गतिशील लॉट-आकार मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mathematical model in economics}} | {{Short description|Mathematical model in economics}} | ||
[[इन्वेंट्री सिद्धांत]] में गतिशील लॉट-आकार मॉडल आर्थिक क्रम मात्रा मॉडल का एक सामान्यीकरण है, जो इस बात को ध्यान में रखता है कि प्रोडक्ट की मांग समय के साथ भिन्न-भिन्न होती रहती है। इस मॉडल को 1958 में हार्वे एम वैगनर और थॉमसन एम. व्हिटिन द्वारा प्रस्तुत किया गया था।<ref name="WW1958">[[Harvey M. Wagner]] and [[Thomson M. Whitin]], "Dynamic version of the economic lot size model," Management Science, Vol. 5, pp. 89–96, 1958</ref><ref>[[Albert Wagelmans|Wagelmans, Albert]], [[Stan Van Hoesel]], and [[Antoon Kolen]]. "[http://repub.eur.nl/res/pub/2310/eur_wagelmans_22.pdf Economic lot sizing: an O (n log n) algorithm that runs in linear time in the Wagner-Whitin case]." Operations Research 40.1-Supplement - 1 (1992): S145-S156.</ref> | [[इन्वेंट्री सिद्धांत]] में गतिशील लॉट-आकार मॉडल आर्थिक क्रम मात्रा मॉडल का एक सामान्यीकरण है, जो इस बात को ध्यान में रखता है कि प्रोडक्ट की मांग समय के साथ भिन्न-भिन्न होती रहती है। इस मॉडल को 1958 में हार्वे एम वैगनर और थॉमसन एम. व्हिटिन द्वारा प्रस्तुत किया गया था।<ref name="WW1958">[[Harvey M. Wagner]] and [[Thomson M. Whitin]], "Dynamic version of the economic lot size model," Management Science, Vol. 5, pp. 89–96, 1958</ref><ref>[[Albert Wagelmans|Wagelmans, Albert]], [[Stan Van Hoesel]], and [[Antoon Kolen]]. "[http://repub.eur.nl/res/pub/2310/eur_wagelmans_22.pdf Economic lot sizing: an O (n log n) algorithm that runs in linear time in the Wagner-Whitin case]." Operations Research 40.1-Supplement - 1 (1992): S145-S156.</ref> | ||
== | ==प्रॉब्लम सेटअप== | ||
हम एक प्रासंगिक समय क्षितिज t=1,2,...,N पर [[प्रोडक्ट]] की मांग {{math|<VAR >d</VAR ><SUB ><VAR >t</VAR ></sub>}} का [[पूर्वानुमान]] उपलब्ध होता है, उदाहरण के लिए, हम जानते हैं कि अगले 52 सप्ताहों के लिए प्रत्येक सप्ताह कितने [[विजेट]] की आवश्यकता होती है। प्रत्येक ऑर्डर के लिए एक सेटअप लागत {{math|<VAR >s</VAR ><SUB ><VAR >t</VAR ></sub>}} होती है और इसमें प्रत्येक आइटम प्रति अवधि के लिए एक इन्वेंट्री होल्डिंग लागत {{math|<VAR >i</VAR ><SUB><VAR >t</VAR ></sub>}} होती है और इस प्रकार यदि वांछित हो तो {{math|<VAR >s</VAR ><SUB><VAR >t</VAR ></sub>}} और {{math|<VAR >i</VAR ><SUB><VAR >t</VAR ></sub>}} समय के साथ भिन्न रूप में भी हो सकती है। इस प्रकार प्रॉब्लम यह है कि सेटअप लागत और [[इन्वेंट्री]] लागत के योग को कम करने के लिए अभी कितनी यूनिट {{math|<VAR >x</VAR ><SUB><VAR >t</VAR ></sub>}} का ऑर्डर दिया जाता है। आइए हम इन्वेंट्री को निरूपित करते है। | |||
<math>I=I_{0}+\sum_{j=1}^{t-1}x_{j}-\sum_{j=1}^{t-1}d_{j}\geq0</math> | <math>I=I_{0}+\sum_{j=1}^{t-1}x_{j}-\sum_{j=1}^{t-1}d_{j}\geq0</math> | ||
Line 9: | Line 9: | ||
<math>f_{t}(I)=\underset{x_{t}\geq 0 \atop I+x_{t}\geq d_{t}}{\min}\left[ i_{t-1}I+H(x_{t})s_{t}+f_{t+1}\left( I+x_{t}-d_{t} \right) \right]</math> | <math>f_{t}(I)=\underset{x_{t}\geq 0 \atop I+x_{t}\geq d_{t}}{\min}\left[ i_{t-1}I+H(x_{t})s_{t}+f_{t+1}\left( I+x_{t}-d_{t} \right) \right]</math> | ||
