रडार चार्ट: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Type of chart}} {{Redirect|Spider chart|the extension of Euler diagrams|Spider diagram}} Image:MER Star Plot.gif|thumb|300px|right|नासा के...")
 
No edit summary
Line 1: Line 1:
{{Short description|Type of chart}}
{{Short description|Type of chart}}
{{Redirect|Spider chart|the extension of Euler diagrams|Spider diagram}}
{{Redirect|Spider chart|the extension of Euler diagrams|Spider diagram}}
[[Image:MER Star Plot.gif|thumb|300px|right|नासा के स्टार प्लॉट का उदाहरण, कुछ सबसे वांछनीय डिज़ाइन परिणामों को केंद्र में दर्शाया गया है]] [[File:Spider Chart2.jpg|right|thumb|300px|यह स्पाइडर चार्ट किसी दिए गए संगठन के लिए आवंटित बजट बनाम वास्तविक खर्च का प्रतिनिधित्व करता है।]]रडार [[चार्ट]] एक ही बिंदु से शुरू होने वाले अक्षों पर दर्शाए गए तीन या अधिक मात्रात्मक चर के दो-आयामी चार्ट के रूप में बहुभिन्नरूपी सांख्यिकी डेटा प्रदर्शित करने के ग्राफिकल तरीकों की एक सूची है। अक्षों की सापेक्ष स्थिति और कोण आम तौर पर सूचनात्मक नहीं है, लेकिन विभिन्न [[आंकड़े]], जैसे कि एल्गोरिदम जो डेटा को अधिकतम कुल क्षेत्र के रूप में प्लॉट करते हैं, को चर (अक्षों) को सापेक्ष स्थितियों में क्रमबद्ध करने के लिए लागू किया जा सकता है जो अलग-अलग सहसंबंध, व्यापार-बंद प्रकट करते हैं, और कई अन्य तुलनात्मक उपाय।<ref>{{cite journal |last1=Porter |first1=Michael M |last2=Niksiar |first2=Pooya |title=Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts |journal=PLOS ONE |date=2018 |volume=13 |issue=9 |page=e0204309 |doi=10.1371/journal.pone.0204309|pmid=30265707 |pmc=6161877 |bibcode=2018PLoSO..1304309P |doi-access=free }}</ref>
[[Image:MER Star Plot.gif|thumb|300px|right|नासा के स्टार प्लॉट का उदाहरण, कुछ सबसे वांछनीय डिज़ाइन परिणामों को केंद्र में दर्शाया गया है]] [[File:Spider Chart2.jpg|right|thumb|300px|यह स्पाइडर चार्ट किसी दिए गए संगठन के लिए आवंटित बजट बनाम वास्तविक खर्च का प्रतिनिधित्व करता है।]]रडार [[चार्ट]] ही बिंदु से शुरू होने वाले अक्षों पर दर्शाए गए तीन या अधिक मात्रात्मक चर के दो-आयामी चार्ट के रूप में बहुभिन्नरूपी सांख्यिकी डेटा प्रदर्शित करने के ग्राफिकल तरीकों की सूची है। अक्षों की सापेक्ष स्थिति और कोण आम तौर पर सूचनात्मक नहीं है, लेकिन विभिन्न [[आंकड़े]], जैसे कि एल्गोरिदम जो डेटा को अधिकतम कुल क्षेत्र के रूप में प्लॉट करते हैं, को चर (अक्षों) को सापेक्ष स्थितियों में क्रमबद्ध करने के लिए लागू किया जा सकता है जो अलग-अलग सहसंबंध, व्यापार-बंद प्रकट करते हैं, और कई अन्य तुलनात्मक उपाय।<ref>{{cite journal |last1=Porter |first1=Michael M |last2=Niksiar |first2=Pooya |title=Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts |journal=PLOS ONE |date=2018 |volume=13 |issue=9 |page=e0204309 |doi=10.1371/journal.pone.0204309|pmid=30265707 |pmc=6161877 |bibcode=2018PLoSO..1304309P |doi-access=free }}</ref>
