सम्मिश्र सह-बॉर्डिज्म: Difference between revisions

From Vigyanwiki
mNo edit summary
Line 27: Line 27:


==ब्राउन-पीटरसन सह-समरूपता==
==ब्राउन-पीटरसन सह-समरूपता==
तर्कसंगतों पर सम्मिश्र सह-बॉर्डिज्म को तर्कसंगतों पर सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए मुख्य रुचि सम्मिश्र सह-बॉर्डिज्म के मरोड़ में है। प्राइम पी पर एमयू को समष्टिीयकृत करके एक समय में एक प्राइम में मरोड़ का अध्ययन करना अक्सर आसान होता है; मोटे तौर पर इसका मतलब यह है कि कोई व्यक्ति मरोड़ प्राइम को पी तक खत्म कर देता है। समष्टिीयकरण एमयू<sub>''p''</sub> प्राइम पी पर एमयू का विभाजन ब्राउन-पीटरसन सह-समरूपता नामक एक सरल सह-समरूपता सिद्धांत के निलंबन के योग के रूप में होता है, जिसे पहले वर्णित किया गया था {{harvtxt|Brown|Peterson|1966}}. व्यवहार में व्यक्ति अक्सर सम्मिश्र कोबॉर्डिज्म के बजाय ब्राउन-पीटरसन कोहोलॉजी के साथ गणना करता है। सभी अभाज्य संख्याओं p के लिए किसी समष्टि के ब्राउन-पीटरसन सह-समरूपता का ज्ञान मोटे तौर पर इसके सम्मिश्र सह-बॉर्डिज्म के ज्ञान के बराबर है।
तर्कसंगतों पर सम्मिश्र सह-बॉर्डिज्म को सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए मुख्य रुचि सम्मिश्र सह-बॉर्डिज्म के घूर्णन में है। प्राइम ''p''  पर MU  को समष्टिीयकृत करके एक समय में एक प्राइम में घूर्णन का अध्ययन करना अक्सर आसान होता है; [[सामान्य बंडल|सामान्य]] तौर पर इसका मतलब यह है कि कोई व्यक्ति मरोड़ प्राइम को पी तक खत्म कर देता है। समष्टिीयकरण एमयू<sub>''p''</sub> प्राइम पी पर एमयू का विभाजन ब्राउन-पीटरसन सह-समरूपता नामक एक सरल सह-समरूपता सिद्धांत के निलंबन के योग के रूप में होता है, जिसे पहले वर्णित किया गया था {{harvtxt|Brown|Peterson|1966}}. व्यवहार में व्यक्ति अक्सर सम्मिश्र कोबॉर्डिज्म के बजाय ब्राउन-पीटरसन कोहोलॉजी के साथ गणना करता है। सभी अभाज्य संख्याओं p के लिए किसी समष्टि के ब्राउन-पीटरसन सह-समरूपता का ज्ञान मोटे तौर पर इसके सम्मिश्र सह-बॉर्डिज्म के ज्ञान के बराबर है।


==कोनर-फ्लोयड श्रेणियाँ==
==कोनर-फ्लोयड श्रेणियाँ==
Line 35: Line 35:
उसी प्रकार <math>\operatorname{MU}_*(BU)</math> बहुपद वलय <math>\operatorname{MU}_*(\text{point})[[\beta_1, \beta_2, \ldots]]</math> का समरूपी है।
उसी प्रकार <math>\operatorname{MU}_*(BU)</math> बहुपद वलय <math>\operatorname{MU}_*(\text{point})[[\beta_1, \beta_2, \ldots]]</math> का समरूपी है।


<big><br />[[सह-समरूपता]] संचालन</big>


हॉपफ बीजगणित एमयू<sub>*</sub>(MU) बहुपद बीजगणित R[b का समरूपी है<sub>1</sub>, बी<sub>2</sub>, ...], जहां आर 0-गोले की कम हुई बोर्डिज्म वलय है।
<big>[[सह-समरूपता]] संचालन</big>
 
हॉपफ बीजगणित MU<sub>*</sub>(MU) बहुपद बीजगणित R[b<sub>1</sub>, b<sub>2</sub>, ...], का समरूपी है जहां R 0-वृत्त का घटाया हुआ बोर्डिज्म वलय है।


