक कार्य है। वैकल्पिक रूप से, एक यादृच्छिक चर वास्तविक रेखा पर समर्थित उपघातीय है यदि और केवल यदि उपघातीय है.

सभी उप-घातीय वितरण हेवी-टेल्ड वाले होते हैं, लेकिन ऐसे हेवी-टेल्ड वाले वितरणों के उदाहरण बनाए जा सकते हैं जो उप-घातांकीय नहीं होते हैं।

सामान्य हेवी-टेल्ड वाले वितरण

सामान्यतः उपयोग किए जाने वाले सभी हेवी-टेल्ड वितरण उप-घातांकीय होते हैं।[6]

जो एक-टेल वाले हैं उनमें सम्मिलित हैं:

जो दो-टेल वाले हैं उनमें सम्मिलित हैं:

  • कॉची वितरण, स्वयं स्थिर वितरण और टी-वितरण दोनों का एक विशेष स्थिति है;
  • स्थिर वितरण का समूह,[12] उस समूह के भीतर सामान्य वितरण के विशेष मामले को छोड़कर। कुछ स्थिर वितरण एकतरफ़ा होते हैं (या आधी-रेखा द्वारा समर्थित होते हैं), उदाहरण के लिए देखें। लेवी वितरण. हेवी-टेल्ड वाले वितरण और अस्थिरता क्लस्टरिंग वाले वित्तीय मॉडल भी देखें।
  • छात्र का t-वितरण t-वितरण।
  • स्क्यू लॉगनॉर्मल कैस्केड वितरण।[13]

फैट-टेल्ड वाले वितरण से संबंध

फैट-टेल्ड वितरण एक ऐसा वितरण है जिसके लिए संभाव्यता घनत्व फलन, बड़े x के लिए, एक शक्ति के रूप में शून्य हो जाता है . चूँकि ऐसी शक्ति हमेशा एक घातीय वितरण की संभाव्यता घनत्व फलन द्वारा नीचे बंधी होती है, फैट-टेल्ड वाले वितरण हमेशा हेवी-टेल्ड वाले होते हैं। हालाँकि, कुछ वितरणों में एक टेल होती है जो एक घातीय फलन की तुलना में धीमी गति से शून्य पर जाती है (जिसका अर्थ है कि वे हेवी-टेल्ड वाले हैं), लेकिन शक्ति से तेज़ हैं (जिसका अर्थ है कि वे फैट-टेल्ड वाले नहीं हैं)। एक उदाहरण लॉग-सामान्य वितरण हैl हालाँकि, कई अन्य हेवी-टेल्ड वितरण जैसे कि लॉग-लॉजिस्टिक डिस्ट्रीब्यूशन, लॉग-लॉजिस्टिक और पेरेटो डिस्ट्रीब्यूशन डिस्ट्रीब्यूशन भी फैट-टेल्ड हैं।

टेल-इंडेक्स का अनुमान लगाना

पैरामीट्रिक हैं[6]और गैर पैरामीट्रिक[14] टेल-इंडेक्स अनुमान की समस्या के लिए दृष्टिकोण।

पैरामीट्रिक दृष्टिकोण का उपयोग करके टेल-इंडेक्स का अनुमान लगाने के लिए, कुछ लेखक जीईवी वितरण या पेरेटो वितरण का उपयोग करते हैं; वे अधिकतम संभावना अनुमानक (एमएलई) लागू कर सकते हैं।

पिकैंड का टेल-इंडेक्स अनुमानक

साथ स्वतंत्र और समान घनत्व फलन का एक यादृच्छिक अनुक्रम , अधिकतम आकर्षण डोमेन[15] सामान्यीकृत चरम मूल्य घनत्व का , जहाँ . अगर और , तो पिकैंड्स टेल-इंडेक्स अनुमान है[6][15]:

जहाँ . यह अनुमानक संभाव्यता में परिवर्तित होता है .

हिल का टेल-इंडेक्स अनुमानक

मान लीजिये वितरण फलन के साथ स्वतंत्र और समान रूप से वितरित यादृच्छिक चर का एक अनुक्रम बनें , सामान्यीकृत चरम मूल्य वितरण के आकर्षण का अधिकतम क्षेत्र , जहाँ . नमूना पथ है जहाँ नमूना आकार है. अगर

 एक मध्यवर्ती क्रम अनुक्रम है, अर्थात ,  और  , तो हिल टेल-इंडेक्स अनुमानक है[16]

