सम्मिश्र सह-बॉर्डिज्म: Difference between revisions

From Vigyanwiki
mNo edit summary
Line 1: Line 1:
गणित में, सामान्यीकृत [[सह-समरूपता]] सिद्धांत जो [[ कई गुना |बहुखण्डों]] के सह-बॉर्डिज्म से संबंधित होता है उसे सम्मिश्र [[सह-बॉर्डिज्म]] कहा जाता है। इसकी श्रृंखला को MU द्वारा दर्शाया जाता है। यह एक असामान्य रूप से प्रभावशाली सह-समरूपता सिद्धांत है, लेकिन इसकी गणना करना काफी कठिन हो सकता है, इसलिए अक्सर इसे सीधे उपयोग करने के अपेक्षा इससे प्राप्त कुछ कमजोर सिद्धांतों जैसे कि ब्राउन-पीटरसन सह-समरूपता या मोरवा के-सिद्धांत का उपयोग किया जाता है, जिनकी गणना करना आसान होता है।  
गणित में, सामान्यीकृत [[सह-समरूपता]] सिद्धांत जो [[ कई गुना |बहुखण्डों]] के सह-बॉर्डिज्म से संबंधित होता है उसे सम्मिश्र [[सह-बॉर्डिज्म]] कहा जाता है। इसकी श्रृंखला को MU द्वारा दर्शाया जाता है। यह एक असामान्य रूप से प्रभावशाली सह-समरूपता सिद्धांत है, लेकिन इसकी गणना करना काफी कठिन होता है, इसलिए अक्सर इसे सीधे उपयोग करने के अपेक्षा इससे प्राप्त कुछ कमजोर सिद्धांतों जैसे कि ब्राउन-पीटरसन सह-समरूपता या मोरवा के-सिद्धांत का उपयोग किया जाता है, जिनकी गणना करना आसान होता है।  


[[थॉम स्पेक्ट्रम|थॉम श्रृंखला]] का उपयोग करके माइकल अतियाह (1961) ने सामान्यीकृत समरूपता और सह-समरूपता सम्मिश्र [[सह-बॉर्डिज्म|सह]]-बॉर्डिज्म सिद्धांत प्रस्तुत किए थे।
[[थॉम स्पेक्ट्रम|थॉम श्रृंखला]] का उपयोग करके माइकल अतियाह (1961) ने सामान्यीकृत समरूपता और सह-समरूपता सम्मिश्र [[सह-बॉर्डिज्म|सह]]-बॉर्डिज्म सिद्धांत प्रस्तुत किए थे।
Line 11: Line 11:
उदाहरण: <math>MU(0)</math> वृत्ताकार श्रृंखला है और <math>MU(1)</math> <math>\mathbb{CP}^\infty</math> का [[निलंबन|गैर स्थगन]] <math>\Sigma^{\infty -2} \mathbb{CP}^\infty</math>है।
उदाहरण: <math>MU(0)</math> वृत्ताकार श्रृंखला है और <math>MU(1)</math> <math>\mathbb{CP}^\infty</math> का [[निलंबन|गैर स्थगन]] <math>\Sigma^{\infty -2} \mathbb{CP}^\infty</math>है।


