हाइड्रोजन का फैलाव: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 9: Line 9:
मूल रूप से, हाइड्रोजन परमाणु हाइड्रोजन-रिच सतह से हाइड्रोजन-पुअर सतह की ओर पलायन करते है।<ref name ="2."/>  चूंकि, ये परमाणु सामान्तया किसी सहायक  [[उत्प्रेरक समर्थन|उत्प्रेरक]]  धातु की सतह पर उत्पन्न नहीं होते हैं।<ref name ="2."/> इसलिए, हाइड्रोजन स्पिलओवर के लिए दो स्थितियों में हाइड्रोजन परमाणुओं का निर्माण के लिए उत्प्रेरक की आवश्यकता होती है, जो हाइड्रोजन को भिन्न करने और अवशोषित करने में सक्षम होते हैं और हाइड्रोजन परमाणुओं को परिवहन करने की क्षमता सम्मलित होती है।
मूल रूप से, हाइड्रोजन परमाणु हाइड्रोजन-रिच सतह से हाइड्रोजन-पुअर सतह की ओर पलायन करते है।<ref name ="2."/>  चूंकि, ये परमाणु सामान्तया किसी सहायक  [[उत्प्रेरक समर्थन|उत्प्रेरक]]  धातु की सतह पर उत्पन्न नहीं होते हैं।<ref name ="2."/> इसलिए, हाइड्रोजन स्पिलओवर के लिए दो स्थितियों में हाइड्रोजन परमाणुओं का निर्माण के लिए उत्प्रेरक की आवश्यकता होती है, जो हाइड्रोजन को भिन्न करने और अवशोषित करने में सक्षम होते हैं और हाइड्रोजन परमाणुओं को परिवहन करने की क्षमता सम्मलित होती है।


