गतिशील लॉट-आकार मॉडल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 20: Line 20:
==योजना क्षितिज प्रमेय==
==योजना क्षितिज प्रमेय==


नियोजन क्षितिज प्रमेय के प्रमाण में पूर्ववर्ती प्रमेयों का उपयोग किया जाता है।<ref name="WW1958"/>होने देना
नियोजन क्षितिज प्रमेय के प्रमाण में पूर्ववर्ती प्रमेयों का उपयोग किया जाता है।<ref name="WW1958"/> माना,


<math>F(t)= \min\left[ {\underset{1\leq j < t}{\min}\left[ s_{j}+ \sum_{h=j}^{t-1}\sum_{k=h+1}^{t}i_{h}d_{k}+F(j-1) \right] \atop s_{t}+F(t-1)} \right]</math>
<math>F(t)= \min\left[ {\underset{1\leq j < t}{\min}\left[ s_{j}+ \sum_{h=j}^{t-1}\sum_{k=h+1}^{t}i_{h}d_{k}+F(j-1) \right] \atop s_{t}+F(t-1)} \right]</math>
1 से 1 तक की अवधि के लिए न्यूनतम लागत प्रोग्राम को निरूपित करें। यदि अवधि t* पर F(t) में न्यूनतम j = t** ≤ t* के लिए होता है, तो अवधि t > t* में केवल t** ≤ j ≤ t पर विचार करना पर्याप्त है। विशेष रूप से, यदि t* = t**, तो ऐसे कार्यक्रमों पर विचार करना पर्याप्त है {{math|<VAR >x</VAR ><SUB ><VAR >t*</VAR ></sub>}} > 0.
 
1 से 1 तक की अवधि के लिए न्यूनतम लागत प्रोग्राम को निरूपित करते है। इस प्रकार यदि अवधि t* पर F(t) में न्यूनतम j = t** ≤ t* के लिए होता है, तो अवधि t > t* में केवल t** ≤ j ≤ t पर विचार करना पर्याप्त है और इस प्रकार विशेष रूप से यदि t* = t** है तो ऐसे प्रोग्राम  {{math|<VAR >x</VAR ><SUB ><VAR >t*</VAR ></sub>}} > 0.पर विचार करना पर्याप्त होता है,


==[[कलन विधि]]==
==[[कलन विधि]]==

Revision as of 10:46, 23 July 2023

इन्वेंट्री सिद्धांत में गतिशील लॉट-आकार मॉडल आर्थिक क्रम मात्रा मॉडल का एक सामान्यीकरण है, जो इस बात को ध्यान में रखता है कि प्रोडक्ट की मांग समय के साथ भिन्न-भिन्न होती रहती है। इस मॉडल को 1958 में हार्वे एम वैगनर और थॉमसन एम. व्हिटिन द्वारा प्रस्तुत किया गया था।[1][2]

प्रॉब्लम सेटअप

हम एक प्रासंगिक समय क्षितिज t=1,2,...,N पर प्रोडक्ट की मांग dt का पूर्वानुमान उपलब्ध होता है, उदाहरण के लिए, हम जानते हैं कि अगले 52 सप्ताहों के लिए प्रत्येक सप्ताह कितने विजेट की आवश्यकता होती है। प्रत्येक ऑर्डर के लिए एक सेटअप लागत st होती है और इसमें प्रत्येक आइटम प्रति अवधि के लिए एक इन्वेंट्री होल्डिंग लागत it होती है और इस प्रकार यदि वांछित हो तो st और it समय के साथ भिन्न रूप में भी हो सकती है। इस प्रकार प्रॉब्लम यह है कि सेटअप लागत और इन्वेंट्री लागत के योग को कम करने के लिए अभी कितनी यूनिट xt का ऑर्डर दिया जाता है। आइए हम इन्वेंट्री को निरूपित करते है।


न्यूनतम लागत नीति का प्रतिनिधित्व करने वाला फंक्शनल समीकरण को संदर्भित करता है।

जहां H() हेविसाइड स्टेप फ़ंक्शन के रूप में होते है जबकि वैगनर और व्हिटिन ने,[1]निम्नलिखित चार प्रमेय इस प्रकार सिद्ध किये

  • एक ऑप्टिमल प्रोग्राम के रूप में उपस्थित होते है, जैसे कि Ixt=0; ∀t
  • एक ऑप्टिमल प्रोग्राम के रूप में उपस्थित होते है, जैसे कि ∀t: या तो xt=0 या कुछ k (t≤k≤N) के रूप में होते है
  • एक ऑप्टिमल प्रोग्राम के रूप में उपस्थित होते है, जैसे कि यदि dt* कुछ से संतुष्ट है xt**, t**<t*, फिर dt, t=t**+1,...,t*-1, से भी संतुष्ट है xt**
  • यह देखते हुए कि अवधि t के लिए I = 0 है और अवधि 1 से t - 1 पर स्वयं विचार करना ऑप्टिमल है

योजना क्षितिज प्रमेय

नियोजन क्षितिज प्रमेय के प्रमाण में पूर्ववर्ती प्रमेयों का उपयोग किया जाता है।[1] माना,

1 से 1 तक की अवधि के लिए न्यूनतम लागत प्रोग्राम को निरूपित करते है। इस प्रकार यदि अवधि t* पर F(t) में न्यूनतम j = t** ≤ t* के लिए होता है, तो अवधि t > t* में केवल t** ≤ j ≤ t पर विचार करना पर्याप्त है और इस प्रकार विशेष रूप से यदि t* = t** है तो ऐसे प्रोग्राम xt* > 0.पर विचार करना पर्याप्त होता है,

कलन विधि

वैगनर और व्हिटिन ने गतिशील प्रोग्रामिंग द्वारा ऑप्टिमल समाधान खोजने के लिए एक एल्गोरिदम दिया।[1]t*=1 से प्रारंभ करें:

  1. अवधि t**, t** = 1, 2, ..., t* पर ऑर्डर देने और मांगें भरने की नीतियों पर विचार करें dt , t = t**, t** + 1, ... , t*, इस क्रम से
  2. एच जोड़ें(xt**)st**+it**It** एल्गोरिथम के पिछले पुनरावृत्ति में निर्धारित अवधि 1 से t**-1 के लिए ऑप्टिमल ढंग से कार्य करने की लागत
  3. इन t* विकल्पों में से, अवधि 1 से t* ​​के लिए न्यूनतम लागत नीति का चयन करें
  4. अवधि t*+1 पर आगे बढ़ें (या यदि t*=N हो तो रुकें)

चूँकि इस पद्धति को कुछ लोगों द्वारा कम्प्यूटेशनल जटिलता सिद्धांत के रूप में माना जाता था, इसलिए कई लेखकों ने अनुमानित अनुमान भी विकसित किए (जैसे, सिल्वर-मील अनुमान)[3]) प्रॉब्लम के लिए.

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Harvey M. Wagner and Thomson M. Whitin, "Dynamic version of the economic lot size model," Management Science, Vol. 5, pp. 89–96, 1958
  2. Wagelmans, Albert, Stan Van Hoesel, and Antoon Kolen. "Economic lot sizing: an O (n log n) algorithm that runs in linear time in the Wagner-Whitin case." Operations Research 40.1-Supplement - 1 (1992): S145-S156.
  3. EA Silver, HC Meal, A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment, Production and inventory management, 1973


अग्रिम पठन


बाहरी संबंध