[[निलपोटेंस प्रमेय|नगण्य प्रमेय]] बताता है कि, किसी भी [[रिंग स्पेक्ट्रम|वलय श्रृंखला]] <math>R</math> के लिए <math>\pi_* R \to \operatorname{MU}_*(R)</math> का कर्नेल [[निलपोटेंस प्रमेय|नगण्य]] तत्वों से युक्त है।<ref>http://www.math.harvard.edu/~lurie/252xnotes/Lecture25.pdf {{Bare URL PDF|date=March 2022}}</ref> प्रमेय का तात्पर्य विशेष रूप से यह है कि, यदि <math>\mathbb{S}</math> वृत्ताकार श्रृंखला है, तो किसी  <math>n>0</math> के लिए  <math>\pi_n \mathbb{S}</math>  का प्रत्येक तत्व [[निलपोटेंस प्रमेय|नगण्य]]([[ ग्राउंडर निशिदा ]]का एक प्रमेय) है। उदाहरण के लिए, यदि <math>x</math>, <math>\pi_n S</math> में है तब <math>x</math> घुमावदार है लेकिन इसकी छवि <math>\operatorname{MU}_*(\mathbb{S}) \simeq L</math> में है, '''लैजार्ड''' वलय, घुमावदार नहीं हो सकती क्योंकि <math>L</math> एक बहुपद वलय है इसलिए <math>x</math> कर्नेल में होना चाहिए।
[[निलपोटेंस प्रमेय|नगण्य प्रमेय]] बताता है कि, किसी भी [[रिंग स्पेक्ट्रम|वलय श्रृंखला]] <math>R</math> के लिए <math>\pi_* R \to \operatorname{MU}_*(R)</math> का प्राथमिक तत्व [[निलपोटेंस प्रमेय|नगण्य]] तत्वों से युक्त है।<ref>http://www.math.harvard.edu/~lurie/252xnotes/Lecture25.pdf {{Bare URL PDF|date=March 2022}}</ref> प्रमेय का तात्पर्य विशेष रूप से यह है कि, यदि <math>\mathbb{S}</math> वृत्ताकार श्रृंखला है, तो किसी  <math>n>0</math> के लिए  <math>\pi_n \mathbb{S}</math>  का प्रत्येक तत्व [[निलपोटेंस प्रमेय|नगण्य]]([[ ग्राउंडर निशिदा ]]का एक प्रमेय) है। उदाहरण के लिए, यदि <math>x</math>, <math>\pi_n S</math> में है तब <math>x</math> घुमावदार है लेकिन इसकी छवि <math>\operatorname{MU}_*(\mathbb{S}) \simeq L</math> में है, '''लैजार्ड''' वलय, घुमावदार नहीं हो सकती क्योंकि <math>L</math> एक बहुपद वलय है इसलिए <math>x</math> प्राथमिक तत्व में होना चाहिए।


==औपचारिक समूह नियम==
==निरंतर समूह नियम==
जॉन मिल्नोर (1960) और सर्गेई नोविकोव( 1960,1962 ) दिखाया कि गुणांक वलय <math>\pi_*(\operatorname{MU})</math> अनंत रूप से अनेक उत्पादकों <math>x_i \in \pi_{2i}(\operatorname{MU})</math> पर सकारात्मक सम डिग्री का एक बहुपद वलय  <math>\Z[x_1,x_2,\ldots]</math> है। इसका अर्थ है की एक बिंदु के सम्मिश्र [[सह-बॉर्डिज्म|सह]] बॉर्डिज़्म के बराबर, या समकक्ष रूप से सम्मिश्र बहुखण्डो के [[सह-बॉर्डिज्म|सह]] बॉर्डिज़्म वर्गों की वलय होना चाहिए।  
जॉन मिल्नोर (1960) और सर्गेई नोविकोव( 1960,1962 ) ने दर्शाया कि गुणांक वलय <math>\pi_*(\operatorname{MU})</math> अनंत रूप से अनेक उत्पादकों <math>x_i \in \pi_{2i}(\operatorname{MU})</math> पर धनात्मक सम डिग्री का एक बहुपद वलय  <math>\Z[x_1,x_2,\ldots]</math> है। इसका अर्थ है की एक बिंदु के सम्मिश्र [[सह-बॉर्डिज्म|सह]] बॉर्डिज़्म के बराबर, या समकक्ष रूप से सम्मिश्र बहुखण्डो के [[सह-बॉर्डिज्म|सह]] बॉर्डिज़्म वर्गों का वलय होना चाहिए।  


