चरघातांकी प्रतिचित्र (लाई सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
Line 2: Line 2:
{{Lie groups |Algebras}}
{{Lie groups |Algebras}}


लाई समूहों के सिद्धांत में, घातीय मानचित्र लाई बीजगणित से एक मानचित्र है <math>\mathfrak g</math> एक झूठ समूह का <math>G</math> समूह के लिए, जो किसी को लाई बीजगणित से स्थानीय समूह संरचना को पुनः प्राप्त करने की अनुमति देता है। घातीय मानचित्र का अस्तित्व प्राथमिक कारणों में से एक है कि लाई बीजगणित लाई समूहों का अध्ययन करने के लिए एक उपयोगी उपकरण है।
लाई समूहों के सिद्धांत में, घातीय मानचित्र लाई बीजगणित से मानचित्र है <math>\mathfrak g</math> झूठ समूह का <math>G</math> समूह के लिए, जो किसी को लाई बीजगणित से स्थानीय समूह संरचना को पुनः प्राप्त करने की अनुमति देता है। घातीय मानचित्र का अस्तित्व प्राथमिक कारणों में से है कि लाई बीजगणित लाई समूहों का अध्ययन करने के लिए उपयोगी उपकरण है।


गणितीय विश्लेषण का सामान्य घातांकीय कार्य घातांकीय मानचित्र का एक विशेष मामला है <math>G</math> सकारात्मक वास्तविक संख्याओं का गुणनात्मक समूह है (जिसका झूठ बीजगणित सभी वास्तविक संख्याओं का योगात्मक समूह है)। लाई समूह का घातीय मानचित्र सामान्य घातीय फ़ंक्शन के अनुरूप कई गुणों को संतुष्ट करता है, हालांकि, यह कई महत्वपूर्ण मामलों में भिन्न भी है।
गणितीय विश्लेषण का सामान्य घातांकीय कार्य घातांकीय मानचित्र का विशेष मामला है <math>G</math> सकारात्मक वास्तविक संख्याओं का गुणनात्मक समूह है (जिसका झूठ बीजगणित सभी वास्तविक संख्याओं का योगात्मक समूह है)। लाई समूह का घातीय मानचित्र सामान्य घातीय फ़ंक्शन के अनुरूप कई गुणों को संतुष्ट करता है, हालांकि, यह कई महत्वपूर्ण मामलों में भिन्न भी है।


==परिभाषाएँ==
==परिभाषाएँ==
होने देना <math>G</math> एक झूठ समूह बनें और <math>\mathfrak g</math> इसका झूठ बीजगणित हो ([[पहचान तत्व]] के [[स्पर्शरेखा स्थान]] के रूप में माना जाता है)। <math>G</math>). घातीय मानचित्र एक मानचित्र है
होने देना <math>G</math> झूठ समूह बनें और <math>\mathfrak g</math> इसका झूठ बीजगणित हो ([[पहचान तत्व]] के [[स्पर्शरेखा स्थान]] के रूप में माना जाता है)। <math>G</math>). घातीय मानचित्र मानचित्र है
:<math>\exp\colon \mathfrak g \to G</math>
:<math>\exp\colon \mathfrak g \to G</math>
जिसे कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। विशिष्ट आधुनिक परिभाषा यह है:
जिसे कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। विशिष्ट आधुनिक परिभाषा यह है:
Line 21: Line 21:


===रीमैनियन घातीय मानचित्र के साथ तुलना===
===रीमैनियन घातीय मानचित्र के साथ तुलना===
यदि जी कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के तहत एक रीमैनियन मीट्रिक अपरिवर्तनीय है, और जी के लिए ली-सैद्धांतिक घातीय मानचित्र घातीय मानचित्र (रिमैनियन ज्यामिति) के साथ मेल खाता है।
यदि जी कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के तहत रीमैनियन मीट्रिक अपरिवर्तनीय है, और जी के लिए ली-सैद्धांतिक घातीय मानचित्र घातीय मानचित्र (रिमैनियन ज्यामिति) के साथ मेल खाता है।