हाइड्रोजन स्पिलओवर के मैकेनिज्म  को चिह्नित करने के प्रयासों में उनके संबंधित [[उत्सर्जन स्पेक्ट्रा]] के माध्यम से समर्थन के विभिन्न ऑक्सीकरण राज्यों (सामान्तया  धातु ऑक्साइड) के बीच बदलाव का विश्लेषण करने के लिए [[फोटो उत्सर्जन स्पेक्ट्रोस्कोपी]] का उपयोग देखा गया है।<ref name="11.">Lykhach, Y., Staudt, T., Vorohkta, M., Skala, T. Johanek, V., Prince, KC., Matolin, V., Libuda, J. (2012). “Hydrogen spillover monitored by resonant photoemission spectroscopy”. J. Catal. 285, 6-9. 12</ref> सामान्य तौर पर, ऐसा माना जाता है कि [[सक्रियण ऊर्जा]] अवरोध पर काबू पाने के बाद मैकेनिज्म  तटस्थ हाइड्रोजन परमाणुओं को समर्थन में स्थानांतरित करके आगे बढ़ता है।<ref name="11." />इसे पैलेडियम नैनोकणों (पीडीएनपी) से युक्त [[ धातु-कार्बनिक ढाँचा ]] (एमओएफ) उत्प्रेरक में 180K से कम तापमान पर भी देखा गया है।<ref name="10." />समर्थन में स्थानांतरित होने पर, वे लुईस बेस की भूमिका ग्रहण करते हैं जहां वे इलेक्ट्रॉनों का दान करते हैं और सॉर्बेंट को रिवर्सली [[ रिडॉक्स ]] करते हैं।<ref name="10." />इसके अतिरिक्त, डिबेंजोथियोफीन के हाइड्रोडेसल्फराइजेशन से पता चलता है कि हाइड्रॉक्सिल समूह स्पिलओवर हाइड्रोजन के प्रवासन का पक्ष लेते हैं, जबकि सोडियम धनायन स्पिलओवर हाइड्रोजन को फंसा सकते हैं और [[हाइड्रोजनीकरण]] मार्ग के लिए हानिकारक हैं।<ref name ="7." >Wang, A., Li, X., et al. (2004). “Hydrodesulfurization of Dibenzothiophene Over Proton-Exchanged Siliceous MCM-41 Supported Bimetallic Sulfides”. Dalian University of Technology, China</ref>
हाइड्रोजन स्पिलओवर के मैकेनिज्म  को चिह्नित करने के प्रयासों में उनके संबंधित [[उत्सर्जन स्पेक्ट्रा|एमिशन स्पेक्ट्रा]] के माध्यम से समर्थन के विभिन्न ऑक्सीकरण स्टेट के रूप में होते है और सामान्तया  धातु ऑक्साइड के बीच बदलाव का विश्लेषण करने के लिए [[फोटो उत्सर्जन स्पेक्ट्रोस्कोपी]] का उपयोग देखा जाता है।<ref name="11.">Lykhach, Y., Staudt, T., Vorohkta, M., Skala, T. Johanek, V., Prince, KC., Matolin, V., Libuda, J. (2012). “Hydrogen spillover monitored by resonant photoemission spectroscopy”. J. Catal. 285, 6-9. 12</ref> सामान्य रूप से ऐसा माना जाता है कि [[सक्रियण ऊर्जा]] अवरोध पर कंट्रोल पाने के बाद मैकेनिज्म  तटस्थ हाइड्रोजन परमाणुओं को समर्थन में स्थानांतरित करके आगे बढ़ता है।<ref name="11." /> इसे पैलेडियम नैनोकणों (PdnP’s) से युक्त [[ धातु-कार्बनिक ढाँचा | धातु-कार्बनिक फ्रेम वर्क]] (एमओएफ) उत्प्रेरक में 180K से कम तापमान पर भी देखा जाता है।<ref name="10." /> और इस प्रकार समर्थन में स्थानांतरित होने पर वे लुईस बेस की भूमिका ग्रहण करते हैं, जहां वे इलेक्ट्रॉनों का त्याग करते हैं और सॉर्बेंट को रिवर्सली [[ रिडॉक्स ]] करते हैं।<ref name="10." /> इसके अतिरिक्त डिबेंजोथियोफीन के हाइड्रोडेसल्फराइजेशन से पता चलता है कि हाइड्रॉक्सिल समूह स्पिलओवर हाइड्रोजन के माइग्रेशन का पक्ष लेते हैं, जबकि सोडियम धनायन स्पिलओवर हाइड्रोजन को ट्रैप क सकते हैं और [[हाइड्रोजनीकरण]] मार्ग के लिए हानिकारक रूप में होते है।<ref name ="7." >Wang, A., Li, X., et al. (2004). “Hydrodesulfurization of Dibenzothiophene Over Proton-Exchanged Siliceous MCM-41 Supported Bimetallic Sulfides”. Dalian University of Technology, China</ref>
हाल ही में सटीक [[ नैनोलिथोग्राफ़ी ]] और [[फोटो उत्सर्जन इलेक्ट्रॉन माइक्रोस्कोपी]] | एकल-कण स्पेक्ट्रोमाइक्रोस्कोपी का उपयोग करके हाइड्रोजन स्पिलओवर के मैकेनिज्म का वर्णन किया गया है।<ref name=":0" />[[टाइटेनियम ऑक्साइड]] जैसे कम करने योग्य समर्थनों पर हाइड्रोजन स्पिलओवर की घटना स्थापित हो गई है, फिर भी यह सवाल बना हुआ है कि क्या [[ अल्यूमिनियम ऑक्साइड ]] जैसे गैर कम करने योग्य समर्थनों पर हाइड्रोजन स्पिलओवर हो सकता है। अध्ययन धातु उत्प्रेरक से दूर अच्छी तरह से परिभाषित दूरी पर स्पिलओवर प्रभाव का एक ठोस प्रमाण दिखाता है, जिसमें बताया गया है कि टाइटेनियम ऑक्साइड उत्प्रेरक समर्थन की तुलना में एल्यूमीनियम ऑक्साइड उत्प्रेरक समर्थन पर हाइड्रोजन स्पिलओवर धीमा क्यों है। नतीजे बताते हैं कि टाइटेनियम ऑक्साइड पर हाइड्रोजन स्पिलओवर तेज़ और कुशल है, और एल्यूमीनियम ऑक्साइड पर बेहद धीमी और कम दूरी वाली है।
 