जहां H() [[हेविसाइड स्टेप फ़ंक्शन]] है। वैगनर और व्हिटिन<ref name="WW1958"/>निम्नलिखित चार प्रमेय सिद्ध किये: | जहां H() [[हेविसाइड स्टेप फ़ंक्शन]] है। वैगनर और व्हिटिन<ref name="WW1958" />निम्नलिखित चार प्रमेय सिद्ध किये: | ||
* एक इष्टतम कार्यक्रम मौजूद है जैसे कि I{{math|<VAR >x</VAR ><SUB><VAR >t</VAR ></sub>}}=0; ∀टी | * एक इष्टतम कार्यक्रम मौजूद है जैसे कि I{{math|<VAR >x</VAR ><SUB><VAR >t</VAR ></sub>}}=0; ∀टी | ||
Line 32: | Line 32: | ||
# अवधि t*+1 पर आगे बढ़ें (या यदि t*=N हो तो रुकें) | # अवधि t*+1 पर आगे बढ़ें (या यदि t*=N हो तो रुकें) | ||
चूँकि इस पद्धति को कुछ लोगों द्वारा [[कम्प्यूटेशनल जटिलता सिद्धांत]] के रूप में माना जाता था, इसलिए कई लेखकों ने अनुमानित अनुमान भी विकसित किए (जैसे, सिल्वर-मील अनुमान)<ref>EA Silver, HC Meal, A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment, Production and inventory management, 1973</ref>) | चूँकि इस पद्धति को कुछ लोगों द्वारा [[कम्प्यूटेशनल जटिलता सिद्धांत]] के रूप में माना जाता था, इसलिए कई लेखकों ने अनुमानित अनुमान भी विकसित किए (जैसे, सिल्वर-मील अनुमान)<ref>EA Silver, HC Meal, A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment, Production and inventory management, 1973</ref>) प्रॉब्लम के लिए. | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 10:28, 23 July 2023
इन्वेंट्री सिद्धांत में गतिशील लॉट-आकार मॉडल आर्थिक क्रम मात्रा मॉडल का एक सामान्यीकरण है, जो इस बात को ध्यान में रखता है कि प्रोडक्ट की मांग समय के साथ भिन्न-भिन्न होती रहती है। इस मॉडल को 1958 में हार्वे एम वैगनर और थॉमसन एम. व्हिटिन द्वारा प्रस्तुत किया गया था।[1][2]
प्रॉब्लम सेटअप
हम एक प्रासंगिक समय क्षितिज t=1,2,...,N पर प्रोडक्ट की मांग dt का पूर्वानुमान उपलब्ध होता है, उदाहरण के लिए, हम जानते हैं कि अगले 52 सप्ताहों के लिए प्रत्येक सप्ताह कितने विजेट की आवश्यकता होती है। प्रत्येक ऑर्डर के लिए एक सेटअप लागत st होती है और इसमें प्रत्येक आइटम प्रति अवधि के लिए एक इन्वेंट्री होल्डिंग लागत it होती है और इस प्रकार यदि वांछित हो तो st और it समय के साथ भिन्न रूप में भी हो सकती है। इस प्रकार प्रॉब्लम यह है कि सेटअप लागत और इन्वेंट्री लागत के योग को कम करने के लिए अभी कितनी यूनिट xt का ऑर्डर दिया जाता है। आइए हम इन्वेंट्री को निरूपित करते है।
न्यूनतम लागत नीति का प्रतिनिधित्व करने वाला कार्यात्मक समीकरण है:
जहां H() हेविसाइड स्टेप फ़ंक्शन है। वैगनर और व्हिटिन[1]निम्नलिखित चार प्रमेय सिद्ध किये:
- एक इष्टतम कार्यक्रम मौजूद है जैसे कि Ixt=0; ∀टी
- एक इष्टतम कार्यक्रम मौजूद है जैसे कि ∀t: या तो xt=0 या कुछ k (t≤k≤N) के लिए
- एक इष्टतम कार्यक्रम मौजूद है जैसे कि यदि dt* कुछ से संतुष्ट है xt**, t**<t*, फिर dt, t=t**+1,...,t*-1, से भी संतुष्ट है xt**
- यह देखते हुए कि अवधि t के लिए I = 0 है, अवधि 1 से t - 1 पर स्वयं विचार करना इष्टतम है
योजना क्षितिज प्रमेय
नियोजन क्षितिज प्रमेय के प्रमाण में पूर्ववर्ती प्रमेयों का उपयोग किया जाता है।[1]होने देना
1 से 1 तक की अवधि के लिए न्यूनतम लागत कार्यक्रम को निरूपित करें। यदि अवधि t* पर F(t) में न्यूनतम j = t** ≤ t* के लिए होता है, तो अवधि t > t* में केवल t** ≤ j ≤ t पर विचार करना पर्याप्त है। विशेष रूप से, यदि t* = t**, तो ऐसे कार्यक्रमों पर विचार करना पर्याप्त है xt* > 0.