सामान्य जी के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत एक रीमैनियन मीट्रिक अपरिवर्तनीय मौजूद नहीं होगा। हालाँकि, बाएं अनुवाद के तहत हमेशा एक रीमैनियन मीट्रिक अपरिवर्तनीय होता है, बाएं-अपरिवर्तनीय मीट्रिक के लिए रीमैनियन ज्यामिति के अर्थ में घातीय मानचित्र सामान्य रूप से ली समूह अर्थ में घातीय मानचित्र से सहमत नहीं होगा। कहने का तात्पर्य यह है कि, यदि G एक लेफ्ट समूह है जो बाएं-लेकिन दाएं-अपरिवर्तनीय मीट्रिक से सुसज्जित नहीं है, तो पहचान के माध्यम से जियोडेसिक्स G के एक-पैरामीटर उपसमूह नहीं होंगे। {{Citation needed|date=March 2019}}.
सामान्य जी के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय मौजूद नहीं होगा। हालाँकि, बाएं अनुवाद के तहत हमेशा रीमैनियन मीट्रिक अपरिवर्तनीय होता है, बाएं-अपरिवर्तनीय मीट्रिक के लिए रीमैनियन ज्यामिति के अर्थ में घातीय मानचित्र सामान्य रूप से ली समूह अर्थ में घातीय मानचित्र से सहमत नहीं होगा। कहने का तात्पर्य यह है कि, यदि G लेफ्ट समूह है जो बाएं-लेकिन दाएं-अपरिवर्तनीय मीट्रिक से सुसज्जित नहीं है, तो पहचान के माध्यम से जियोडेसिक्स G के एक-पैरामीटर उपसमूह नहीं होंगे। {{Citation needed|date=March 2019}}.


===अन्य परिभाषाएँ===
===अन्य परिभाषाएँ===
लाई-ग्रुप एक्सपोनेंशियल की अन्य समकक्ष परिभाषाएँ इस प्रकार हैं:
लाई-ग्रुप एक्सपोनेंशियल की अन्य समकक्ष परिभाषाएँ इस प्रकार हैं:
* यह जी पर एक विहित बाएं-अपरिवर्तनीय [[एफ़िन कनेक्शन]] का घातीय मानचित्र है, जैसे कि [[समानांतर परिवहन]] बाएं अनुवाद द्वारा दिया जाता है। वह है, <math>\exp(X) = \gamma(1)</math> कहाँ <math>\gamma</math> पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (एक स्पर्शरेखा वेक्टर के रूप में माना जाता है) के साथ अद्वितीय [[जियोडेसिक]] है।
* यह जी पर विहित बाएं-अपरिवर्तनीय [[एफ़िन कनेक्शन]] का घातीय मानचित्र है, जैसे कि [[समानांतर परिवहन]] बाएं अनुवाद द्वारा दिया जाता है। वह है, <math>\exp(X) = \gamma(1)</math> कहाँ <math>\gamma</math> पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (स्पर्शरेखा वेक्टर के रूप में माना जाता है) के साथ अद्वितीय [[जियोडेसिक]] है।
* यह जी पर एक कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह आमतौर पर कैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में एक ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए।
* यह जी पर कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह आमतौर पर कैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए।
* लाई समूह-लाई बीजगणित पत्राचार भी परिभाषा देता है: एक्स इन के लिए <math>\mathfrak g</math>, <math>t \mapsto \exp(tX)</math> ली बीजगणित समरूपता के अनुरूप अद्वितीय लाई समूह समरूपता है <math>t \mapsto tX.</math> (टिप्पणी: <math>\operatorname{Lie}(\mathbb{R}) = \mathbb{R}</math>.) <!--cite also Bourbaki's definition. -->
* लाई समूह-लाई बीजगणित पत्राचार भी परिभाषा देता है: एक्स इन के लिए <math>\mathfrak g</math>, <math>t \mapsto \exp(tX)</math> ली बीजगणित समरूपता के अनुरूप अद्वितीय लाई समूह समरूपता है <math>t \mapsto tX.</math> (टिप्पणी: <math>\operatorname{Lie}(\mathbb{R}) = \mathbb{R}</math>.)


 
== उदाहरण ==
==उदाहरण==
* जटिल तल में 0 पर केन्द्रित इकाई वृत्त लाई समूह है (जिसे [[वृत्त समूह]] कहा जाता है) जिसके 1 पर स्पर्शरेखा स्थान को जटिल तल में काल्पनिक रेखा से पहचाना जा सकता है, <math>\{it:t\in\mathbb R\}.</math> इस लाई समूह के लिए घातीय मानचित्र द्वारा दिया गया है
* जटिल तल में 0 पर केन्द्रित इकाई वृत्त एक लाई समूह है (जिसे [[वृत्त समूह]] कहा जाता है) जिसके 1 पर स्पर्शरेखा स्थान को जटिल तल में काल्पनिक रेखा से पहचाना जा सकता है, <math>\{it:t\in\mathbb R\}.</math> इस लाई समूह के लिए घातीय मानचित्र द्वारा दिया गया है
:: <math>it \mapsto \exp(it) = e^{it} = \cos(t) + i\sin(t),\,</math>
:: <math>it \mapsto \exp(it) = e^{it} = \cos(t) + i\sin(t),\,</math>
:अर्थात्, सामान्य सम्मिश्र घातांक के समान सूत्र।
:अर्थात्, सामान्य सम्मिश्र घातांक के समान सूत्र।
Line 40: Line 39:


