कोज्या का गोलाकार नियम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 51: Line 51:


<math display="block">\mathbf{C} \sin \frac{c}{2} = -\left( \mathbf{A} \sin \frac{a}{2} \cos \frac{b}{2} + \mathbf{B} \cos \frac{a}{2} \sin \frac{b}{2} + \mathbf{u} \sin C \sin \frac{a}{2} \sin \frac{b}{2} \right). </math>
<math display="block">\mathbf{C} \sin \frac{c}{2} = -\left( \mathbf{A} \sin \frac{a}{2} \cos \frac{b}{2} + \mathbf{B} \cos \frac{a}{2} \sin \frac{b}{2} + \mathbf{u} \sin C \sin \frac{a}{2} \sin \frac{b}{2} \right). </math>
सदिश <math>\mathbf{u}</math> दोनों सदिशों <math>\mathbf{A}</math> और <math>\mathbf{B} ,</math> के लिए ओर्थोगोनल है और इस प्रकार से <math>\mathbf{u} \cdot \mathbf{A} = \mathbf{u} \cdot \mathbf{B} = 0 .</math> के संबंध में डॉट गुणनफल लेना <math>\mathbf{u}</math> दोनों तरफ, और हिस्सों को दबाते हुए, हमारे पास है <math> \mathbf{u} \cdot \mathbf{C} \sin c = -\sin C \sin a \sin b.</math> अब <math>\mathbf{v} \times \mathbf{w} = -\mathbf{C} \sin c</math> और इसलिए हमारे पास है <math> \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) =  -\mathbf{u} \cdot \mathbf{C} \sin c = \sin C \sin a \sin b. </math> प्रत्येक पक्ष को विभाजित करना <math>\sin a \sin b \sin c ,</math> अपने पास
सदिश <math>\mathbf{u}</math> दोनों सदिशों <math>\mathbf{A}</math> और <math>\mathbf{B} ,</math> के लिए ओर्थोगोनल है और इस प्रकार <math>\mathbf{u} \cdot \mathbf{A} = \mathbf{u} \cdot \mathbf{B} = 0 .</math> है। दोनों ओर <math>\mathbf{u}</math> के संबंध में डॉट गुणनफल लेने और भागों को अवरोधित करने पर, हमारे निकट <math> \mathbf{u} \cdot \mathbf{C} \sin c = -\sin C \sin a \sin b.</math> है। अब <math>\mathbf{v} \times \mathbf{w} = -\mathbf{C} \sin c</math> और इसलिए हमारे निकट <math> \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) =  -\mathbf{u} \cdot \mathbf{C} \sin c = \sin C \sin a \sin b. </math> है। प्रत्येक पक्ष को <math>\sin a \sin b \sin c ,</math> से विभाजित करने पर, हमारे निकट है-


<math display="block">\frac{\sin C}{\sin c} = \frac{\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v})}{\sin a \sin b \sin c}.</math>
<math display="block">\frac{\sin C}{\sin c} = \frac{\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v})}{\sin a \sin b \sin c}.</math>
चूँकि उपरोक्त अभिव्यक्ति का दाहिना भाग चक्रीय क्रमपरिवर्तन द्वारा अपरिवर्तित है, हमारे पास है
चूँकि उपरोक्त अभिव्यक्ति का दाहिना भाग चक्रीय क्रमपरिवर्तन द्वारा अपरिवर्तित है, हमारे निकट है


== <math display="block">\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}.</math>पुनर्व्यवस्था ==
== <math display="block">\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}.</math>पुनर्व्यवस्था ==
कोज्या के पहले और दूसरे गोलाकार नियमों को भुजाओं को रखने के लिए पुनर्व्यवस्थित किया जा सकता है ({{math|''a'', ''b'', ''c''}}) और कोण ({{math|''A'', ''B'', ''C''}}) समीकरणों के विपरीत पक्षों पर:
कोज्या के प्रथम और द्वितीय गोलाकार नियमों को समीकरणों के विपरीत पक्षों पर भुजाओं ({{math|''a'', ''b'', ''c''}}) और कोणों ({{math|''A'', ''B'', ''C''}}) को रखने के लिए पुनर्व्यवस्थित किया जा सकता है:
<math display="block">\begin{align}
<math display="block">\begin{align}
\cos C &= \frac{\cos c - \cos a \cos b}{\sin a \sin b} \\
\cos C &= \frac{\cos c - \cos a \cos b}{\sin a \sin b} \\
Line 63: Line 63:
\end{align}</math>
\end{align}</math>