वर्तमान में प्रेसिसिलीनैनोफैब्रिकेटेड मॉडल प्रणाली और [[एकल-कण स्पेक्ट्रोमाइक्रोस्कोपी]] का उपयोग करके हाइड्रोजन स्पिलओवर के मैकेनिज्म का वर्णन किया जाता है।<ref name=":0" /> इस प्रकार [[टाइटेनियम ऑक्साइड]] जैसे रेड्यूसिबल समर्थनों पर हाइड्रोजन स्पिलओवर की घटना स्थापित की गई है, फिर भी इस बारे में सवाल बने हुए हैं कि क्या [[ अल्यूमिनियम ऑक्साइड | अल्यूमिनियम ऑक्साइड]] जैसे नॉन-रिड्यूसेबल सपोर्ट पर हाइड्रोजन स्पिलओवर हो सकता है। इस प्रकार अध्ययन धातु उत्प्रेरक से दूर परिभाषित दूरी पर स्पिलओवर प्रभाव का एक ठोस प्रमाण दिखाता है, जिसमें बताया गया है कि टाइटेनियम ऑक्साइड उत्प्रेरक समर्थन की तुलना में एल्यूमीनियम ऑक्साइड उत्प्रेरक समर्थन पर हाइड्रोजन स्पिलओवर धीमा क्यों हो जाता है। इस प्रकार  नतीजे बताते हैं कि टाइटेनियम ऑक्साइड पर हाइड्रोजन स्पिलओवर तेज़ और कुशल है और एल्यूमीनियम ऑक्साइड पर बहुत धीमी और कम दूरी वाली है।
 