अनंत आकारीय [[जटिल प्रक्षेप्य स्थान|सम्मिश्र प्रक्षेप्य समष्टि]] को <math>\mathbb{CP}^{\infty}</math> दर्शाया जाता है, जो सम्मिश्र रैखिक समूहों के लिए वर्गीकृत समष्टि है, ताकि रैखिक समूहों का टेंसर गुणनफल एक आलेखन <math>\mu : \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}\to \mathbb{CP}^{\infty}</math> को उत्पन्न कर सके। यदि बाद वाली वलय की पहचान E के गुणांक वलय से की जाती है तो सहयोगी [[ क्रमविनिमेय वलय स्पेक्ट्रम |क्रमविनिमेय वलय श्रृंखला]] ''E''  एक सम्मिश्र अभिविन्यास <math>E^2(\mathbb{CP}^{\infty})</math> पर एक तत्व ''x'' है जिसका प्रतिबंध <math>E^2(\mathbb{CP}^{1})</math>पर 1 है। ऐसे x तत्व वाले श्रृंखला E को 'सम्मिश्र '''उन्मुख''' वलय श्रृंखला' कहा जाता है।
अनंत आकारीय [[जटिल प्रक्षेप्य स्थान|सम्मिश्र प्रक्षेप्य समष्टि]] को <math>\mathbb{CP}^{\infty}</math>द्वारा दर्शाया जाता है, जो सम्मिश्र रैखिक समूहों के लिए वर्गीकृत समष्टि है, ताकि रैखिक समूहों का क्षेत्र गुणनफल एक आलेखन <math>\mu : \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}\to \mathbb{CP}^{\infty}</math> को उत्पन्न कर सके। यदि बाद वाली वलय की पहचान E के गुणांक वलय से की जाती है तो सहयोगी [[ क्रमविनिमेय वलय स्पेक्ट्रम |क्रमविनिमेय वलय श्रृंखला]] ''E''  एक सम्मिश्र अभिविन्यास <math>E^2(\mathbb{CP}^{\infty})</math> पर एक तत्व ''x'' है जिसका प्रतिबंध <math>E^2(\mathbb{CP}^{1})</math>पर 1 है। ऐसे x तत्व वाले श्रृंखला E को 'सम्मिश्र '''उन्मुख''' वलय श्रृंखला' कहा जाता है।


यदि E एक सम्मिश्र उन्मुख वलय श्रृंखला है, तो
यदि E एक सम्मिश्र उन्मुख वलय श्रृंखला है, तो
Line 22: Line 22:
:<math>E^*(\mathbb{CP}^\infty) = E^*(\text{point})[[x]]</math>
:<math>E^*(\mathbb{CP}^\infty) = E^*(\text{point})[[x]]</math>
:<math>E^*(\mathbb{CP}^\infty)\times E^*(\mathbb{CP}^\infty) = E^*(\text{point})[[x\otimes1, 1\otimes x]]</math>
:<math>E^*(\mathbb{CP}^\infty)\times E^*(\mathbb{CP}^\infty) = E^*(\text{point})[[x\otimes1, 1\otimes x]]</math>
और <math>\mu^*(x) \in E^*(\text{point})[[x\otimes 1, 1\otimes x]]</math> वलय <math>E^*(\text{point}) = \pi^*(E)</math> पर एक [[औपचारिक समूह कानून|औपचारिक समूह नियम]] है।  
और <math>\mu^*(x) \in E^*(\text{point})[[x\otimes 1, 1\otimes x]]</math> वलय <math>E^*(\text{point}) = \pi^*(E)</math> पर एक [[औपचारिक समूह कानून|निरंतर समूह नियम]] है।  


सम्मिश्र सह-बॉर्डिज़्म में एक प्राकृतिक सम्मिश्र अभिविन्यास होता है। {{harvs|txt|last=क्विलेन|first=डेनियल|authorlink=Daniel Quillen|year=1969}} ने दर्शाया कि इसके गुणांक वलय से लेज़ार्ड के सार्वभौमिक वलय तक एक प्राकृतिक समरूपता है, जो सम्मिश्र कोबर्डिज्म के औपचारिक समूह [[औपचारिक समूह कानून|नियम]] को सार्वभौमिक औपचारिक समूह [[औपचारिक समूह कानून|नियम]] में बदल देती है। दूसरे शब्दों में, किसी भी क्रमविनिमेय वलय R पर किसी औपचारिक समूह नियम F के लिए MU से R तक एक अद्वितीय वलय समरूपता है जो इस प्रकार कि F सम्मिश्र सह-बॉर्डिज्म के औपचारिक समूह नियम का प्रतिरूप है।
सम्मिश्र सह-बॉर्डिज़्म में एक प्राकृतिक सम्मिश्र अभिविन्यास होता है। {{harvs|txt|last=क्विलेन|first=डेनियल|authorlink=Daniel Quillen|year=1969}} ने दर्शाया कि इसके गुणांक वलय से लेज़ार्ड के सार्वभौमिक वलय तक एक प्राकृतिक समरूपता है, जो सम्मिश्र कोबर्डिज्म के निरंतर समूह [[औपचारिक समूह कानून|नियम]] को सार्वभौमिक निरंतर समूह [[औपचारिक समूह कानून|नियम]] में बदल देती है। दूसरे शब्दों में, किसी भी क्रमविनिमेय वलय R पर किसी निरंतर समूह नियम F के लिए MU से R तक एक अद्वितीय वलय समरूपता है जो इस प्रकार कि F सम्मिश्र सह-बॉर्डिज्म के निरंतर समूह नियम का प्रतिरूप है।