रडार चार्ट को वेब चार्ट, स्पाइडर चार्ट, स्पाइडर ग्राफ, स्पाइडर वेब चार्ट, स्टार चार्ट, के रूप में भी जाना जाता है।<ref>Nancy R. Tague (2005) ''The quality toolbox''. page 437.</ref> स्टार प्लॉट, कोबवेब चार्ट, अनियमित बहुभुज, ध्रुवीय चार्ट, या किविएट आरेख।<ref>{{cite journal|last1=Kolence|first1=Kenneth W.|title=सॉफ्टवेयर अनुभववादी|journal=ACM SIGMETRICS Performance Evaluation Review|date=1973|volume=2|issue=2|pages=31–36|doi=10.1145/1113644.1113647 |s2cid=18600391|quote=Dr. [[Philip J. Kiviat]] suggested at a recent NBS/ACM workshop on performance measurement that a circular graph, using radii as the variable axes might be a useful form. […] I recommend they be called "Kiviat Plots" or "Kiviat Graphs" to recognize his insight as to their importance.|doi-access=free}}</ref><ref name=radarandpolar>{{cite web|url=http://www.content-workshops.com/toolbox/2015/2/find-content-gaps-using-radar-charts |title=रडार चार्ट का उपयोग करके सामग्री अंतराल खोजें|publisher=Content Strategy Workshops |date=March 3, 2015 |access-date=December 17, 2015}}</ref> यह एक [[समानांतर निर्देशांक]] प्लॉट के समतुल्य है, जिसमें अक्ष रेडियल रूप से व्यवस्थित हैं।
रडार चार्ट को वेब चार्ट, स्पाइडर चार्ट, स्पाइडर ग्राफ, स्पाइडर वेब चार्ट, स्टार चार्ट, के रूप में भी जाना जाता है।<ref>Nancy R. Tague (2005) ''The quality toolbox''. page 437.</ref> स्टार प्लॉट, कोबवेब चार्ट, अनियमित बहुभुज, ध्रुवीय चार्ट, या किविएट आरेख।<ref>{{cite journal|last1=Kolence|first1=Kenneth W.|title=सॉफ्टवेयर अनुभववादी|journal=ACM SIGMETRICS Performance Evaluation Review|date=1973|volume=2|issue=2|pages=31–36|doi=10.1145/1113644.1113647 |s2cid=18600391|quote=Dr. [[Philip J. Kiviat]] suggested at a recent NBS/ACM workshop on performance measurement that a circular graph, using radii as the variable axes might be a useful form. […] I recommend they be called "Kiviat Plots" or "Kiviat Graphs" to recognize his insight as to their importance.|doi-access=free}}</ref><ref name=radarandpolar>{{cite web|url=http://www.content-workshops.com/toolbox/2015/2/find-content-gaps-using-radar-charts |title=रडार चार्ट का उपयोग करके सामग्री अंतराल खोजें|publisher=Content Strategy Workshops |date=March 3, 2015 |access-date=December 17, 2015}}</ref> यह [[समानांतर निर्देशांक]] प्लॉट के समतुल्य है, जिसमें अक्ष रेडियल रूप से व्यवस्थित हैं।


== सिंहावलोकन ==
== सिंहावलोकन ==
रडार चार्ट एक चार्ट और/या [[प्लॉट (ग्राफिक्स)]] है जिसमें सम-कोणीय तीलियों का एक क्रम होता है, जिसे रेडी कहा जाता है, जिसमें प्रत्येक तीली एक चर का प्रतिनिधित्व करती है। किसी स्पोक की डेटा लंबाई सभी डेटा बिंदुओं पर चर के अधिकतम परिमाण के सापेक्ष डेटा बिंदु के लिए चर के परिमाण के समानुपाती होती है। प्रत्येक स्पोक के लिए डेटा मानों को जोड़ने वाली एक रेखा खींची जाती है। इससे कथानक को तारे जैसा स्वरूप मिलता है और इस कथानक के लिए लोकप्रिय नामों में से एक की उत्पत्ति होती है। स्टार प्लॉट का उपयोग निम्नलिखित प्रश्नों के उत्तर देने के लिए किया जा सकता है:<ref name="NIST03"/>* कौन से अवलोकन सबसे अधिक समान हैं, यानी, क्या अवलोकनों के समूह हैं? (रडार चार्ट का उपयोग एकल डेटा बिंदु के सापेक्ष मूल्यों की जांच करने के लिए किया जाता है (उदाहरण के लिए, बिंदु 3 चर 2 और 4 के लिए बड़ा है, चर 1, 3, 5, और 6 के लिए छोटा है) और समान बिंदुओं या असमान बिंदुओं का पता लगाने के लिए।)<ref name="NIST03"/>*क्या आउटलेयर हैं?