<ब्लॉककोट><math>\pi: \mathbb{C}^n \to X</math></blockquote>जाली द्वारा भागफल से. तब से <math>X</math> स्थानीय रूप से समरूपी है <math>\mathbb{C}^n</math> जटिल मैनिफोल्ड के रूप में, हम इसे स्पर्शरेखा स्थान से पहचान सकते हैं <math>T_0X</math>, और मानचित्र<ब्लॉककोट><math>\pi:T_0X \to X</math></blockquote>कॉम्प्लेक्स लाई समूह के लिए घातीय मानचित्र से मेल खाता है <math>X</math>.
<ब्लॉककोट><math>\pi: \mathbb{C}^n \to X</math></blockquote>जाली द्वारा भागफल से. तब से <math>X</math> स्थानीय रूप से समरूपी है <math>\mathbb{C}^n</math> जटिल मैनिफोल्ड के रूप में, हम इसे स्पर्शरेखा स्थान से पहचान सकते हैं <math>T_0X</math>, और मानचित्र<ब्लॉककोट><math>\pi:T_0X \to X</math></blockquote>कॉम्प्लेक्स लाई समूह के लिए घातीय मानचित्र से मेल खाता है <math>X</math>.
* चतुर्भुज में <math>\mathbb H</math>, [[ मैं मुड़ा ]] का सेट एक लाई समूह बनाता है (विशेष एकात्मक समूह के लिए समरूपी)। {{math|''SU''(2)}}) जिसका स्पर्शरेखा स्थान 1 पर विशुद्ध रूप से काल्पनिक चतुर्भुजों के स्थान से पहचाना जा सकता है, <math>\{it+ju + kv :t, u, v\in\mathbb R\}.</math> इस लाई समूह के लिए घातीय मानचित्र द्वारा दिया गया है
* चतुर्भुज में <math>\mathbb H</math>, [[ मैं मुड़ा ]] का सेट लाई समूह बनाता है (विशेष एकात्मक समूह के लिए समरूपी)। {{math|''SU''(2)}}) जिसका स्पर्शरेखा स्थान 1 पर विशुद्ध रूप से काल्पनिक चतुर्भुजों के स्थान से पहचाना जा सकता है, <math>\{it+ju + kv :t, u, v\in\mathbb R\}.</math> इस लाई समूह के लिए घातीय मानचित्र द्वारा दिया गया है
:: <math>\mathbf{w} := (it+ju+kv) \mapsto \exp(it+ju+kv) = \cos(|\mathbf{w}|)1 + \sin(|\mathbf{w}|)\frac{\mathbf{w}}{|\mathbf{w}|}.\,</math>
:: <math>\mathbf{w} := (it+ju+kv) \mapsto \exp(it+ju+kv) = \cos(|\mathbf{w}|)1 + \sin(|\mathbf{w}|)\frac{\mathbf{w}}{|\mathbf{w}|}.\,</math>
: यह मानचित्र त्रिज्या के 2-गोले लेता है {{mvar|R}} विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर <math>\{s\in S^3 \subset \mathbf{H}: \operatorname{Re}(s) = \cos(R)\} </math>, त्रिज्या का एक 2-गोला <math>\sin(R)</math> (सीएफ. पाउली मैट्रिसेस#पाउली वेक्टर का घातांक)। इसकी तुलना ऊपर दिए गए पहले उदाहरण से करें।
: यह मानचित्र त्रिज्या के 2-गोले लेता है {{mvar|R}} विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर <math>\{s\in S^3 \subset \mathbf{H}: \operatorname{Re}(s) = \cos(R)\} </math>, त्रिज्या का 2-गोला <math>\sin(R)</math> (सीएफ. पाउली मैट्रिसेस#पाउली वेक्टर का घातांक)। इसकी तुलना ऊपर दिए गए पहले उदाहरण से करें।
* मान लीजिए V एक परिमित आयामी वास्तविक वेक्टर समष्टि है और इसे वेक्टर जोड़ के संचालन के तहत एक झूठ समूह के रूप में देखें। तब <math>\operatorname{Lie}(V) = V</math> 0 पर इसके स्पर्शरेखा स्थान और घातीय मानचित्र के साथ V की पहचान के माध्यम से
* मान लीजिए V परिमित आयामी वास्तविक वेक्टर समष्टि है और इसे वेक्टर जोड़ के संचालन के तहत झूठ समूह के रूप में देखें। तब <math>\operatorname{Lie}(V) = V</math> 0 पर इसके स्पर्शरेखा स्थान और घातीय मानचित्र के साथ V की पहचान के माध्यम से
::<math>\operatorname{exp}: \operatorname{Lie}(V) = V \to V</math>
::<math>\operatorname{exp}: \operatorname{Lie}(V) = V \to V</math>
:पहचान मानचित्र है, अर्थात, <math>\exp(v)=v</math>.
:पहचान मानचित्र है, अर्थात, <math>\exp(v)=v</math>.
Line 49: Line 48:
::<math>\jmath t \mapsto \exp(\jmath t) = \cosh t + \jmath \ \sinh t.</math>
::<math>\jmath t \mapsto \exp(\jmath t) = \cosh t + \jmath \ \sinh t.</math>


