स्केलम वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 158: Line 158:
== यह भी देखें ==
== यह भी देखें ==
* अनुपात_वितरण#पॉइसन_और_ट्रंकेटेड_पॉइसन_वितरण|(काटे गए) पॉइसन वितरण के लिए अनुपात वितरण
* अनुपात_वितरण#पॉइसन_और_ट्रंकेटेड_पॉइसन_वितरण|(काटे गए) पॉइसन वितरण के लिए अनुपात वितरण
[[Category: Machine Translated Page]]
 
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]

Latest revision as of 10:21, 2 August 2023

Skellam
Probability mass function
Examples of the probability mass function for the Skellam distribution.
Examples of the probability mass function for the Skellam distribution. The horizontal axis is the index k. (The function is only defined at integer values of k. The connecting lines do not indicate continuity.)
Parameters
Support
PMF
Mean
Median N/A
Variance
Skewness
Ex. kurtosis
MGF
CF

स्केलम वितरण अंतर का असतत संभाव्यता वितरण है, जो दो सांख्यिकीय रूप से स्वतंत्र यादृच्छिक वैरियेबल (चर) और में प्रत्येक के पॉइसन वितरण को संबंधित करके अपेक्षित मानों के साथ और के मान को प्राप्त करता हैं। यह साधारण फोटॉन ध्वनि के साथ दो प्रतिबिंबो के अंतर के आंकड़ों का वर्णन करने के साथ-साथ उनमें स्प्रेड बेट्स के वितरण का वर्णन करने में उपयोगी है, जहाँ सभी प्रकार से स्कोर किए गए अंकों के समान होता हैं, जैसे बेसबॉल, आइस हॉकी और फ़ुटबॉल इसका प्रमुख उदाहरण हैं।

वितरण आश्रित पॉइसन यादृच्छिक वैरियेबल के अंतर की एक विशेष स्थिति पर भी लागू होता है, अपितु यह केवल इसकी स्पष्ट स्थिति है, जहाँ दो वैरियेबल में एक सामान्य योगात्मक यादृच्छिक योगदान देता है, जिसे अंतर द्वारा निरस्त कर दिया जाता है, इस प्रकार विवरण के लिए कार्लिस और नत्ज़ुफ्रास (2003) देखें और इसके लिए आवेदन पत्र की सहायता ली जा सकती हैं।

किसी अंतर के लिए स्केलम वितरण के लिए संभाव्यता द्रव्यमान फलन साधनों के साथ दो स्वतंत्र पॉइसन वितरित यादृच्छिक वैरियेबल के बीच और द्वारा दिया गया है:

जहाँ Ik(z) बेसेल फलन को संशोधित बेसेल फलन कहा जाता है: इसके आधारा पर इसके पहले प्रकार को I.CE.B1.2C K.CE.B1 द्वारा दर्शाया जाता हैं। चूँकि k एक पूर्णांक है, इसलिए हमारे पास Ik(z)=I|k|(z) समीकरण प्राप्त होता हैंI

व्युत्पत्ति

पॉइसन वितरण की संभाव्यता द्रव्यमान फलन या माध्य μ के साथ पॉइसन-वितरित यादृच्छिक वैरियेबल द्वारा दिया गया है, जो इस प्रकार है-

के लिए (और अन्यथा शून्य). दो स्वतंत्र गणनाओं के अंतर के लिए स्केलम संभाव्यता द्रव्यमान फलन दो पॉइसन वितरणों का कनवल्शन (जॉन गॉर्डन स्केलम, 1946) है:

चूंकि गिनती के ऋणात्मक मानों के लिए पॉइसन वितरण शून्य है, इसका दूसरा योग केवल उन शर्तों के लिए लिया जाता है जहाँ और के समान होते हैं। इस प्रकार यह दिखाया जा सकता है कि उपरोक्त योग का तात्पर्य इस प्रकार है-

जिससे कि:

जहाँ Ik(z) बेसेल फलन हैं जो संशोधित बेसेल फलन के समान उपयोग किया जाता है: इसके पहले प्रकार के अनुसार I.CE.B1.2C K.CE.B1 मान प्राप्त होता हैं। जिसके लिए इसकी विशेष स्थिति इरविन (1937) द्वारा दिया गया है:

छोटे तर्कों के लिए संशोधित बेसेल फलन के सीमित मानों का उपयोग करके हम स्केलम वितरण की एक विशेष स्थिति के रूप में पॉइसन वितरण को पुनर्प्राप्त कर सकते हैं।

गुण

चूंकि यह एक असतत संभाव्यता फलन है, जिसके लिए स्केलम संभाव्यता द्रव्यमान फलन सामान्यीकृत किया जाता है:

हम जानते हैं कि पॉइसन वितरण के लिए संभाव्यता-उत्पादक फलन (पीजीएफ) है:

यह इस प्रकार है कि पी.जी.एफ , स्केलम संभाव्यता द्रव्यमान फलन के लिए होगा:

ध्यान दें कि संभाव्यता-उत्पन्न फलन के रूप का तात्पर्य है कि यह मान वितरण या किसी भी संख्या में स्वतंत्र स्केलम-वितरित वैरियेबल के अंतर को फिर से स्केलम-वितरित किया जाता है। कभी-कभी यह दावा किया जाता है कि दो स्केलम वितरित वैरियेबल का कोई भी रैखिक संयोजन फिर से स्केलम-वितरित होता है, अपितु यह स्पष्ट रूप से सच नहीं है क्योंकि इसके अतिरिक्त कोई भी गुणक वितरण के समर्थन (गणित) को बदल देगा और मोमेंट (गणित) के पैटर्न को इस प्रकार से परिवर्तित कर देगा कि कोई भी स्केलम वितरण संतुष्ट नहीं कर सकता है।

क्षण-उत्पन्न करने वाला कार्य इस प्रकार दिया गया है:

जो कच्चे क्षण Mk उत्पन्न करता है, जिसे इस प्रकार परिभाषित किया जा सकता हैं:

फिर इसका यह समय Mk हैं-

माध्य Mk के बारे में समान हैं

अपेक्षित मान वैरियेबल, विकर्ण और कुर्टोसिस क्रमशः इस प्रकार हैं:

संचयी-उत्पादक कार्य द्वारा दिया गया है:

जो संचयक उत्पन्न करता है:

विशेष स्थिति के लिए जब μ1 = M2, बेसेल फलन का स्पर्शोन्मुख विस्तार को बड़े μ के लिए उत्पन्न कर देता है:

अब्रामोविट्ज़ और स्टेगन 1972 के अनुसार पृष्ठ 377 पर इसके अतिरिक्त इस विशेष स्थिति में जब k का मान भी अधिक होता है, और 2μ के वर्गमूल के बिग ओ अंकन के कारण, वितरण सामान्य वितरण की ओर जाता है:

इन विशेष परिणामों को विभिन्न माध्यमों के अधिक सामान्य मामले तक सरलता से बढ़ाया जा सकता है।

शून्य से ऊपर होने पर इस भार की सीमा

यदि के साथ , हैं तब इस स्थिति में-

विवरण पॉइसन वितरण पॉइसन रेस में पाया जा सकता है।

संदर्भ

  • Abramowitz, Milton; Stegun, Irene A., eds. (June 1965). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Unabridged and unaltered republ. [der Ausg.] 1964, 5. Dover printing ed.). Dover Publications. pp. 374–378. ISBN 0486612724. Retrieved 27 September 2012.
  • Irwin, J. O. (1937) "The frequency distribution of the difference between two independent variates following the same Poisson distribution." Journal of the Royal Statistical Society: Series A, 100 (3), 415–416. JSTOR 2980526
  • Karlis, D. and Ntzoufras, I. (2003) "Analysis of sports data using bivariate Poisson models". Journal of the Royal Statistical Society, Series D, 52 (3), 381–393. doi:10.1111/1467-9884.00366
  • Karlis D. and Ntzoufras I. (2006). Bayesian analysis of the differences of count data. Statistics in Medicine, 25, 1885–1905. [1]
  • Skellam, J. G. (1946) "The frequency distribution of the difference between two Poisson variates belonging to different populations". Journal of the Royal Statistical Society, Series A, 109 (3), 296. JSTOR 2981372

यह भी देखें

  • अनुपात_वितरण#पॉइसन_और_ट्रंकेटेड_पॉइसन_वितरण|(काटे गए) पॉइसन वितरण के लिए अनुपात वितरण