[[File:Hydrogen Spillover Diagram 2.png|thumb|left| चित्र 2: एच का विघटनकारी रसायनशोषण<sub>2</sub> धातु उत्प्रेरक पर. हाइड्रोजन परमाणु हाइड्रोजन-रिच सतह से हाइड्रोजन-रहित सतह की ओर बढ़ते हैं।]]
[[File:Hydrogen Spillover Diagram 2.png|thumb|left| चित्र 2: एच का विघटनकारी रसायनशोषण<sub>2</sub> धातु उत्प्रेरक पर. हाइड्रोजन परमाणु हाइड्रोजन-रिच सतह से हाइड्रोजन-रहित सतह की ओर बढ़ते हैं।]]
Line 23: Line 25:
वैकल्पिक ऊर्जा स्रोतों में बढ़ती रुचि के साथ, ईंधन के रूप में हाइड्रोजन की भूमिका की संभावना भंडारण विधियों के अनुकूलन के लिए एक प्रमुख प्रेरक शक्ति बन गई है, विशेष रूप से परिवेश के तापमान पर जहां उनका उपयोग आम उपयोग के लिए अधिक व्यावहारिक होगा।<ref name="10." /><ref name="12." >Pevzner, S., Pri-Bar, I., Lutzky, I., Ben-Yehuda, E., Ruse, E., Regev, O. (2014). “Carbon Allotropes Accelerate Hydrogenation via Spillover Mechanism”. J. Phys. Chem. C. 118, 27164–27169.</ref> हाइड्रोजन स्पिलओवर एडसोरबेड के रूप में हल्के, ठोस-अवस्था वाले पदार्थों में निकट-परिवेश स्थितियों में उच्च-घनत्व हाइड्रोजन भंडारण प्राप्त करने के लिए एक संभावित तकनीक के रूप में उभरा है।<ref name="8." /><ref name=" 6.">Lueking, A. D., & Yang, R. T. (2004). Hydrogen spillover to enhance hydrogen storage: study of the effect of carbon physicochemical properties. Applied Catalysis A: General, 265, 2.)</ref> कार्बन सामग्री में हाइड्रोजन भंडारण को स्पिलओवर तकनीकों द्वारा महत्वपूर्ण रूप से बढ़ाया जा सकता है।<ref name="4.">Wang, L., & Yang, R. T. (2008). New sorbents for hydrogen storage by hydrogen spillover - a review. Energy & Environmental Science, 1, 2, 268-279</ref><ref name="5.">Lachawiec, A. J. J., Qi, G., & Yang, R. T. (2005). Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir : the Acs Journal of  
वैकल्पिक ऊर्जा स्रोतों में बढ़ती रुचि के साथ, ईंधन के रूप में हाइड्रोजन की भूमिका की संभावना भंडारण विधियों के अनुकूलन के लिए एक प्रमुख प्रेरक शक्ति बन गई है, विशेष रूप से परिवेश के तापमान पर जहां उनका उपयोग आम उपयोग के लिए अधिक व्यावहारिक होगा।<ref name="10." /><ref name="12." >Pevzner, S., Pri-Bar, I., Lutzky, I., Ben-Yehuda, E., Ruse, E., Regev, O. (2014). “Carbon Allotropes Accelerate Hydrogenation via Spillover Mechanism”. J. Phys. Chem. C. 118, 27164–27169.</ref> हाइड्रोजन स्पिलओवर एडसोरबेड के रूप में हल्के, ठोस-अवस्था वाले पदार्थों में निकट-परिवेश स्थितियों में उच्च-घनत्व हाइड्रोजन भंडारण प्राप्त करने के लिए एक संभावित तकनीक के रूप में उभरा है।<ref name="8." /><ref name=" 6.">Lueking, A. D., & Yang, R. T. (2004). Hydrogen spillover to enhance hydrogen storage: study of the effect of carbon physicochemical properties. Applied Catalysis A: General, 265, 2.)</ref> कार्बन सामग्री में हाइड्रोजन भंडारण को स्पिलओवर तकनीकों द्वारा महत्वपूर्ण रूप से बढ़ाया जा सकता है।<ref name="4.">Wang, L., & Yang, R. T. (2008). New sorbents for hydrogen storage by hydrogen spillover - a review. Energy & Environmental Science, 1, 2, 268-279</ref><ref name="5.">Lachawiec, A. J. J., Qi, G., & Yang, R. T. (2005). Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir : the Acs Journal of  
Surfaces and Colloids, 21, 24, 11418-24.
Surfaces and Colloids, 21, 24, 11418-24.
</ref> वर्तमान ट्रेंड ों में ऐसे भंडारण के लिए उच्च सतह क्षेत्र के साथ धातु-कार्बनिक ढांचे (एमओएफ) और अन्य छिद्रपूर्ण सामग्रियों का उपयोग शामिल है, जिसमें नैनोकार्बन (उदाहरण के लिए [[ग्राफीन]], [[कार्बन नैनोट्यूब]]) शामिल हैं, लेकिन विशेष नहीं हैं।<ref name="12." /><ref name ="6." />[[जिओलाइट्स]], और नैनोसंरचित सामग्री।<ref name="6." />नैनोसंरचित ग्रेफाइटिक कार्बन सामग्रियों पर हाइड्रोजन परमाणु प्रसार मुख्य रूप से हाइड्रोजन परमाणुओं के भौतिक अवशोषण द्वारा नियंत्रित होता है।<ref name="8."/>एकल-दीवार वाले नैनोट्यूब और बहु-दीवार वाले नैनोट्यूब हाइड्रोजन परमाणुओं पर फैले सबसे अच्छे स्वीकर्ता हैं।<ref name="6." />
</ref> वर्तमान ट्रेंड ों में ऐसे भंडारण के लिए उच्च सतह क्षेत्र के साथ धातु-कार्बनिक फ्रेम वर्क (एमओएफ) और अन्य छिद्रपूर्ण सामग्रियों का उपयोग शामिल है, जिसमें नैनोकार्बन (उदाहरण के लिए [[ग्राफीन]], [[कार्बन नैनोट्यूब]]) शामिल हैं, लेकिन विशेष नहीं हैं।<ref name="12." /><ref name ="6." />[[जिओलाइट्स]], और नैनोसंरचित सामग्री।<ref name="6." />नैनोसंरचित ग्रेफाइटिक कार्बन सामग्रियों पर हाइड्रोजन परमाणु प्रसार मुख्य रूप से हाइड्रोजन परमाणुओं के भौतिक अवशोषण द्वारा नियंत्रित होता है।<ref name="8."/>एकल-दीवार वाले नैनोट्यूब और बहु-दीवार वाले नैनोट्यूब हाइड्रोजन परमाणुओं पर फैले सबसे अच्छे स्वीकर्ता हैं।<ref name="6." />