 
== गुण ==
==गुण==


===घातांक के प्राथमिक गुण===
===घातांक के प्राथमिक गुण===
Line 64: Line 62:


===पहचान के निकट घातांक===
===पहचान के निकट घातांक===
घातीय मानचित्र <math>\exp\colon \mathfrak g \to G</math> एक सहज मानचित्र है. यह शून्य पर पुशफॉरवर्ड (अंतर) है, <math>\exp_{*}\colon \mathfrak g \to \mathfrak g</math>, पहचान मानचित्र है (सामान्य पहचान के साथ)।
घातीय मानचित्र <math>\exp\colon \mathfrak g \to G</math> सहज मानचित्र है. यह शून्य पर पुशफॉरवर्ड (अंतर) है, <math>\exp_{*}\colon \mathfrak g \to \mathfrak g</math>, पहचान मानचित्र है (सामान्य पहचान के साथ)।


व्युत्क्रम फ़ंक्शन प्रमेय से यह निष्कर्ष निकलता है कि घातांकीय मानचित्र, इसलिए, 0 के कुछ पड़ोस से एक [[भिन्नता]] तक सीमित है <math>\mathfrak g</math> 1 इंच के पड़ोस में <math>G</math>.<ref>{{harvnb|Hall|2015}} Corollary 3.44</ref>
व्युत्क्रम फ़ंक्शन प्रमेय से यह निष्कर्ष निकलता है कि घातांकीय मानचित्र, इसलिए, 0 के कुछ पड़ोस से [[भिन्नता]] तक सीमित है <math>\mathfrak g</math> 1 इंच के पड़ोस में <math>G</math>.<ref>{{harvnb|Hall|2015}} Corollary 3.44</ref>
यह दर्शाना कठिन नहीं है कि यदि G जुड़ा हुआ है, तो G का प्रत्येक तत्व g, के तत्वों के घातांक का गुणनफल है। <math>\mathfrak g</math>:<ref>{{harvnb|Hall|2015}} Corollary 3.47</ref><math>g=\exp(X_1)\exp(X_2)\cdots\exp(X_n),\quad X_j\in\mathfrak g</math>.
यह दर्शाना कठिन नहीं है कि यदि G जुड़ा हुआ है, तो G का प्रत्येक तत्व g, के तत्वों के घातांक का गुणनफल है। <math>\mathfrak g</math>:<ref>{{harvnb|Hall|2015}} Corollary 3.47</ref><math>g=\exp(X_1)\exp(X_2)\cdots\exp(X_n),\quad X_j\in\mathfrak g</math>.


विश्व स्तर पर, घातीय मानचित्र आवश्यक रूप से विशेषणात्मक नहीं है। इसके अलावा, घातीय मानचित्र सभी बिंदुओं पर स्थानीय भिन्नता नहीं हो सकता है। उदाहरण के लिए, से घातीय मानचित्र <math>\mathfrak{so}</math>(3) [[घूर्णन समूह SO(3)]]|SO(3) एक स्थानीय भिन्नता नहीं है; इस विफलता पर [[कट लोकस (रीमैनियन मैनिफोल्ड)]] भी देखें। अधिक जानकारी के लिए [[घातीय मानचित्र का व्युत्पन्न]] देखें।
विश्व स्तर पर, घातीय मानचित्र आवश्यक रूप से विशेषणात्मक नहीं है। इसके अलावा, घातीय मानचित्र सभी बिंदुओं पर स्थानीय भिन्नता नहीं हो सकता है। उदाहरण के लिए, से घातीय मानचित्र <math>\mathfrak{so}</math>(3) [[घूर्णन समूह SO(3)]]|SO(3) स्थानीय भिन्नता नहीं है; इस विफलता पर [[कट लोकस (रीमैनियन मैनिफोल्ड)]] भी देखें। अधिक जानकारी के लिए [[घातीय मानचित्र का व्युत्पन्न]] देखें।


