स्वतंत्र स्वतंत्रता: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 37: | Line 37: | ||
श्रेणी:मुक्त बीजगणितीय संरचनाएँ | श्रेणी:मुक्त बीजगणितीय संरचनाएँ | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] | ||
[[Category: | [[Category:Machine Translated Page]] | ||
[[Category:Pages that use a deprecated format of the math tags]] | |||
[[Category:Pages with script errors]] |
Latest revision as of 10:07, 2 August 2023
मुक्त संभाव्यता के गणितीय सिद्धांत में, स्वतंत्र स्वतंत्रता की धारणा डैन वोइकुलेस्कु (गणितज्ञ) द्वारा प्रस्तुत की गई थी। [1] स्वतंत्र स्वतंत्रता की परिभाषा स्वतंत्रता (संभावना) की पारम्परिक परिभाषा के समानांतर है, अतिरिक्त इसके कि माप स्थानों के कार्टेशियन उत्पादों की भूमिका (उनके फलन बीजगणित के प्रदिश उत्पाद के अनुरूप) (गैर-क्रमविनिमेय) संभाव्यता स्थान के मुक्त उत्पाद की धारणा द्वारा निभाई जाती है।
वोइकुलेस्कु के मुक्त संभाव्यता सिद्धांत के संदर्भ में, कई पारम्परिक-संभावना प्रमेयों या घटनाओं में मुक्त संभाव्यता समधर्मी होते हैं: यदि स्वतंत्रता की पारम्परिक धारणा को स्वतंत्र स्वतंत्रता द्वारा प्रतिस्थापित किया जाता है, तो वही प्रमेय या घटना लागू होती है (संभवतः सामान्य संशोधनों के साथ)। इसके उदाहरणों में सम्मिलित हैं: मुक्त केंद्रीय सीमा प्रमेय; मुक्त कनवल्शन की धारणाएँ; निःशुल्क प्रसंभाव्य कलन इत्यादि का अस्तित्व है।
मान लीजिये एक गैर-क्रम विनिमय संभाव्यता स्थान बनें, यानी एक क्षेत्र पर एक यूनिटल बीजगणित ऊपर यूनिटल मानचित्र रैखिक कार्यात्मक से सुसज्जित है। एक उदाहरण के रूप में, कोई संभाव्यता माप के लिए ले सकता है ,
एक और उदाहरण हो सकता है, सामान्यीकृत अनुरेख द्वारा दिए गए कार्यात्मकता के साथ आव्यूहों का बीजगणित है। इससे भी अधिक सामान्यतः, एक वॉन न्यूमैन बीजगणित हो सकता है और पर एक स्थिति हो सकती है। एक अंतिम उदाहरण समूह वलय है एक (अलग) समूह का (गणित) कार्यात्मकता के साथ समूह अनुरेख द्वारा दिया गया।
मान लीजिये के इकाई उपबीजगणित का एक वर्ग बनते हैं।
परिभाषा. वर्ग स्वतंत्र रूप से स्वतंत्र कहा जाता है यदि
जब कभी भी , और . है
अगर , के तत्वों का एक वर्ग (इन्हें यादृच्छिक चर के रूप में सोचा जा सकता है) है, वे कहते हैं
यदि 1 और द्वारा उत्पन्न बीजगणित स्वतंत्र रूप से स्वतंत्र हैं, तो उन्हें स्वतंत्र रूप से स्वतंत्र कहा जाता है।
स्वतंत्र स्वतंत्रता के उदाहरण
- मान लीजिये समूहों का निःशुल्क उत्पाद बनते हैं, मान लीजिये समूह बीजगणित हो, समूह अनुरेख बनते हैं, और सम्मुच्चय करते हैं। तब स्वतंत्र रूप से स्वतंत्र हैं।
- मान लीजिए कि एकात्मक यादृच्छिक आव्यूह हैं, जिन्हें एकात्मक समूह से यादृच्छिक रूप से स्वतंत्र रूप से लिया गया है (Haar माप के संबंध में)। फिर के रूप में स्पर्शोन्मुख रूप से स्वतंत्र हो जाते हैं। (एसिम्प्टोटिक फ्रीनेस का मतलब है कि फ्रीनेस की परिभाषा की सीमा में है)।
- अधिक सामान्यतः, कुछ स्तिथियों के अंतर्गत, स्वतंत्र यादृच्छिक आव्यूह असममित रूप से स्वतंत्र रूप से स्वतंत्र होते हैं।
संदर्भ
- ↑ D. Voiculescu, K. Dykema, A. Nica, "Free Random Variables", CIRM Monograph Series, AMS, Providence, RI, 1992
स्रोत
- जेम्स ए. मिंगो, रोलैंड स्पीचर: फ्री प्रोबेबिलिटी और रैंडम मैट्रिसेस। फील्ड्स इंस्टीट्यूट मोनोग्राफ, वॉल्यूम। 35, स्प्रिंगर, न्यूयॉर्क, 2017।
श्रेणी:कार्यात्मक विश्लेषण श्रेणी:मुक्त संभाव्यता सिद्धांत श्रेणी:मुक्त बीजगणितीय संरचनाएँ