सह-गणना द्वारा दिया जाता है
सह-गणना द्वारा दिया जाता है


:<math>\psi(b_k) = \sum_{i+j=k}(b)_{2i}^{j+1}\otimes b_j</math>
:<math>\psi(b_k) = \sum_{i+j=k}(b)_{2i}^{j+1}\otimes b_j</math>
जहां अंकन ()<sub>2''i''</sub> मतलब डिग्री 2i का टुकड़ा ले लो. इसकी व्याख्या इस प्रकार की जा सकती है। वो नक्शा
जहां अंकन ()<sub>2''i''</sub> का मतलब डिग्री 2i का एक भाग होता है। इसकी व्याख्या इस प्रकार की जा सकती है। इसका आलेखन


:<math> x\to x+b_1x^2+b_2x^3+\cdots</math>
:<math> x\to x+b_1x^2+b_2x^3+\cdots</math>
एक्स में औपचारिक शक्ति श्रृंखला की वलय और एमयू के सह-उत्पाद का एक निरंतर ऑटोमोर्फिज्म है<sub>*</sub>(एमयू) ऐसे दो ऑटोमोर्फिज्म की संरचना देता है।
x में औपचारिक क्षमता श्रृंखला की निरंतर स्वप्रतिरूपण वलय और MU<sub>*</sub>(MU) की सह-गणना ऐसे दो स्वप्रतिरूपण की संरचना देता है।


==यह भी देखें==
==यह भी देखें==

Revision as of 21:42, 14 July 2023

गणित में, सामान्यीकृत सह-समरूपता सिद्धांत जो बहुखण्डों के सह-बॉर्डिज्म से संबंधित होता है उसे सम्मिश्र सह-बॉर्डिज्म कहा जाता है। इसकी श्रृंखला को MU द्वारा दर्शाया जाता है। यह एक असामान्य रूप से प्रभावशाली सह-समरूपता सिद्धांत है, लेकिन इसकी गणना करना काफी कठिन हो सकता है, इसलिए अक्सर इसे सीधे उपयोग करने के बजाय इससे प्राप्त कुछ कमजोर सिद्धांतों जैसे कि ब्राउन-पीटरसन सह-समरूपता या मोरवा के-सिद्धांत का उपयोग किया जाता है, जिनकी गणना करना आसान होता है।

थॉम श्रृंखला का उपयोग करके माइकल अतियाह (1961) ने सामान्यीकृत समरूपता और सह-समरूपता सम्मिश्र सह-बॉर्डिज्म सिद्धांत प्रस्तुत किए थे।

सम्मिश्र सह-बॉर्डिज्म की श्रृंखला

समष्टि का सम्मिश्र बोर्डिज्म सामान्य तौर पर स्थिर सामान्य बंडल पर एक सम्मिश्र रैखिक संरचना के साथ बहुखण्ड बोर्डिज्म वर्गों का समूह है। सम्मिश्र बोर्डिज़्म एक सामान्यीकृत समतुल्य सिद्धांत है, जो एक श्रृंखला MU के अनुरूप है जिसे थॉम समष्टि के संदर्भ में स्पष्ट रूप से वर्णित किया जा सकता है।

समष्टि थॉम समष्टि का सर्वसामान्‍य - सतह समूह पर एकात्मक समूह का वर्गीकृत समष्टि है। प्राकृतिक समावेशन में दोहरा स्थगन से से एक आलेखन तैयार करता है। ये आलेखन मिलकर श्रृंखला देते हैं; अर्थात्, यह का समरूप सह प्रतिबन्ध है।

उदाहरण: वृत्ताकार श्रृंखला है और का गैर स्थगन है।

नगण्य प्रमेय बताता है कि, किसी भी वलय श्रृंखला के लिए का कर्नेल नगण्य तत्वों से युक्त है।[1] प्रमेय का तात्पर्य विशेष रूप से यह है कि, यदि वृत्ताकार श्रृंखला है, तो किसी के लिए का प्रत्येक तत्व नगण्य(ग्राउंडर निशिदा का एक प्रमेय) है। उदाहरण के लिए, यदि , में है तब घुमावदार है लेकिन इसकी छवि में है, लैजार्ड वलय, घुमावदार नहीं हो सकती क्योंकि एक बहुपद वलय है इसलिए कर्नेल में होना चाहिए।

औपचारिक समूह नियम

जॉन मिल्नोर (1960) और सर्गेई नोविकोव( 1960,1962 ) दिखाया कि गुणांक वलय अनंत रूप से अनेक उत्पादकों पर सकारात्मक सम डिग्री का एक बहुपद वलय है। इसका अर्थ है की एक बिंदु के सम्मिश्र सह बॉर्डिज़्म के बराबर, या समकक्ष रूप से सम्मिश्र बहुखण्डो के सह बॉर्डिज़्म वर्गों की वलय होना चाहिए।