== तलीय सीमा: छोटे कोण ==
== समतलीय सीमा: छोटे कोण ==
छोटे गोलाकार त्रिभुजों के लिए, यानी छोटे के लिए {{math|''a'', ''b''}}, और {{math|''c''}}, कोज्या का गोलाकार नियम लगभग कोज्या के सामान्य तलीय नियम के समान है,
छोटे गोलाकार त्रिभुजों के लिए, अर्थात छोटे {{math|''a'', ''b''}}, और {{math|''c''}} के लिए, कोज्या का गोलाकार नियम लगभग कोज्या के सामान्य समतलीय नियम के समान है,
<math display="block">c^2 \approx a^2 + b^2 - 2ab\cos C \,.</math>
<math display="block">c^2 \approx a^2 + b^2 - 2ab\cos C \,.</math>
इसे साबित करने के लिए, हम कोज्या और साइन फ़ंक्शन के लिए [[मैकलॉरिन श्रृंखला]] से प्राप्त [[छोटे-कोण सन्निकटन]] का उपयोग करेंगे:
इसे प्रमाणित करने के लिए, हम कोज्या और साइन फलन के लिए [[मैकलॉरिन श्रृंखला]] से प्राप्त [[छोटे-कोण सन्निकटन]] का उपयोग करेंगे:
<math display="block">\begin{align}
<math display="block">\begin{align}
   \cos a &= 1 - \frac{a^2}{2} + O\left(a^4\right) \\
   \cos a &= 1 - \frac{a^2}{2} + O\left(a^4\right) \\
   \sin a &= a + O\left(a^3\right)
   \sin a &= a + O\left(a^3\right)
\end{align}</math>
\end{align}</math>
इन भावों को कोज्या जाल के गोलाकार नियम में प्रतिस्थापित करना:
इन अभिव्यक्तियों को कोज्या जाल के गोलाकार नियम में प्रतिस्थापित करना:


<math display="block">
<math display="block">
Line 77: Line 77:
   1 - \frac{a^2}{2} - \frac{b^2}{2} + \frac{a^2 b^2}{4} + O\left(a^4\right) + O\left(b^4\right) + \cos(C)\left(ab + O\left(a^3 b\right) + O\left(ab^3\right) + O\left(a^3 b^3\right)\right)
   1 - \frac{a^2}{2} - \frac{b^2}{2} + \frac{a^2 b^2}{4} + O\left(a^4\right) + O\left(b^4\right) + \cos(C)\left(ab + O\left(a^3 b\right) + O\left(ab^3\right) + O\left(a^3 b^3\right)\right)
</math>
</math>
या सरलीकरण के बाद:
अथवा सरलीकरण के पश्चात:


<math display="block">c^2 = a^2 + b^2 - 2ab\cos C + O\left(c^4\right) + O\left(a^4\right) + O\left(b^4\right) + O\left(a^2 b^2\right) + O\left(a^3 b\right) + O\left(ab^3\right) + O\left(a^3 b^3\right).</math>
<math display="block">c^2 = a^2 + b^2 - 2ab\cos C + O\left(c^4\right) + O\left(a^4\right) + O\left(b^4\right) + O\left(a^2 b^2\right) + O\left(a^3 b\right) + O\left(ab^3\right) + O\left(a^3 b^3\right).</math>
के लिए बड़े O अंकन शर्तें {{math|''a''}} और {{math|''b''}} का बोलबाला है {{math|''O''(''a''<sup>4</sup>) + ''O''(''b''<sup>4</sup>)}} जैसा {{math|''a''}} और {{math|''b''}} छोटा हो जाओ, इसलिए हम इस अंतिम अभिव्यक्ति को इस प्रकार लिख सकते हैं:
{{math|''a''}} और {{math|''b''}} के लिए बड़े O शब्दों पर {{math|''O''(''a''<sup>4</sup>) + ''O''(''b''<sup>4</sup>)}} का प्रभुत्व है क्योंकि {{math|''a''}} और {{math|''b''}} छोटे हो जाते हैं, इसलिए हम इस अंतिम अभिव्यक्ति को इस प्रकार अंकित कर सकते हैं:


<math display="block">c^2 = a^2 + b^2 - 2ab\cos C + O\left(a^4\right) + O\left(b^4\right) + O\left(c^4\right).</math>
<math display="block">c^2 = a^2 + b^2 - 2ab\cos C + O\left(a^4\right) + O\left(b^4\right) + O\left(c^4\right).</math>


== इतिहास ==
== इतिहास ==
मुहम्मद इब्न मूसा अल-ख्वारिज्मी|अल-ख्वारिज्मी (9वीं शताब्दी), अल-बत्तानी|अल-बत्तानी (9वीं शताब्दी), और नीलकंठ सोमयाजी|नीलकंठ द्वारा कोज्या के गोलाकार नियम के समतुल्य कुछ का उपयोग किया गया था (लेकिन सामान्य रूप से नहीं कहा गया था)। (15th शताब्दी)।<ref>{{cite book |last=Van Brummelen |first=Glen |year=2012 |title=Heavenly mathematics: The forgotten art of spherical trigonometry |publisher=Princeton University Press |page=98}}</ref>
मुहम्मद इब्न मूसा अल-ख्वारिज्मी (9वें दशक), अल-बत्तानी (9वें दशक), और नीलकंठ सोमयाजी (15वें दशक) द्वारा कोज्या के गोलाकार नियम के समतुल्य कुछ का उपयोग किया गया था (किन्तु सामान्य रूप से नहीं बताया गया था)।<ref>{{cite book |last=Van Brummelen |first=Glen |year=2012 |title=Heavenly mathematics: The forgotten art of spherical trigonometry |publisher=Princeton University Press |page=98}}</ref>


== यह भी देखें ==
== यह भी देखें ==
Line 91: Line 91:
* [[कोसाइन का अतिपरवलयिक नियम|कोज्या का अतिपरवलयिक नियम]]
* [[कोसाइन का अतिपरवलयिक नियम|कोज्या का अतिपरवलयिक नियम]]
*त्रिभुजों का हल
*त्रिभुजों का हल
* [[ज्या का गोलाकार नियम]]
* [[ज्या का गोलाकार नियम|साइन का गोलाकार नियम]]


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 17:38, 23 July 2023

गोलाकार त्रिकोणमिति में, कोज्या का नियम (जिसे भुजाओं के लिए कोज्या नियम भी कहा जाता है[1]) गोलाकार त्रिकोणों की भुजाओं और कोणों से संबंधित प्रमेय है, जो समतल त्रिकोणमिति के कोज्या के सामान्य नियम के अनुरूप है।

गोलाकार त्रिभुज कोज्या के नियम द्वारा हल किया गया है।

इकाई वृत्त को देखते हुए, वृत्त की सतह पर गोलाकार त्रिभुज को वृत्त पर तीन बिंदुओं u, v, और w को संयोजित करने वाले बड़े वृत्तों द्वारा परिभाषित किया जाता है (जिसे दाईं ओर दर्शाया गया है)। यदि इन तीनों भुजाओं की लम्बाई a (u से v तक) b (u से w तक), और c (v से w तक) है, और c के विपरीत शीर्ष का कोण C है, तो कोज्या का (प्रथम) गोलाकार नियम कहता है:[2][1]