एक अन्य हालिया अध्ययन से पता चला है कि सीओ और सीओ दोनों से [[मेथनॉल]] का संश्लेषण होता है<sub>2</sub> Cu/ZrO से अधिक<sub>2</sub> इसमें Cu पर बने H परमाणुओं का ZrO की सतह पर फैलना शामिल है<sub>2</sub>.<ref name="9.">Jung, K-D. & Bell, A. T. (2000). “Role of hydrogen spillover in methanol synthesis over Cu/ZrO2”. J. Catal. 193, 207–223</ref> परमाणु H फिर कार्बन युक्त प्रजातियों के मेथनॉल में हाइड्रोजनीकरण में भाग लेता है।<ref name ="9."/>
एक अन्य हालिया अध्ययन से पता चला है कि सीओ और सीओ दोनों से [[मेथनॉल]] का संश्लेषण होता है<sub>2</sub> Cu/ZrO से अधिक<sub>2</sub> इसमें Cu पर बने H परमाणुओं का ZrO की सतह पर फैलना शामिल है<sub>2</sub>.<ref name="9.">Jung, K-D. & Bell, A. T. (2000). “Role of hydrogen spillover in methanol synthesis over Cu/ZrO2”. J. Catal. 193, 207–223</ref> परमाणु H फिर कार्बन युक्त प्रजातियों के मेथनॉल में हाइड्रोजनीकरण में भाग लेता है।<ref name ="9."/>

Revision as of 23:17, 26 July 2023

चित्र 1: एक समर्थन पर धातु उत्प्रेरक की स्थापना, जिसका समर्थन हाइड्रोजन परमाणुओं को अवशोषित कर सकता है। रिसेप्टर अन्य वैकल्पिक हाइड्रोजन की कमी वाले यौगिकों का प्रतिनिधित्व करता है, जैसे धातु कटैलिसीस के संदर्भ में ग्राफीन।

हेटेरोगेनियस उत्प्रेरण में, हाइड्रोजन अणुओं को धातु उत्प्रेरक द्वारा एडसोरबेड और भिन्न किया जा सकता है। हाइड्रोजन स्पिलओवर धातु उत्प्रेरक से अधातु आधार या एडसोरबेड पर हाइड्रोजन परमाणुओं का माइग्रेशन होता है।[1][2] और इस प्रकार स्पिलओवर सामान्तया एक सतह पर अवशोषित या बनी स्पीशीज का दूसरी सतह पर स्थानांतरण होता है।[3] हाइड्रोजन स्पिलओवर को तीन प्रमुख चरणों द्वारा चित्रित किया जा सकता है इस प्रकार पहली अवस्था में जहां आणविक हाइड्रोजन एक ट्रांजीशन धातु उत्प्रेरक सतह पर अपने संवैधानिक परमाणुओं में विघटनकारी रसायन विज्ञान के माध्यम से विभाजित होता है और इसके बाद उत्प्रेरक से सब्सट्रेट तक माइग्रेशन होता है, जो सब्सट्रेट सतहों पर उनके प्रसार में परिणत होता है और अधिकांश पदार्थों में उनका विसरण होता है।[4]

मैकेनिज्म और ट्रेंड

मैकेनिज्म

हाइड्रोजन स्पिलओवर के पीछे का मैकेनिज्म लंबे समय से विवादित रहा है।[5] 1964 में ख़ूबियार का काम स्पिलओवर अवधारणा की शुरुआत का प्रतीक है। [3] उनके निष्कर्षों में प्लैटिनम उत्प्रेरक के उपयोग से पीला WO3 को H2 द्वारा नीले यौगिक में कम किया जा सकता है।[3] चूंकि उत्प्रेरक के रूप में Al2O3 का उपयोग करते समय कोई घटना नहीं पाई गई थी, इसलिए उन्होंने दावा किया कि Pt कणों पर H2 अणुओं के विघटनकारी रसायनीकरण ने हाइड्रोजन परमाणु बनाए थे। हाइड्रोजन परमाणु Pt सतह से WO3 कणों की ओर चले गए और उन्हें नीले WO3−x कणों के रूप में बदल दिया है।.[3]