===घातांक की प्रत्यक्षता===
===घातांक की प्रत्यक्षता===
Line 82: Line 80:


===घातांकीय मानचित्र और समरूपताएँ===
===घातांकीय मानचित्र और समरूपताएँ===
होने देना <math>\phi\colon G \to H</math> एक झूठ समूह समरूपता बनें और चलो <math>\phi_{*}</math> पहचान पर इसका पुशफॉरवर्ड (अंतर) हो। फिर निम्नलिखित आरेख [[क्रमविनिमेय आरेख]]:<ref>{{harvnb|Hall|2015}} Theorem 3.28</ref>
होने देना <math>\phi\colon G \to H</math> झूठ समूह समरूपता बनें और चलो <math>\phi_{*}</math> पहचान पर इसका पुशफॉरवर्ड (अंतर) हो। फिर निम्नलिखित आरेख [[क्रमविनिमेय आरेख]]:<ref>{{harvnb|Hall|2015}} Theorem 3.28</ref>
[[File:ExponentialMap-01.png|center]]विशेष रूप से, जब किसी लाई समूह के लाई समूह के आसन्न प्रतिनिधित्व पर लागू किया जाता है <math>G</math>, तब से <math>\operatorname{Ad}_* = \operatorname{ad}</math>, हमारे पास उपयोगी पहचान है:<ref>{{harvnb|Hall|2015}} Proposition 3.35</ref>
[[File:ExponentialMap-01.png|center]]विशेष रूप से, जब किसी लाई समूह के लाई समूह के आसन्न प्रतिनिधित्व पर लागू किया जाता है <math>G</math>, तब से <math>\operatorname{Ad}_* = \operatorname{ad}</math>, हमारे पास उपयोगी पहचान है:<ref>{{harvnb|Hall|2015}} Proposition 3.35</ref>
: <math>\mathrm{Ad}_{\exp X}(Y)=\exp(\mathrm{ad}_X)(Y)=Y+[X,Y]+\frac{1}{2!}[X,[X,Y]]+\frac{1}{3!}[X,[X,[X,Y]]]+\cdots</math>.
: <math>\mathrm{Ad}_{\exp X}(Y)=\exp(\mathrm{ad}_X)(Y)=Y+[X,Y]+\frac{1}{2!}[X,[X,Y]]+\frac{1}{3!}[X,[X,[X,Y]]]+\cdots</math>.


== लघुगणकीय निर्देशांक ==
== लघुगणकीय निर्देशांक ==
एक झूठ समूह दिया गया <math>G</math> झूठ बीजगणित के साथ <math>\mathfrak{g}</math>, आधार की प्रत्येक पसंद <math>X_1, \dots, X_n</math> का <math>\mathfrak{g}</math> G के लिए पहचान तत्व e के निकट एक समन्वय प्रणाली को निम्नानुसार निर्धारित करता है। [[व्युत्क्रम फलन प्रमेय]] द्वारा, घातीय मानचित्र <math>\operatorname{exp} : N \overset{\sim}\to U</math> किसी पड़ोस से भिन्नरूपता है <math>N \subset \mathfrak{g} \simeq \mathbb{R}^n</math> एक पड़ोस की उत्पत्ति <math>U</math> का <math>e \in G</math>. इसका उलटा:
झूठ समूह दिया गया <math>G</math> झूठ बीजगणित के साथ <math>\mathfrak{g}</math>, आधार की प्रत्येक पसंद <math>X_1, \dots, X_n</math> का <math>\mathfrak{g}</math> G के लिए पहचान तत्व e के निकट समन्वय प्रणाली को निम्नानुसार निर्धारित करता है। [[व्युत्क्रम फलन प्रमेय]] द्वारा, घातीय मानचित्र <math>\operatorname{exp} : N \overset{\sim}\to U</math> किसी पड़ोस से भिन्नरूपता है <math>N \subset \mathfrak{g} \simeq \mathbb{R}^n</math> पड़ोस की उत्पत्ति <math>U</math> का <math>e \in G</math>. इसका उलटा:
:<math>\log: U \overset{\sim}\to N \subset \mathbb{R}^n</math>
:<math>\log: U \overset{\sim}\to N \subset \mathbb{R}^n</math>
फिर यू पर एक समन्वय प्रणाली है। इसे विभिन्न नामों से बुलाया जाता है जैसे लघुगणक निर्देशांक, घातीय निर्देशांक या सामान्य निर्देशांक। अनुप्रयोगों में उनका उपयोग कैसे किया जाता है, इसके उदाहरण के लिए क्लोज्ड-सबग्रुप प्रमेय#अवलोकन|क्लोज्ड-सबग्रुप प्रमेय देखें।
फिर यू पर समन्वय प्रणाली है। इसे विभिन्न नामों से बुलाया जाता है जैसे लघुगणक निर्देशांक, घातीय निर्देशांक या सामान्य निर्देशांक। अनुप्रयोगों में उनका उपयोग कैसे किया जाता है, इसके उदाहरण के लिए क्लोज्ड-सबग्रुप प्रमेय#अवलोकन|क्लोज्ड-सबग्रुप प्रमेय देखें।