==ब्राउन-पीटरसन सह-समरूपता==
==ब्राउन-पीटरसन सह-समरूपता==
तर्कसंगतों पर सम्मिश्र सह-बॉर्डिज्म को सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए मुख्य रुचि सम्मिश्र सह-बॉर्डिज्म के घुमाव में है। मुख्य ''p'' पर MU को स्थानीयकृत करके एक समय में एक मुख्य घुमाव का अध्ययन करना अक्सर आसान होता है; [[सामान्य बंडल|सामान्य]] तौर पर इसका मतलब यह है कि कोई मुख्य घुमाव को ''p'' तक खत्म कर देता है। स्थानीयकरण MU<sub>''p''</sub> पर MU का मुख्य ''p'' विभाजन ब्राउन-पीटरसन सह-समरूपता नामक एक सरल सह-समरूपता सिद्धांत के निलंबन के योग के रूप में होता है, जिसे {{harvtxt| ब्राउन|पीटरसन|1966}} द्वारा पहले वर्णित किया गया था। सामान्यतया अक्सर सम्मिश्र सह बॉर्डिज्म के अपेक्षा ब्राउन-पीटरसन सह-समरूपता के साथ गणना किया जाता है। [[सामान्य बंडल|सामान्य]] तौर पर सभी अभाज्य संख्याओं p के लिए किसी समष्टि के ब्राउन-पीटरसन सह-समरूपता का ज्ञान इसके सम्मिश्र सह-बॉर्डिज्म के ज्ञान के बराबर होता है।
तर्कसंगतों पर सम्मिश्र सह-बॉर्डिज्म को सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए प्राथमिक रुचि सम्मिश्र सह-बॉर्डिज्म के घुमाव में है। प्राथमिक ''p'' पर MU को स्थानीयकृत करके एक समय में एक प्राथमिक घुमाव का अध्ययन करना अक्सर आसान होता है; [[सामान्य बंडल|सामान्य]] तौर पर इसका मतलब यह है कि कोई प्राथमिक घुमाव को ''p'' तक खत्म कर देता है। स्थानीयकरण MU<sub>''p''</sub> पर MU का प्राथमिक ''p'' विभाजन ब्राउन-पीटरसन सह-समरूपता नामक एक सरल सह-समरूपता सिद्धांत के निलंबन के योग के रूप में होता है, जिसे {{harvtxt| ब्राउन|पीटरसन|1966}} द्वारा पहले वर्णित किया गया था। सामान्यतया अक्सर सम्मिश्र सह बॉर्डिज्म के अपेक्षा ब्राउन-पीटरसन सह-समरूपता के साथ गणना किया जाता है। [[सामान्य बंडल|सामान्य]] तौर पर सभी अभाज्य संख्याओं p के लिए किसी समष्टि के ब्राउन-पीटरसन सह-समरूपता का ज्ञान इसके सम्मिश्र सह-बॉर्डिज्म के ज्ञान के बराबर होता है।


==कोनर-फ्लोयड श्रेणियाँ==
==कोनर-फ्लोयड श्रेणियाँ==


वलय <math>\operatorname{MU}^*(BU)</math> औपचारिक क्षमता श्रृंखला वलय <math>\operatorname{MU}^*(\text{point})[[cf_1, cf_2, \ldots]]</math> के समरूपी है जहां तत्व cf को कोनर-फ्लोयड श्रेणी कहा जाता है। इन्हें कॉनर और फ्लॉयड (1966) द्वारा प्रस्तुत किया गया था और यह सम्मिश्र सह-बॉर्डिज्म के लिए चेर्न श्रेणियाँ के अनुरूप हैं।      
वलय <math>\operatorname{MU}^*(BU)</math> निरंतर घात श्रृंखला वलय <math>\operatorname{MU}^*(\text{point})[[cf_1, cf_2, \ldots]]</math> के समरूपी है जहां तत्व cf को कोनर-फ्लोयड श्रेणी कहा जाता है। इन्हें कॉनर और फ्लॉयड (1966) द्वारा प्रस्तुत किया गया था और यह सम्मिश्र सह-बॉर्डिज्म के लिए चेर्न श्रेणियाँ के अनुरूप हैं।      