मूल रूप से, हाइड्रोजन परमाणु हाइड्रोजन-रिच सतह से हाइड्रोजन-पुअर सतह की ओर पलायन करते है।[3] चूंकि, ये परमाणु सामान्तया किसी सहायक उत्प्रेरक धातु की सतह पर उत्पन्न नहीं होते हैं।[3] इसलिए, हाइड्रोजन स्पिलओवर के लिए दो स्थितियों में हाइड्रोजन परमाणुओं का निर्माण के लिए उत्प्रेरक की आवश्यकता होती है, जो हाइड्रोजन को भिन्न करने और अवशोषित करने में सक्षम होते हैं और हाइड्रोजन परमाणुओं को परिवहन करने की क्षमता सम्मलित होती है।

हाइड्रोजन स्पिलओवर के मैकेनिज्म को चिह्नित करने के प्रयासों में उनके संबंधित एमिशन स्पेक्ट्रा के माध्यम से समर्थन के विभिन्न ऑक्सीकरण स्टेट के रूप में होते है और सामान्तया धातु ऑक्साइड के बीच बदलाव का विश्लेषण करने के लिए फोटो उत्सर्जन स्पेक्ट्रोस्कोपी का उपयोग देखा जाता है।[6] सामान्य रूप से ऐसा माना जाता है कि सक्रियण ऊर्जा अवरोध पर कंट्रोल पाने के बाद मैकेनिज्म तटस्थ हाइड्रोजन परमाणुओं को समर्थन में स्थानांतरित करके आगे बढ़ता है।[6] इसे पैलेडियम नैनोकणों (PdnP’s) से युक्त धातु-कार्बनिक फ्रेम वर्क (एमओएफ) उत्प्रेरक में 180K से कम तापमान पर भी देखा जाता है।[5] और इस प्रकार समर्थन में स्थानांतरित होने पर वे लुईस बेस की भूमिका ग्रहण करते हैं, जहां वे इलेक्ट्रॉनों का त्याग करते हैं और सॉर्बेंट को रिवर्सली रिडॉक्स करते हैं।[5] इसके अतिरिक्त डिबेंजोथियोफीन के हाइड्रोडेसल्फराइजेशन से पता चलता है कि हाइड्रॉक्सिल समूह स्पिलओवर हाइड्रोजन के माइग्रेशन का पक्ष लेते हैं, जबकि सोडियम धनायन स्पिलओवर हाइड्रोजन को ट्रैप क सकते हैं और हाइड्रोजनीकरण मार्ग के लिए हानिकारक रूप में होते है।[7]

वर्तमान में प्रेसिसिलीनैनोफैब्रिकेटेड मॉडल प्रणाली और एकल-कण स्पेक्ट्रोमाइक्रोस्कोपी का उपयोग करके हाइड्रोजन स्पिलओवर के मैकेनिज्म का वर्णन किया जाता है।[1] इस प्रकार टाइटेनियम ऑक्साइड जैसे रेड्यूसिबल समर्थनों पर हाइड्रोजन स्पिलओवर की घटना स्थापित की गई है, फिर भी इस बारे में सवाल बने हुए हैं कि क्या अल्यूमिनियम ऑक्साइड जैसे नॉन-रिड्यूसेबल सपोर्ट पर हाइड्रोजन स्पिलओवर हो सकता है। इस प्रकार अध्ययन धातु उत्प्रेरक से दूर परिभाषित दूरी पर स्पिलओवर प्रभाव का एक ठोस प्रमाण दिखाता है, जिसमें बताया गया है कि टाइटेनियम ऑक्साइड उत्प्रेरक समर्थन की तुलना में एल्यूमीनियम ऑक्साइड उत्प्रेरक समर्थन पर हाइड्रोजन स्पिलओवर धीमा क्यों हो जाता है। इस प्रकार नतीजे बताते हैं कि टाइटेनियम ऑक्साइड पर हाइड्रोजन स्पिलओवर तेज़ और कुशल है और एल्यूमीनियम ऑक्साइड पर बहुत धीमी और कम दूरी वाली है।