'टिप्पणी': खुला आवरण <math>\{ U g | g \in G \}</math> जी को एक वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन <math>(g, h) \mapsto gh^{-1}</math> वास्तविक-विश्लेषणात्मक है.{{sfn|Kobayashi|Nomizu|1996|p=43}}
'टिप्पणी': खुला आवरण <math>\{ U g | g \in G \}</math> जी को वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन <math>(g, h) \mapsto gh^{-1}</math> वास्तविक-विश्लेषणात्मक है.{{sfn|Kobayashi|Nomizu|1996|p=43}}


==यह भी देखें==
==यह भी देखें==

Revision as of 21:20, 7 July 2023

लाई समूहों के सिद्धांत में, घातीय मानचित्र लाई बीजगणित से मानचित्र है झूठ समूह का समूह के लिए, जो किसी को लाई बीजगणित से स्थानीय समूह संरचना को पुनः प्राप्त करने की अनुमति देता है। घातीय मानचित्र का अस्तित्व प्राथमिक कारणों में से है कि लाई बीजगणित लाई समूहों का अध्ययन करने के लिए उपयोगी उपकरण है।

गणितीय विश्लेषण का सामान्य घातांकीय कार्य घातांकीय मानचित्र का विशेष मामला है सकारात्मक वास्तविक संख्याओं का गुणनात्मक समूह है (जिसका झूठ बीजगणित सभी वास्तविक संख्याओं का योगात्मक समूह है)। लाई समूह का घातीय मानचित्र सामान्य घातीय फ़ंक्शन के अनुरूप कई गुणों को संतुष्ट करता है, हालांकि, यह कई महत्वपूर्ण मामलों में भिन्न भी है।

परिभाषाएँ

होने देना झूठ समूह बनें और इसका झूठ बीजगणित हो (पहचान तत्व के स्पर्शरेखा स्थान के रूप में माना जाता है)। ). घातीय मानचित्र मानचित्र है

जिसे कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। विशिष्ट आधुनिक परिभाषा यह है:

परिभाषा: का घातांक द्वारा दिया गया है कहाँ
का अद्वितीय एक-पैरामीटर उपसमूह है जिसकी पहचान पर स्पर्शरेखा सदिश के बराबर है .

यह श्रृंखला नियम का आसानी से पालन करता है . वो नक्शा इसका निर्माण दाएं या बाएं-अपरिवर्तनीय वेक्टर फ़ील्ड के अभिन्न वक्र के रूप में किया जा सकता है . यह कि सभी वास्तविक मापदंडों के लिए अभिन्न वक्र मौजूद है, समाधान को शून्य के निकट दाएं या बाएं-अनुवाद द्वारा अनुसरण किया जाता है।

मैट्रिक्स लाई समूह के मामले में हमारे पास अधिक ठोस परिभाषा है। घातीय मानचित्र मैट्रिक्स घातांक के साथ मेल खाता है और सामान्य श्रृंखला विस्तार द्वारा दिया जाता है:

,

कहाँ पहचान मैट्रिक्स है. इस प्रकार, मैट्रिक्स लाई समूहों की सेटिंग में, घातांकीय मानचित्र, लाई बीजगणित के लिए मैट्रिक्स घातांक का प्रतिबंध है का .