उसी प्रकार <math>\operatorname{MU}_*(BU)</math> बहुपद वलय <math>\operatorname{MU}_*(\text{point})[[\beta_1, \beta_2, \ldots]]</math> का समरूपी है।
उसी प्रकार <math>\operatorname{MU}_*(BU)</math> बहुपद वलय <math>\operatorname{MU}_*(\text{point})[[\beta_1, \beta_2, \ldots]]</math> का समरूपी है।




Line 46: Line 47:


:<math> x\to x+b_1x^2+b_2x^3+\cdots</math>
:<math> x\to x+b_1x^2+b_2x^3+\cdots</math>
x में औपचारिक क्षमता श्रृंखला की निरंतर स्वप्रतिरूपण वलय और MU<sub>*</sub>(MU) की सह-गणना ऐसे दो स्वप्रतिरूपण की संरचना देता है।
x में निरंतर घात श्रृंखला की निरंतर स्वप्रतिरूपण वलय और MU<sub>*</sub>(MU) की सह-गणना ऐसे दो स्वप्रतिरूपण की संरचना देता है।


==यह भी देखें==
==यह भी देखें==

Revision as of 16:11, 17 July 2023

गणित में, सामान्यीकृत सह-समरूपता सिद्धांत जो बहुखण्डों के सह-बॉर्डिज्म से संबंधित होता है उसे सम्मिश्र सह-बॉर्डिज्म कहा जाता है। इसकी श्रृंखला को MU द्वारा दर्शाया जाता है। यह एक असामान्य रूप से प्रभावशाली सह-समरूपता सिद्धांत है, लेकिन इसकी गणना करना काफी कठिन होता है, इसलिए अक्सर इसे सीधे उपयोग करने के अपेक्षा इससे प्राप्त कुछ कमजोर सिद्धांतों जैसे कि ब्राउन-पीटरसन सह-समरूपता या मोरवा के-सिद्धांत का उपयोग किया जाता है, जिनकी गणना करना आसान होता है।

थॉम श्रृंखला का उपयोग करके माइकल अतियाह (1961) ने सामान्यीकृत समरूपता और सह-समरूपता सम्मिश्र सह-बॉर्डिज्म सिद्धांत प्रस्तुत किए थे।

सम्मिश्र सह-बॉर्डिज्म की श्रृंखला

समष्टि का सम्मिश्र बोर्डिज्म सामान्य तौर पर स्थिर सामान्य बंडल पर एक सम्मिश्र रैखिक संरचना के साथ बहुखण्ड बोर्डिज्म वर्गों का समूह है। सम्मिश्र बोर्डिज़्म एक सामान्यीकृत समतुल्य सिद्धांत है, जो एक श्रृंखला MU के अनुरूप है जिसे थॉम समष्टि के संदर्भ में स्पष्ट रूप से वर्णित किया जा सकता है।

समष्टि थॉम समष्टि का सर्वसामान्‍य - सतह समूह पर एकात्मक समूह का वर्गीकृत समष्टि है। प्राकृतिक समावेशन में दोहरा स्थगन से से एक आलेखन तैयार करता है। ये आलेखन मिलकर श्रृंखला देते हैं; अर्थात्, यह का समरूप सह प्रतिबन्ध है।

उदाहरण: वृत्ताकार श्रृंखला है और का गैर स्थगन है।

नगण्य प्रमेय बताता है कि, किसी भी वलय श्रृंखला के लिए का प्राथमिक तत्व नगण्य तत्वों से युक्त है।[1] प्रमेय का तात्पर्य विशेष रूप से यह है कि, यदि वृत्ताकार श्रृंखला है, तो किसी के लिए का प्रत्येक तत्व नगण्य(ग्राउंडर निशिदा का एक प्रमेय) है। उदाहरण के लिए, यदि , में है तब घुमावदार है लेकिन इसकी छवि में है, लैजार्ड वलय, घुमावदार नहीं हो सकती क्योंकि एक बहुपद वलय है इसलिए प्राथमिक तत्व में होना चाहिए।

निरंतर समूह नियम

जॉन मिल्नोर (1960) और सर्गेई नोविकोव( 1960,1962 ) ने दर्शाया कि गुणांक वलय अनंत रूप से अनेक उत्पादकों पर धनात्मक सम डिग्री का एक बहुपद वलय है। इसका अर्थ है की एक बिंदु के सम्मिश्र सह बॉर्डिज़्म के बराबर, या समकक्ष रूप से सम्मिश्र बहुखण्डो के सह बॉर्डिज़्म वर्गों का वलय होना चाहिए।