चित्र 2: एच का विघटनकारी रसायनशोषण2 धातु उत्प्रेरक पर. हाइड्रोजन परमाणु हाइड्रोजन-रिच सतह से हाइड्रोजन-रहित सतह की ओर बढ़ते हैं।

ट्रेंड

सोखने के तापमान और धातु के फैलाव के साथ हाइड्रोजन स्पिलओवर बढ़ता है।[8] उपलब्ध सतह क्षेत्र और हाइड्रोजन भंडारण की क्षमता के बीच एक संबंध बताया गया है। पीडीएनपी युक्त एमओएफ के लिए, संतृप्त धातु कणों की उपस्थिति में, हाइड्रोजन स्पिलओवर की क्षमता केवल सॉर्बेंट के सतह क्षेत्र और छिद्र आकार पर निर्भर करती है।[6] प्लैटिनम या निकल जैसे उत्प्रेरकों पर, परमाणु हाइड्रोजन को उच्च आवृत्ति पर उत्पन्न किया जा सकता है।[8]सतह प्रसार के माध्यम से, हाइड्रोजन परमाणुओं का बहु-कार्यात्मक परिवहन एक प्रतिक्रिया को बढ़ा सकता है और यहां तक ​​कि एक उत्प्रेरक को भी पुनर्जीवित कर सकता है।[8]चूंकि , हाइड्रोजन-समर्थन बंधन की मजबूती में समस्याएँ मौजूद हैं; अत्यधिक तीव्र अंतःक्रिया रिवर्स स्पिलओवर के माध्यम से इसके निष्कर्षण में बाधा डालेगी और ईंधन सेल के रूप में इसके कार्य को समाप्त कर देगी।[6]इसके विपरीत, बहुत कमजोर बंधन और हाइड्रोजन आसानी से पर्यावरण में खो जाते हैं।[5]

चित्र 3: स्पिलओवर तकनीकों के माध्यम से कार्बन सामग्री में हाइड्रोजन का भंडारण। इस मामले में, रिसेप्टर एक कार्बन नैनोट्यूब है। ध्यान दें कि प्राथमिक हाइड्रोजन स्पिलओवर स्रोत और द्वितीयक रिसेप्टर के भौतिक मिश्रण मध्यम भंडारण क्षमता प्रदर्शित करते हैं, समर्थन धातु और रिसेप्टर के बीच संपर्क को बेहतर बनाने के लिए एक पुल जोड़ने से रिसेप्टर पर हाइड्रोजन भंडारण क्षमता दोगुनी या तिगुनी हो जाती है।

अनुप्रयोग

वैकल्पिक ऊर्जा स्रोतों में बढ़ती रुचि के साथ, ईंधन के रूप में हाइड्रोजन की भूमिका की संभावना भंडारण विधियों के अनुकूलन के लिए एक प्रमुख प्रेरक शक्ति बन गई है, विशेष रूप से परिवेश के तापमान पर जहां उनका उपयोग आम उपयोग के लिए अधिक व्यावहारिक होगा।[5][9] हाइड्रोजन स्पिलओवर एडसोरबेड के रूप में हल्के, ठोस-अवस्था वाले पदार्थों में निकट-परिवेश स्थितियों में उच्च-घनत्व हाइड्रोजन भंडारण प्राप्त करने के लिए एक संभावित तकनीक के रूप में उभरा है।[4][10] कार्बन सामग्री में हाइड्रोजन भंडारण को स्पिलओवर तकनीकों द्वारा महत्वपूर्ण रूप से बढ़ाया जा सकता है।[11][12] वर्तमान ट्रेंड ों में ऐसे भंडारण के लिए उच्च सतह क्षेत्र के साथ धातु-कार्बनिक फ्रेम वर्क (एमओएफ) और अन्य छिद्रपूर्ण सामग्रियों का उपयोग शामिल है, जिसमें नैनोकार्बन (उदाहरण के लिए ग्राफीन, कार्बन नैनोट्यूब) शामिल हैं, लेकिन विशेष नहीं हैं।[9][10]जिओलाइट्स, और नैनोसंरचित सामग्री।[10]नैनोसंरचित ग्रेफाइटिक कार्बन सामग्रियों पर हाइड्रोजन परमाणु प्रसार मुख्य रूप से हाइड्रोजन परमाणुओं के भौतिक अवशोषण द्वारा नियंत्रित होता है।[4]एकल-दीवार वाले नैनोट्यूब और बहु-दीवार वाले नैनोट्यूब हाइड्रोजन परमाणुओं पर फैले सबसे अच्छे स्वीकर्ता हैं।[10]