अनंत आकारीय सम्मिश्र प्रक्षेप्य समष्टि को दर्शाया जाता है, जो सम्मिश्र रैखिक समूहों के लिए वर्गीकृत समष्टि है, ताकि रैखिक समूहों का टेंसर गुणनफल एक आलेखन को उत्पन्न कर सके। यदि बाद वाली वलय की पहचान E के गुणांक वलय से की जाती है तो सहयोगी क्रमविनिमेय वलय श्रृंखला E एक सम्मिश्र अभिविन्यास पर एक तत्व x है जिसका प्रतिबंध पर 1 है। ऐसे x तत्व वाले श्रृंखला E को 'सम्मिश्र उन्मुख वलय श्रृंखला' कहा जाता है।

यदि E एक सम्मिश्र उन्मुख वलय श्रृंखला है, तो

और वलय पर एक औपचारिक समूह नियम है।

सम्मिश्र सह-बॉर्डिज़्म में एक प्राकृतिक सम्मिश्र अभिविन्यास होता है। डेनियल क्विलेन (1969) ने दर्शाया कि इसके गुणांक वलय से लेज़ार्ड के सार्वभौमिक वलय तक एक प्राकृतिक समरूपता है, जो सम्मिश्र कोबर्डिज्म के औपचारिक समूह नियम को सार्वभौमिक औपचारिक समूह नियम में बदल देती है। दूसरे शब्दों में, किसी भी क्रमविनिमेय वलय R पर किसी औपचारिक समूह नियम F के लिए MU से R तक एक अद्वितीय वलय समरूपता है जो इस प्रकार कि F सम्मिश्र सह-बॉर्डिज्म के औपचारिक समूह नियम का प्रतिरूप है।

ब्राउन-पीटरसन सह-समरूपता

तर्कसंगतों पर सम्मिश्र सह-बॉर्डिज्म को सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए मुख्य रुचि सम्मिश्र सह-बॉर्डिज्म के घूर्णन में है। प्राइम p पर MU को समष्टिीयकृत करके एक समय में एक प्राइम में घूर्णन का अध्ययन करना अक्सर आसान होता है; सामान्य तौर पर इसका मतलब यह है कि कोई व्यक्ति मरोड़ प्राइम को पी तक खत्म कर देता है। समष्टिीयकरण एमयूp प्राइम पी पर एमयू का विभाजन ब्राउन-पीटरसन सह-समरूपता नामक एक सरल सह-समरूपता सिद्धांत के निलंबन के योग के रूप में होता है, जिसे पहले वर्णित किया गया था Brown & Peterson (1966). व्यवहार में व्यक्ति अक्सर सम्मिश्र कोबॉर्डिज्म के बजाय ब्राउन-पीटरसन कोहोलॉजी के साथ गणना करता है। सभी अभाज्य संख्याओं p के लिए किसी समष्टि के ब्राउन-पीटरसन सह-समरूपता का ज्ञान मोटे तौर पर इसके सम्मिश्र सह-बॉर्डिज्म के ज्ञान के बराबर है।

कोनर-फ्लोयड श्रेणियाँ

वलय औपचारिक क्षमता श्रृंखला वलय के समरूपी है जहां तत्व cf को कोनर-फ्लोयड श्रेणी कहा जाता है। इन्हें कॉनर और फ्लॉयड (1966) द्वारा प्रस्तुत किया गया था और यह सम्मिश्र सह-बॉर्डिज्म के लिए चेर्न श्रेणियाँ के अनुरूप हैं।      

उसी प्रकार बहुपद वलय का समरूपी है।


सह-समरूपता संचालन

हॉपफ बीजगणित MU*(MU) बहुपद बीजगणित R[b1, b2, ...], का समरूपी है जहां R 0-वृत्त का घटाया हुआ बोर्डिज्म वलय है।

सह-गणना द्वारा दिया जाता है

जहां अंकन ()2i का मतलब डिग्री 2i का एक भाग होता है। इसकी व्याख्या इस प्रकार की जा सकती है। इसका आलेखन

x में औपचारिक क्षमता श्रृंखला की निरंतर स्वप्रतिरूपण वलय और MU*(MU) की सह-गणना ऐसे दो स्वप्रतिरूपण की संरचना देता है।

यह भी देखें

टिप्पणियाँ


संदर्भ


बाहरी संबंध