अनंत आकारीय सम्मिश्र प्रक्षेप्य समष्टि को द्वारा दर्शाया जाता है, जो सम्मिश्र रैखिक समूहों के लिए वर्गीकृत समष्टि है, ताकि रैखिक समूहों का क्षेत्र गुणनफल एक आलेखन को उत्पन्न कर सके। यदि बाद वाली वलय की पहचान E के गुणांक वलय से की जाती है तो सहयोगी क्रमविनिमेय वलय श्रृंखला E एक सम्मिश्र अभिविन्यास पर एक तत्व x है जिसका प्रतिबंध पर 1 है। ऐसे x तत्व वाले श्रृंखला E को 'सम्मिश्र उन्मुख वलय श्रृंखला' कहा जाता है।

यदि E एक सम्मिश्र उन्मुख वलय श्रृंखला है, तो

और वलय पर एक निरंतर समूह नियम है।

सम्मिश्र सह-बॉर्डिज़्म में एक प्राकृतिक सम्मिश्र अभिविन्यास होता है। डेनियल क्विलेन (1969) ने दर्शाया कि इसके गुणांक वलय से लेज़ार्ड के सार्वभौमिक वलय तक एक प्राकृतिक समरूपता है, जो सम्मिश्र कोबर्डिज्म के निरंतर समूह नियम को सार्वभौमिक निरंतर समूह नियम में बदल देती है। दूसरे शब्दों में, किसी भी क्रमविनिमेय वलय R पर किसी निरंतर समूह नियम F के लिए MU से R तक एक अद्वितीय वलय समरूपता है जो इस प्रकार कि F सम्मिश्र सह-बॉर्डिज्म के निरंतर समूह नियम का प्रतिरूप है।

ब्राउन-पीटरसन सह-समरूपता

तर्कसंगतों पर सम्मिश्र सह-बॉर्डिज्म को सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए प्राथमिक रुचि सम्मिश्र सह-बॉर्डिज्म के घुमाव में है। प्राथमिक p पर MU को स्थानीयकृत करके एक समय में एक प्राथमिक घुमाव का अध्ययन करना अक्सर आसान होता है; सामान्य तौर पर इसका मतलब यह है कि कोई प्राथमिक घुमाव को p तक खत्म कर देता है। स्थानीयकरण MUp पर MU का प्राथमिक p विभाजन ब्राउन-पीटरसन सह-समरूपता नामक एक सरल सह-समरूपता सिद्धांत के निलंबन के योग के रूप में होता है, जिसे ब्राउन & पीटरसन (1966) द्वारा पहले वर्णित किया गया था। सामान्यतया अक्सर सम्मिश्र सह बॉर्डिज्म के अपेक्षा ब्राउन-पीटरसन सह-समरूपता के साथ गणना किया जाता है। सामान्य तौर पर सभी अभाज्य संख्याओं p के लिए किसी समष्टि के ब्राउन-पीटरसन सह-समरूपता का ज्ञान इसके सम्मिश्र सह-बॉर्डिज्म के ज्ञान के बराबर होता है।

कोनर-फ्लोयड श्रेणियाँ

वलय निरंतर घात श्रृंखला वलय के समरूपी है जहां तत्व cf को कोनर-फ्लोयड श्रेणी कहा जाता है। इन्हें कॉनर और फ्लॉयड (1966) द्वारा प्रस्तुत किया गया था और यह सम्मिश्र सह-बॉर्डिज्म के लिए चेर्न श्रेणियाँ के अनुरूप हैं।      

उसी प्रकार बहुपद वलय का समरूपी है।


सह-समरूपता संचालन

हॉपफ बीजगणित MU*(MU) बहुपद बीजगणित R[b1, b2, ...], का समरूपी है जहां R 0-वृत्त का घटाया हुआ बोर्डिज्म वलय है।

सह-गणना द्वारा दिया जाता है

जहां अंकन ()2i का मतलब डिग्री 2i का एक भाग होता है। इसकी व्याख्या इस प्रकार की जा सकती है। इसका आलेखन

x में निरंतर घात श्रृंखला की निरंतर स्वप्रतिरूपण वलय और MU*(MU) की सह-गणना ऐसे दो स्वप्रतिरूपण की संरचना देता है।

यह भी देखें

टिप्पणियाँ


संदर्भ


बाहरी संबंध