कलन विधि
वैगनर और व्हिटिन ने गतिशील प्रोग्रामिंग द्वारा इष्टतम समाधान खोजने के लिए एक एल्गोरिदम दिया।[1]t*=1 से प्रारंभ करें:
- अवधि t**, t** = 1, 2, ..., t* पर ऑर्डर देने और मांगें भरने की नीतियों पर विचार करें dt , t = t**, t** + 1, ... , t*, इस क्रम से
- एच जोड़ें(xt**)st**+it**It** एल्गोरिथम के पिछले पुनरावृत्ति में निर्धारित अवधि 1 से t**-1 के लिए इष्टतम ढंग से कार्य करने की लागत
- इन t* विकल्पों में से, अवधि 1 से t* के लिए न्यूनतम लागत नीति का चयन करें
- अवधि t*+1 पर आगे बढ़ें (या यदि t*=N हो तो रुकें)
चूँकि इस पद्धति को कुछ लोगों द्वारा कम्प्यूटेशनल जटिलता सिद्धांत के रूप में माना जाता था, इसलिए कई लेखकों ने अनुमानित अनुमान भी विकसित किए (जैसे, सिल्वर-मील अनुमान)[3]) प्रॉब्लम के लिए.
यह भी देखें
- उत्पादित किए जा रहे हिस्से के लिए अनंत भरण दर: किफायती ऑर्डर मात्रा
- उत्पादित किए जा रहे हिस्से के लिए निरंतर भरण दर: आर्थिक उत्पादन मात्रा
- मांग यादृच्छिक है: शास्त्रीय समाचार विक्रेता मॉडल
- एक ही मशीन पर उत्पादित कई उत्पाद: आर्थिक लॉट शेड्यूलिंग समस्या
- पुनः आदेश बिंदु
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Harvey M. Wagner and Thomson M. Whitin, "Dynamic version of the economic lot size model," Management Science, Vol. 5, pp. 89–96, 1958
- ↑ Wagelmans, Albert, Stan Van Hoesel, and Antoon Kolen. "Economic lot sizing: an O (n log n) algorithm that runs in linear time in the Wagner-Whitin case." Operations Research 40.1-Supplement - 1 (1992): S145-S156.
- ↑ EA Silver, HC Meal, A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment, Production and inventory management, 1973
अग्रिम पठन
- Lee, Chung-Yee, Sila Çetinkaya, and Albert PM Wagelmans. "A dynamic lot-sizing model with demand time windows." Management Science 47.10 (2001): 1384–1395.
- Federgruen, Awi, and Michal Tzur. "A simple forward algorithm to solve general dynamic lot sizing models with n periods in 0 (n log n) or 0 (n) time." Management Science 37.8 (1991): 909–925.
- Jans, Raf, and Zeger Degraeve. "Meta-heuristics for dynamic lot sizing: a review and comparison of solution approaches." European Journal of Operational Research 177.3 (2007): 1855–1875.
- H.M. Wagner and T. Whitin, "Dynamic version of the economic lot size model," Management Science, Vol. 5, pp. 89–96, 1958
- H.M. Wagner: "Comments on Dynamic version of the economic lot size model", Management Science, Vol. 50 No. 12 Suppl., December 2004
बाहरी संबंध
- Solving the Lot Sizing Problem using the Wagner-Whitin Algorithm
- Dynamic lot size model
- Python implementation of the Wagner-Whitin algorithm.