जहाँ है -वें क्रम का आँकड़ा . यह अनुमानक संभाव्यता में परिवर्तित होता है , और स्पर्शोन्मुख रूप से सामान्य प्रदान किया गया है उच्च क्रम की नियमित भिन्नता संपत्ति के आधार पर प्रतिबंधित है[17] .[18] संगति और स्पर्शोन्मुख सामान्यता आश्रित और विषम अनुक्रमों के एक बड़े वर्ग तक फैली हुई है,[19][20] चाहे कुछ भी हो देखा जाता है, या मॉडलों और अनुमानकों के एक बड़े वर्ग से अवशिष्ट या फ़िल्टर किए गए डेटा की गणना की जाती है, जिसमें गलत-निर्दिष्ट मॉडल और त्रुटियों वाले मॉडल सम्मिलित हैं जो निर्भर हैं।[21][22][23] ध्यान दें कि पिकैंड और हिल के टेल-इंडेक्स अनुमानक दोनों सामान्यतः ऑर्डर आंकड़ों के लघुगणक का उपयोग करते हैं।[24]

टेल-इंडेक्स का अनुपात अनुमानक

टेल-इंडेक्स का अनुपात अनुमानक (आरई-आकलनकर्ता) गोल्डी द्वारा पेश किया गया था और स्मिथ.[25] इसका निर्माण हिल के अनुमानक के समान ही किया गया है लेकिन यह एक गैर-यादृच्छिक ट्यूनिंग पैरामीटर का उपयोग करता है।

हिल-प्रकार और आरई-प्रकार के अनुमानकों की तुलना नोवाक में पाई जा सकती है।[14]