रीमैनियन घातीय मानचित्र के साथ तुलना

यदि जी कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के तहत रीमैनियन मीट्रिक अपरिवर्तनीय है, और जी के लिए ली-सैद्धांतिक घातीय मानचित्र घातीय मानचित्र (रिमैनियन ज्यामिति) के साथ मेल खाता है।

सामान्य जी के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय मौजूद नहीं होगा। हालाँकि, बाएं अनुवाद के तहत हमेशा रीमैनियन मीट्रिक अपरिवर्तनीय होता है, बाएं-अपरिवर्तनीय मीट्रिक के लिए रीमैनियन ज्यामिति के अर्थ में घातीय मानचित्र सामान्य रूप से ली समूह अर्थ में घातीय मानचित्र से सहमत नहीं होगा। कहने का तात्पर्य यह है कि, यदि G लेफ्ट समूह है जो बाएं-लेकिन दाएं-अपरिवर्तनीय मीट्रिक से सुसज्जित नहीं है, तो पहचान के माध्यम से जियोडेसिक्स G के एक-पैरामीटर उपसमूह नहीं होंगे।[citation needed].

अन्य परिभाषाएँ

लाई-ग्रुप एक्सपोनेंशियल की अन्य समकक्ष परिभाषाएँ इस प्रकार हैं:

  • यह जी पर विहित बाएं-अपरिवर्तनीय एफ़िन कनेक्शन का घातीय मानचित्र है, जैसे कि समानांतर परिवहन बाएं अनुवाद द्वारा दिया जाता है। वह है, कहाँ पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (स्पर्शरेखा वेक्टर के रूप में माना जाता है) के साथ अद्वितीय जियोडेसिक है।
  • यह जी पर कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह आमतौर पर कैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए।
  • लाई समूह-लाई बीजगणित पत्राचार भी परिभाषा देता है: एक्स इन के लिए , ली बीजगणित समरूपता के अनुरूप अद्वितीय लाई समूह समरूपता है (टिप्पणी: .)

उदाहरण

  • जटिल तल में 0 पर केन्द्रित इकाई वृत्त लाई समूह है (जिसे वृत्त समूह कहा जाता है) जिसके 1 पर स्पर्शरेखा स्थान को जटिल तल में काल्पनिक रेखा से पहचाना जा सकता है, इस लाई समूह के लिए घातीय मानचित्र द्वारा दिया गया है
अर्थात्, सामान्य सम्मिश्र घातांक के समान सूत्र।

<ब्लॉककोट>जाली द्वारा भागफल से. तब से स्थानीय रूप से समरूपी है जटिल मैनिफोल्ड के रूप में, हम इसे स्पर्शरेखा स्थान से पहचान सकते हैं , और मानचित्र<ब्लॉककोट>कॉम्प्लेक्स लाई समूह के लिए घातीय मानचित्र से मेल खाता है .

  • चतुर्भुज में , मैं मुड़ा का सेट लाई समूह बनाता है (विशेष एकात्मक समूह के लिए समरूपी)। SU(2)) जिसका स्पर्शरेखा स्थान 1 पर विशुद्ध रूप से काल्पनिक चतुर्भुजों के स्थान से पहचाना जा सकता है, इस लाई समूह के लिए घातीय मानचित्र द्वारा दिया गया है
यह मानचित्र त्रिज्या के 2-गोले लेता है R विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर , त्रिज्या का 2-गोला (सीएफ. पाउली मैट्रिसेस#पाउली वेक्टर का घातांक)। इसकी तुलना ऊपर दिए गए पहले उदाहरण से करें।
  • मान लीजिए V परिमित आयामी वास्तविक वेक्टर समष्टि है और इसे वेक्टर जोड़ के संचालन के तहत झूठ समूह के रूप में देखें। तब 0 पर इसके स्पर्शरेखा स्थान और घातीय मानचित्र के साथ V की पहचान के माध्यम से
पहचान मानचित्र है, अर्थात, .
  • विभाजित-संमिश्र संख्या तल में काल्पनिक रेखा इकाई हाइपरबोला समूह का बीजगणित बनाता है चूँकि घातीय मानचित्र द्वारा दिया गया है

गुण

घातांक के प्राथमिक गुण

सभी के लिए , वो नक्शा का अद्वितीय एक-पैरामीटर उपसमूह है जिसकी पहचान पर स्पर्शरेखा सदिश है . यह इस प्रकार है कि:

आम तौर पर अधिक:

  • .

इस बात पर ज़ोर देना ज़रूरी है कि पिछली पहचान सामान्य रूप से कायम नहीं है; यह धारणा और आवागमन महत्वपूर्ण है.

घातीय मानचित्र की छवि हमेशा पहचान घटक में निहित होती है .

पहचान के निकट घातांक

घातीय मानचित्र सहज मानचित्र है. यह शून्य पर पुशफॉरवर्ड (अंतर) है, , पहचान मानचित्र है (सामान्य पहचान के साथ)।

व्युत्क्रम फ़ंक्शन प्रमेय से यह निष्कर्ष निकलता है कि घातांकीय मानचित्र, इसलिए, 0 के कुछ पड़ोस से भिन्नता तक सीमित है 1 इंच के पड़ोस में .[2] यह दर्शाना कठिन नहीं है कि यदि G जुड़ा हुआ है, तो G का प्रत्येक तत्व g, के तत्वों के घातांक का गुणनफल है। :[3].