चूँकि यह इकाई वृत्त है, इसलिए लंबाई a, b, और c वृत्त के केंद्र से उन भुजाओं द्वारा अंतरित कोणों (रेडियन में) के समान होती है। (गैर-इकाई वृत्त के लिए, लंबाई त्रिज्या से गुणा किए गए अंतरित कोण हैं, और यदि a, b और c की अंतरित कोणों के रूप में पुनर्व्याख्या की जाती है, तो सूत्र अभी भी मान्य है)। विशेष स्थिति के रूप में, C = π/2 के लिए, तब cos C = 0 है, और पाइथागोरस प्रमेय का गोलाकार एनालॉग प्राप्त होता है:

यदि c को हल करने के लिए कोज्या के नियम का उपयोग किया जाता है, तो c के छोटे होने पर कोज्या को परिवर्तित करने की आवश्यकता पूरक त्रुटियों में वृद्धि कर देती है। इस स्थिति में, हैवर्साइन्स के नियम का वैकल्पिक सूत्रीकरण श्रेष्ठ होता है।[3]

कोज्या के नियम पर भिन्नता, कोज्या का द्वितीय गोलाकार नियम,[4] (जिसे कोणों के लिए कोज्या नियम भी कहा जाता है[1] कहता है:

जहाँ A और B क्रमशः भुजाओं a और b के विपरीत शीर्षों के कोण हैं। इसे दिए गए गोलाकार त्रिकोणमिति अथवा गोलाकार त्रिभुज द्वैत पर विचार करने से प्राप्त किया जा सकता है।

प्रमाण

प्रथम प्रमाण

मान लीजिए u, v, और w वृत्त के केंद्र से त्रिभुज के उन शीर्षों तक इकाई सदिशों को दर्शाते हैं। यदि समन्वय प्रणाली को घुमाया जाए तो कोण और दूरियां परिवर्तित नहीं होती हैं, इसलिए हम समन्वय प्रणाली को घुमा सकते हैं जिससे कि उत्तरी ध्रुव पर हो और कहीं प्रधान मध्याह्न रेखा (0 का देशांतर) पर हो। इस घूर्णन के साथ, के लिए गोलाकार निर्देशांक है, जहाँ θ भूमध्य रेखा से नहीं उत्तरी ध्रुव से मापा गया कोण है, और के लिए गोलाकार निर्देशांक है। के लिए कार्तीय निर्देशांक है और के लिए कार्तीय निर्देशांक है। का मान दो कार्टेशियन वैक्टर का डॉट गुणनफल है, जो है।

द्वितीय प्रमाण

मान लीजिए u, v, और w वृत्त के केंद्र से त्रिभुज के उन शीर्षों तक इकाई सदिशों को दर्शाते हैं। हमारे निकट u · u = 1, v · w = cos c, u · v = cos a, और u · w = cos b है। सदिश u × v और u × w की लंबाई क्रमशः sin a और sin b है और उनके मध्य का कोण C है, इसलिए

sin a sin b cos C = (u × v) · (u × w) = (u · u)(v · w) − (u · v)(u · w) = cos c − cos a cos b,

क्रॉस गुणनफल, डॉट गुणनफल और बिनेट-कॉची प्रमाण (p × q) · (r × s) = (p · r)(q · s) − (p · s)(q · r) का उपयोग करना किया जाता है।

तृतीय प्रमाण

मान लीजिए u, v, और w वृत्त के केंद्र से त्रिभुज के उन शीर्षों तक इकाई सदिशों को दर्शाते हैं। निम्नलिखित घूर्णी अनुक्रम पर विचार करें, जहाँ हम सर्वप्रथम सदिश v को कोण a से u तक घुमाते हैं उसके पश्चात सदिश u से w को कोण b द्वारा घुमाते हैं, जिसके पश्चात हम सदिश w को पुनः v पर कोण c से घुमाते हैं। इन तीन घूर्णनों की संरचना पहचान परिवर्तन का निर्माण करेगी। अर्थात्, समग्र घूर्णन बिंदु v को स्वयं में मैप करता है। इन तीन घूर्णी संक्रियाओं को चतुर्भुजों द्वारा दर्शाया जा सकता है:

जहाँ और क्रमशः दाएँ हाथ के नियम द्वारा परिभाषित इकाई सदिश घूर्णन के अक्षों का प्रतिनिधित्व करते हैं। इन तीन घूर्णनों की संरचना समानता है। दोनों पक्षों को संयुग्म गुणा करने पर हमें प्राप्त होता है जहाँ और हैं। इससे हमें निम्नलिखित प्रमाण प्राप्त होता है-[5][6]

इस प्रमाण के दाहिनी ओर चतुर्भुज गुणनफल द्वारा दिया गया है-

सर्वसमिका के दोनों ओर के अदिश भागों को समान करने पर, हमें प्राप्त होता है-

जहाँ चूँकि यह पहचान किसी भी चाप कोण के लिए मान्य होती है, इसलिए हम अर्ध भाग को अवरोधित कर देते हैं-

हम प्रथम को अंकित करके और तत्पश्चात पहचान के दोनों पक्षों पर सदिश भागों को समरूप करके साइन नियम को भी पुनर्प्राप्त कर सकते हैं-

सदिश दोनों सदिशों और के लिए ओर्थोगोनल है और इस प्रकार है। दोनों ओर के संबंध में डॉट गुणनफल लेने और भागों को अवरोधित करने पर, हमारे निकट है। अब और इसलिए हमारे निकट है। प्रत्येक पक्ष को से विभाजित करने पर, हमारे निकट है-

चूँकि उपरोक्त अभिव्यक्ति का दाहिना भाग चक्रीय क्रमपरिवर्तन द्वारा अपरिवर्तित है, हमारे निकट है

पुनर्व्यवस्था

कोज्या के प्रथम और द्वितीय गोलाकार नियमों को समीकरणों के विपरीत पक्षों पर भुजाओं (a, b, c) और कोणों (A, B, C) को रखने के लिए पुनर्व्यवस्थित किया जा सकता है:

समतलीय सीमा: छोटे कोण

छोटे गोलाकार त्रिभुजों के लिए, अर्थात छोटे a, b, और c के लिए, कोज्या का गोलाकार नियम लगभग कोज्या के सामान्य समतलीय नियम के समान है,

इसे प्रमाणित करने के लिए, हम कोज्या और साइन फलन के लिए मैकलॉरिन श्रृंखला से प्राप्त छोटे-कोण सन्निकटन का उपयोग करेंगे:
इन अभिव्यक्तियों को कोज्या जाल के गोलाकार नियम में प्रतिस्थापित करना:

अथवा सरलीकरण के पश्चात:

a और b के लिए बड़े O शब्दों पर O(a4) + O(b4) का प्रभुत्व है क्योंकि a और b छोटे हो जाते हैं, इसलिए हम इस अंतिम अभिव्यक्ति को इस प्रकार अंकित कर सकते हैं:

इतिहास

मुहम्मद इब्न मूसा अल-ख्वारिज्मी (9वें दशक), अल-बत्तानी (9वें दशक), और नीलकंठ सोमयाजी (15वें दशक) द्वारा कोज्या के गोलाकार नियम के समतुल्य कुछ का उपयोग किया गया था (किन्तु सामान्य रूप से नहीं बताया गया था)।[7]

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, The VNR Concise Encyclopedia of Mathematics, 2nd ed., ch. 12 (Van Nostrand Reinhold: New York, 1989).
  2. Romuald Ireneus 'Scibor-Marchocki, Spherical trigonometry, Elementary-Geometry Trigonometry web page (1997).
  3. R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope 68 (2), 159 (1984).
  4. Reiman, István (1999). Geometria és határterületei. Szalay Könyvkiadó és Kereskedőház Kft. p. 83.
  5. Brand, Louis (1947). "§186 Great Circle Arccs". वेक्टर और टेंसर विश्लेषण. Wiley. pp. 416–417.
  6. Kuipers, Jack B. (1999). "§10 Spherical Trignometry". चतुर्भुज और घूर्णन अनुक्रम. Princeton University Press. pp. 235–255.
  7. Van Brummelen, Glen (2012). Heavenly mathematics: The forgotten art of spherical trigonometry. Princeton University Press. p. 98.

[[he:טריגונומטריה ספירית#משפט הקוסינוס