सॉफ़्टवेयर

हैवी-टेल्ड घनत्व का अनुमान

भारी और सुपरहैवी-टेल्ड संभाव्यता घनत्व कार्यों का अनुमान लगाने के लिए गैर-पैरामीट्रिक दृष्टिकोण दिए गए थे मार्कोविच।[27] ये परिवर्तनीय बैंडविड्थ और हेवी-टेल्ड वाले कर्नेल अनुमानकों पर आधारित दृष्टिकोण हैं; प्रारंभिक डेटा पर परिमित या अनंत अंतराल पर एक नए यादृच्छिक चर में परिवर्तन होता है, जो अनुमान के लिए अधिक सुविधाजनक होता है और फिर प्राप्त घनत्व अनुमान का उलटा परिवर्तन होता है; और टुकड़े-टुकड़े करने का दृष्टिकोण जो घनत्व की टेल के लिए एक निश्चित पैरामीट्रिक मॉडल और घनत्व के मोड का अनुमान लगाने के लिए एक गैर-पैरामीट्रिक मॉडल प्रदान करता है। गैर-पैरामीट्रिक अनुमानकों को कर्नेल अनुमानकों की बैंडविड्थ और हिस्टोग्राम की बिन चौड़ाई जैसे ट्यूनिंग (स्मूथिंग) मापदंडों के उचित चयन की आवश्यकता होती है। इस तरह के चयन की सुप्रसिद्ध डेटा-संचालित विधियां क्रॉस-सत्यापन और इसके संशोधन, माध्य वर्ग त्रुटि (एमएसई) और इसके स्पर्शोन्मुख और उनकी ऊपरी सीमा को कम करने पर आधारित विधियां हैं।[28] एक विसंगति विधि जो वितरण कार्यों (डीएफएस) के स्थान पर एक मीट्रिक के रूप में कोलमोगोरोव-स्मिरनोव, वॉन मिज़ और एंडरसन-डार्लिंग जैसे प्रसिद्ध गैरपैरामीट्रिक आंकड़ों का उपयोग करती है और बाद के आंकड़ों की मात्रा को ज्ञात अनिश्चितता या विसंगति मान के रूप में उपयोग करती है में पाया।[27]बूटस्ट्रैप पुन: नमूने चयन की विभिन्न योजनाओं द्वारा अज्ञात एमएसई के अनुमानों का उपयोग करके स्मूथिंग पैरामीटर खोजने के लिए एक और उपकरण है, उदाहरण के लिए देखें।[29]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 Asmussen, S. R. (2003). "Steady-State Properties of GI/G/1". अनुप्रयुक्त संभाव्यता और कतारें. Stochastic Modelling and Applied Probability. Vol. 51. pp. 266–301. doi:10.1007/0-387-21525-5_10. ISBN 978-0-387-00211-8.
  2. 2.0 2.1 Teugels, Jozef L. (1975). "उपघातांकीय वितरण का वर्ग". Annals of Probability. University of Louvain. 3 (6). doi:10.1214/aop/1176996225. Retrieved April 7, 2019.
  3. Rolski, Schmidli, Scmidt, Teugels, Stochastic Processes for Insurance and Finance, 1999
  4. S. Foss, D. Korshunov, S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer Science & Business Media, 21 May 2013
  5. Chistyakov, V. P. (1964). "स्वतंत्र सकारात्मक यादृच्छिक चर के योग पर एक प्रमेय और यादृच्छिक प्रक्रियाओं की शाखाओं में इसके अनुप्रयोग". ResearchGate (in English). Retrieved April 7, 2019.
  6. 6.0 6.1 6.2 6.3 6.4 Embrechts P.; Klueppelberg C.; Mikosch T. (1997). बीमा और वित्त के लिए चरम घटनाओं की मॉडलिंग करना. Stochastic Modelling and Applied Probability. Vol. 33. Berlin: Springer. doi:10.1007/978-3-642-33483-2. ISBN 978-3-642-08242-9.
  7. Foss, S.; Konstantopoulos, T.; Zachary, S. (2007). "असतत और निरंतर समय संशोधित भारी-पूंछ वृद्धि के साथ यादृच्छिक चलता है" (PDF). Journal of Theoretical Probability. 20 (3): 581. arXiv:math/0509605. CiteSeerX 10.1.1.210.1699. doi:10.1007/s10959-007-0081-2. S2CID 3047753.
  8. Wierman, Adam (January 9, 2014). "आपदाएँ, षडयंत्र, और उपघातांकीय वितरण (भाग III)". Rigor + Relevance blog. RSRG, Caltech. Retrieved January 9, 2014.
  9. Willekens, E. (1986). "वास्तविक रेखा पर उपघातांकीयता". Technical Report. K.U. Leuven.
  10. Falk, M., Hüsler, J. & Reiss, R. (2010). Laws of Small Numbers: Extremes and Rare Events. Springer. p. 80. ISBN 978-3-0348-0008-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. Alves, M.I.F., de Haan, L. & Neves, C. (March 10, 2006). "भारी और अति-भारी पूंछ वाले वितरणों के लिए सांख्यिकीय अनुमान" (PDF). Archived from the original (PDF) on June 23, 2007. Retrieved November 1, 2011.{{cite web}}: CS1 maint: multiple names: authors list (link)
  12. John P. Nolan (2009). "Stable Distributions: Models for Heavy Tailed Data" (PDF). Archived from the original (PDF) on 2011-07-17. Retrieved 2009-02-21.
  13. Stephen Lihn (2009). "तिरछा लॉगनॉर्मल कैस्केड वितरण". Archived from the original on 2014-04-07. Retrieved 2009-06-12.
  14. 14.0 14.1 Novak S.Y. (2011). Extreme value methods with applications to finance. London: CRC. ISBN 978-1-43983-574-6.
  15. 15.0 15.1 Pickands III, James (Jan 1975). "चरम क्रम सांख्यिकी का उपयोग करके सांख्यिकीय अनुमान". The Annals of Statistics. 3 (1): 119–131. doi:10.1214/aos/1176343003. JSTOR 2958083.
  16. Hill B.M. (1975) A simple general approach to inference about the tail of a distribution. Ann. Stat., v. 3, 1163–1174.
  17. Hall, P.(1982) On some estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B., v. 44, 37–42.
  18. Haeusler, E. and J. L. Teugels (1985) On asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Stat., v. 13, 743–756.
  19. Hsing, T. (1991) On tail index estimation using dependent data. Ann. Stat., v. 19, 1547–1569.
  20. Hill, J. (2010) On tail index estimation for dependent, heterogeneous data. Econometric Th., v. 26, 1398–1436.
  21. Resnick, S. and Starica, C. (1997). Asymptotic behavior of Hill’s estimator for autoregressive data. Comm. Statist. Stochastic Models 13, 703–721.
  22. Ling, S. and Peng, L. (2004). Hill’s estimator for the tail index of an ARMA model. J. Statist. Plann. Inference 123, 279–293.
  23. Hill, J. B. (2015). Tail index estimation for a filtered dependent time series. Stat. Sin. 25, 609–630.
  24. Lee, Seyoon; Kim, Joseph H. T. (2019). "Exponentiated generalized Pareto distribution: Properties and applications towards extreme value theory". Communications in Statistics - Theory and Methods. 48 (8): 2014–2038. arXiv:1708.01686. doi:10.1080/03610926.2018.1441418. S2CID 88514574.
  25. Goldie C.M., Smith R.L. (1987) Slow variation with remainder: theory and applications. Quart. J. Math. Oxford, v. 38, 45–71.
  26. Crovella, M. E.; Taqqu, M. S. (1999). "स्केलिंग गुणों से हेवी टेल इंडेक्स का अनुमान लगाना". Methodology and Computing in Applied Probability. 1: 55–79. doi:10.1023/A:1010012224103. S2CID 8917289.
  27. 27.0 27.1 Markovich N.M. (2007). Nonparametric Analysis of Univariate Heavy-Tailed data: Research and Practice. Chitester: Wiley. ISBN 978-0-470-72359-3.
  28. Wand M.P., Jones M.C. (1995). Kernel smoothing. New York: Chapman and Hall. ISBN 978-0412552700.
  29. Hall P. (1992). The Bootstrap and Edgeworth Expansion. Springer. ISBN 9780387945088.