विश्व स्तर पर, घातीय मानचित्र आवश्यक रूप से विशेषणात्मक नहीं है। इसके अलावा, घातीय मानचित्र सभी बिंदुओं पर स्थानीय भिन्नता नहीं हो सकता है। उदाहरण के लिए, से घातीय मानचित्र (3) घूर्णन समूह SO(3)|SO(3) स्थानीय भिन्नता नहीं है; इस विफलता पर कट लोकस (रीमैनियन मैनिफोल्ड) भी देखें। अधिक जानकारी के लिए घातीय मानचित्र का व्युत्पन्न देखें।

घातांक की प्रत्यक्षता

इन महत्वपूर्ण विशेष मामलों में, घातीय मानचित्र हमेशा विशेषण के रूप में जाना जाता है:

  • जी जुड़ा हुआ है और कॉम्पैक्ट है,[4]
  • जी कनेक्टेड और निलपोटेंट है (उदाहरण के लिए, जी कनेक्टेड और एबेलियन), और
  • .[5]

उपरोक्त किसी भी शर्त को पूरा नहीं करने वाले समूहों के लिए, घातीय मानचित्र विशेषणात्मक हो भी सकता है और नहीं भी।

कनेक्टेड लेकिन गैर-कॉम्पैक्ट समूह SL2(R)|SL के घातीय मानचित्र की छवि2(आर) पूरा समूह नहीं है. इसकी छवि में या तो सकारात्मक या मापांक 1 के साथ eigenvalues ​​​​के साथ C-विकर्ण मैट्रिक्स और दोहराए गए eigenvalue 1 के साथ गैर-विकर्ण मैट्रिक्स और मैट्रिक्स शामिल हैं . (इस प्रकार, छवि वास्तविक, नकारात्मक eigenvalues ​​​​के अलावा अन्य मैट्रिक्स को बाहर कर देती है .)[6]


घातांकीय मानचित्र और समरूपताएँ

होने देना झूठ समूह समरूपता बनें और चलो पहचान पर इसका पुशफॉरवर्ड (अंतर) हो। फिर निम्नलिखित आरेख क्रमविनिमेय आरेख:[7]

ExponentialMap-01.png

विशेष रूप से, जब किसी लाई समूह के लाई समूह के आसन्न प्रतिनिधित्व पर लागू किया जाता है , तब से , हमारे पास उपयोगी पहचान है:[8]

.

लघुगणकीय निर्देशांक

झूठ समूह दिया गया झूठ बीजगणित के साथ , आधार की प्रत्येक पसंद का G के लिए पहचान तत्व e के निकट समन्वय प्रणाली को निम्नानुसार निर्धारित करता है। व्युत्क्रम फलन प्रमेय द्वारा, घातीय मानचित्र किसी पड़ोस से भिन्नरूपता है पड़ोस की उत्पत्ति का . इसका उलटा:

फिर यू पर समन्वय प्रणाली है। इसे विभिन्न नामों से बुलाया जाता है जैसे लघुगणक निर्देशांक, घातीय निर्देशांक या सामान्य निर्देशांक। अनुप्रयोगों में उनका उपयोग कैसे किया जाता है, इसके उदाहरण के लिए क्लोज्ड-सबग्रुप प्रमेय#अवलोकन|क्लोज्ड-सबग्रुप प्रमेय देखें।

'टिप्पणी': खुला आवरण जी को वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन वास्तविक-विश्लेषणात्मक है.[9]

यह भी देखें

  • घातांकीय विषयों की सूची
  • घातांकीय मानचित्र का व्युत्पन्न
  • मैट्रिक्स घातांक

उद्धरण

  1. Birkenhake, Christina (2004). जटिल एबेलियन किस्में. Herbert Lange (Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-06307-1. OCLC 851380558.
  2. Hall 2015 Corollary 3.44
  3. Hall 2015 Corollary 3.47
  4. Hall 2015 Corollary 11.10
  5. Hall 2015 Exercises 2.9 and 2.10
  6. Hall 2015 Exercise 3.22
  7. Hall 2015 Theorem 3.28
  8. Hall 2015 Proposition 3.35
  9. Kobayashi & Nomizu 1996, p. 43.


उद्धृत कार्य


श्रेणी:झूठ बीजगणित श्रेणी:झूठ बोलने वाले समूह