एक अन्य हालिया अध्ययन से पता चला है कि सीओ और सीओ दोनों से मेथनॉल का संश्लेषण होता है2 Cu/ZrO से अधिक2 इसमें Cu पर बने H परमाणुओं का ZrO की सतह पर फैलना शामिल है2.[13] परमाणु H फिर कार्बन युक्त प्रजातियों के मेथनॉल में हाइड्रोजनीकरण में भाग लेता है।[13]


संदर्भ

  1. 1.0 1.1 Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; VandeVondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A. (2017). "हाइड्रोजन स्पिलओवर पर उत्प्रेरक समर्थन प्रभाव". Nature. 541 (7635): 68–71. Bibcode:2017Natur.541...68K. doi:10.1038/nature20782. PMID 28054605.
  2. Gardes, G. E. E., Pajonk, G. M., and S. J. Teichner (1974). “Catalytic Demonstration of Hydrogen Spillover from Nickel-Alumina Catalyst to Alumina.” J. Catal. 33, 145-148.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 R. Prins: Hydrogen Spillover. Facts and Fiction. In: Chemical Reviews. 112, 2012, S. 2714, doi:10.1021/cr200346z.
  4. 4.0 4.1 4.2 Hansong Cheng, Liang Chen, Alan C. Cooper, Xianwei Sha, Guido P. Pez: Hydrogen spillover in the context of hydrogen storage using solid-state materials. In: Energy & Environmental Science. 1, 2008, S. 338, doi:10.1039/B807618A.
  5. 5.0 5.1 5.2 5.3 5.4 Sculley, J., Yuan, D., Zhou, H. (2011). “The current status of hydrogen storage in metal–organic frameworks—updated”. Energy Environ. Sci. 4, 2721-2735.
  6. 6.0 6.1 6.2 6.3 Lykhach, Y., Staudt, T., Vorohkta, M., Skala, T. Johanek, V., Prince, KC., Matolin, V., Libuda, J. (2012). “Hydrogen spillover monitored by resonant photoemission spectroscopy”. J. Catal. 285, 6-9. 12
  7. Wang, A., Li, X., et al. (2004). “Hydrodesulfurization of Dibenzothiophene Over Proton-Exchanged Siliceous MCM-41 Supported Bimetallic Sulfides”. Dalian University of Technology, China
  8. 8.0 8.1 8.2 Andrew, M., and R. Kramer (1979). “Adsorption of Atomic Hydrogen on Alumina by Hydrogen Spillover.” J. Catal. 58, 287-295.
  9. 9.0 9.1 Pevzner, S., Pri-Bar, I., Lutzky, I., Ben-Yehuda, E., Ruse, E., Regev, O. (2014). “Carbon Allotropes Accelerate Hydrogenation via Spillover Mechanism”. J. Phys. Chem. C. 118, 27164–27169.
  10. 10.0 10.1 10.2 10.3 Lueking, A. D., & Yang, R. T. (2004). Hydrogen spillover to enhance hydrogen storage: study of the effect of carbon physicochemical properties. Applied Catalysis A: General, 265, 2.)
  11. Wang, L., & Yang, R. T. (2008). New sorbents for hydrogen storage by hydrogen spillover - a review. Energy & Environmental Science, 1, 2, 268-279
  12. Lachawiec, A. J. J., Qi, G., & Yang, R. T. (2005). Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir : the Acs Journal of Surfaces and Colloids, 21, 24, 11418-24.
  13. 13.0 13.1 Jung, K-D. & Bell, A. T. (2000). “Role of hydrogen spillover in methanol synthesis over Cu/ZrO2”. J. Catal. 193, 207–223