क्रैमर प्रमेय (बीजगणितीय वक्र): Difference between revisions

From Vigyanwiki
No edit summary
 
Line 34: Line 34:
{{reflist}}
{{reflist}}


[[Category: बीजगणित]] [[Category: विश्लेषणात्मक ज्यामिति]]
[[Category: Machine Translated Page]]
[[Category:Created On 13/07/2023]]
[[Category:Created On 13/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:बीजगणित]]
[[Category:विश्लेषणात्मक ज्यामिति]]

Latest revision as of 11:07, 2 August 2023

बीजगणितीय ज्यामिति में, बीजगणितीय वक्रों पर क्रैमर का प्रमेय गैर-डीजनरेसी (गणित) विषयो में वक्र को विशिष्ट रूप से निर्धारित करने के लिए बीजगणितीय वक्र पर पड़ने वाले वास्तविक विमान (गणित) में आवश्यक एवं पर्याप्त संख्या में बिंदु देता है। यह संख्या है:

जहाँ n वक्र की डिग्री है। यह प्रमेय गेब्रियल क्रैमर के कारण है, जिन्होंने इसे 1750 में प्रकाशित किया था।[1] उदाहरण के लिए, रेखा (डिग्री 1 की) उस पर 2 भिन्न-भिन्न बिंदुओं द्वारा निर्धारित होती है, एवं केवल रेखा उन दो बिंदुओं से होकर निर्वाहित होती है। इसी प्रकार गैर-अपक्षयी शंकु (x एवं y में बहुपद समीकरण किसी भी पद में उनकी शक्तियों का योग 2 से अधिक नहीं है, इसलिए डिग्री 2 के साथ) सामान्य स्थिति में 5 बिंदुओं द्वारा विशिष्ट रूप से निर्धारित किया जाता है (जिनमें से कोई भी तीन सीधी रेखा पर नहीं हैं)।

शंकु विषय का अंतर्ज्ञान यह है: मान लीजिए कि दिए गए बिंदु, विशेष रूप से, दीर्घवृत्त पर पड़ते हैं। तत्पश्चात दीर्घवृत्त की पहचान करने के लिए जानकारी के पांच भाग आवश्यक एवं पर्याप्त हैं। दीर्घवृत्त के केंद्र का क्षैतिज स्थान, केंद्र का ऊर्ध्वाधर स्थान, प्रमुख अक्ष (सबसे लंबी जीवा की लंबाई (ज्यामिति)), लघु अक्ष (लंबाई) केंद्र के माध्यम से सबसे अल्प जीवा का, प्रमुख अक्ष के लंबवत), एवं दीर्घवृत्त का घूर्णन (गणित) (वह सीमा जहां तक ​​प्रमुख अक्ष क्षैतिज से प्रस्थान करता है)। सामान्य स्थिति में पाँच बिंदु जानकारी के इन पाँच भागो को प्रदान करने के लिए पर्याप्त हैं, जबकि चार बिंदु नहीं हैं।

सूत्र की व्युत्पत्ति

दो चर वाले n-वें डिग्री समीकरण में भिन्न-भिन्न शब्दों (शून्य गुणांक वाले सहित) की संख्या (n + 1) (n + 2) / 2 है। ऐसा इसलिए है, क्योंकि n-वें डिग्री के शब्द हैं कुल संख्या n + 1; (n − 1) डिग्री पद हैं एवं इसी प्रकार प्रथम डिग्री नियमो के माध्यम से एवं कुल संख्या 2, एवं एकल शून्य डिग्री पद (स्थिरांक) है। इनका योग (n + 1) + n + (n – 1) + ... + 2 + 1 = (n + 1) (n + 2) / 2 पद है, प्रत्येक का अपना गुणांक है। चूंकि, इन गुणांकों में से एक वक्र निर्धारित करने में अनावश्यक है, क्योंकि हम सदैव बहुपद समीकरण को किसी भी गुणांक से विभाजित कर सकते हैं, 1 पर निर्धारित गुणांक के साथ समतुल्य समीकरण दे सकते हैं, एवं इस प्रकार [(n+1)(n) + 2)/2] −1 = n(n+3)/2 शेष गुणांक होते है।

उदाहरण के लिए, चौथी डिग्री के समीकरण का सामान्य रूप होता है

4(4+3)/2 = 14 गुणांक के साथ।

बिंदुओं के समुच्चय के माध्यम से बीजगणितीय वक्र का निर्धारण करने में बीजगणितीय समीकरण में इन गुणांकों के लिए मान निर्धारित करना सम्मिलित है, जिससे प्रत्येक बिंदु समीकरण को संतुष्ट करे। दिए गए n(n+3)/2 अंक (xi एवं yi), इनमें से प्रत्येक बिंदु का उपयोग डिग्री n के सामान्य बहुपद समीकरण में प्रतिस्थापित करके भिन्न समीकरण बनाने के लिए किया जा सकता है, जिससे n(n + 3) / 2 समीकरण n (n + 3) / 2 अज्ञात गुणांक में रैखिक होते हैं। यदि यह प्रणाली गैर-शून्य निर्धारक (गणित) होने के अर्थ में गैर-पतित है, तो अज्ञात गुणांक विशिष्ट रूप से निर्धारित होते हैं एवं इसलिए बहुपद समीकरण एवं इसका वक्र विशिष्ट रूप से निर्धारित होता हैं। इससे अधिक अंक अनावश्यक होंगे, एवं अर्घ्य अंक गुणांकों के लिए विशिष्ट रूप से समीकरणों की प्रणाली को हल करने के लिए अपर्याप्त होंगे।

विकृत विषय

पतित विषय का उदाहरण, जिसमें वक्र पर n(n+3)/2 बिंदु वक्र को विशिष्ट रूप से निर्धारित करने के लिए पर्याप्त नहीं हैं, क्रैमर द्वारा क्रैमर के विरोधाभास के भाग के रूप में प्रदान किया गया था। मान लीजिए कि डिग्री n = 3 है, एवं नौ बिंदु x = -1, 0, 1 एवं y = -1, 0, 1 के सभी संयोजन हैं। एक से अधिक घन में ये सभी बिंदु होते हैं, अर्थात् समीकरण के सभी घन हैं। इस प्रकार ये बिंदु अद्वितीय घन का निर्धारण नहीं करते हैं, संभवता ही उनमें से n(n+3)/2=9 हैं। अधिक सामान्यतः, अनंत रूप से कई क्यूबिक्स होते हैं, जो दो क्यूबिक्स के नौ चौराहे बिंदुओं से निर्वाहित होते हैं (बेज़आउट के प्रमेय का तात्पर्य है, कि दो क्यूबिक्स में, सामान्यतः नौ चौराहे बिंदु होते हैं)। इसी प्रकार, n = 2 के शंकु विषय के लिए, यदि दिए गए पांच में से तीन बिंदु ही सीधी रेखा पर आते हैं, तो वे विशिष्ट रूप से वक्र का निर्धारण नहीं कर सकते हैं।

प्रतिबंधित विषय

यदि वक्र को n-वें डिग्री बहुपद समीकरणों की विशेष उप-श्रेणी में होना आवश्यक है, तो अद्वितीय वक्र निर्धारित करने के लिए n(n+3)/2 से कम अंक आवश्यक एवं पर्याप्त हो सकता हैं। उदाहरण के लिए, तीन (गैर-संरेख) बिंदु वृत्त निर्धारित करते हैं: सामान्य वृत्त समीकरण द्वारा दिया जाता है। जहां केंद्र (a, b) पर स्थित है एवं त्रिज्या r है। समान रूप से, वर्गांकित पदों का विस्तार करने पर, सामान्य समीकरण बनता है जहाँ n = 2 के सामान्य शंकु विषय की तुलना में यहां दो प्रतिबंध लगाए गए हैं: xy में पद का गुणांक 0 के समान सीमित है, एवं y2 का गुणांक x2 के गुणांक के समान तक सीमित है। इस प्रकार पाँच बिंदुओं की आवश्यकता के अतिरिक्त, केवल 5 – 2 = 3 की आवश्यकता होती है, जो 3 पैरामीटर a, b, k (समकक्ष a, b, r) से मेल खाते हैं जिन्हें पहचानने की आवश्यकता है।

यह भी देखें

संदर्भ

  1. * Introduction à l'analyse des lignes courbes algébriques at Google Books. Geneva: Frères Cramer & Cl. Philibert, 1750.