रडार चार्ट चार्ट और/या [[प्लॉट (ग्राफिक्स)]] है जिसमें सम-कोणीय तीलियों का क्रम होता है, जिसे रेडी कहा जाता है, जिसमें प्रत्येक तीली चर का प्रतिनिधित्व करती है। किसी स्पोक की डेटा लंबाई सभी डेटा बिंदुओं पर चर के अधिकतम परिमाण के सापेक्ष डेटा बिंदु के लिए चर के परिमाण के समानुपाती होती है। प्रत्येक स्पोक के लिए डेटा मानों को जोड़ने वाली रेखा खींची जाती है। इससे कथानक को तारे जैसा स्वरूप मिलता है और इस कथानक के लिए लोकप्रिय नामों में से की उत्पत्ति होती है। स्टार प्लॉट का उपयोग निम्नलिखित प्रश्नों के उत्तर देने के लिए किया जा सकता है:<ref name="NIST03"/>* कौन से अवलोकन सबसे अधिक समान हैं, यानी, क्या अवलोकनों के समूह हैं? (रडार चार्ट का उपयोग एकल डेटा बिंदु के सापेक्ष मूल्यों की जांच करने के लिए किया जाता है (उदाहरण के लिए, बिंदु 3 चर 2 और 4 के लिए बड़ा है, चर 1, 3, 5, और 6 के लिए छोटा है) और समान बिंदुओं या असमान बिंदुओं का पता लगाने के लिए।)<ref name="NIST03"/>*क्या आउटलेयर हैं?
 
रडार चार्ट मनमाने ढंग से चर की संख्या के साथ बहुभिन्नरूपी सांख्यिकी अवलोकन प्रदर्शित करने का एक उपयोगी तरीका है।<ref>Chambers, John, William Cleveland, Beat Kleiner, and Paul Tukey, (1983). ''Graphical Methods for Data Analysis''. Wadsworth. pp. 158–162</ref> प्रत्येक तारा एक एकल अवलोकन का प्रतिनिधित्व करता है। आमतौर पर, रडार चार्ट मल्टी-प्लॉट प्रारूप में तैयार किए जाते हैं, जिसमें प्रत्येक पृष्ठ पर कई सितारे होते हैं और प्रत्येक सितारा एक अवलोकन का प्रतिनिधित्व करता है।<ref name="NIST03">NIST/SEMATECH (2003). [http://www.itl.nist.gov/div898/handbook/eda/section3/starplot.htm Star Plot] in: ''e-Handbook of Statistical Methods''. 6/01/2003 (Date created)</ref> स्टार प्लॉट का उपयोग पहली बार 1877 में [[जॉर्ज वॉन मेयर]] द्वारा किया गया था।<ref>{{Citation |last=Mayr |first=Georg von |year=1877 |title=Die Gesetzmäßigkeit im Gesellschaftsleben |language=de |publisher=Oldenbourg |location=Munich |ol=23294909M }}, p.78. Linien-Diagramme im Kreise: Line charts in circles.</ref><ref name = "MF08">[[Michael Friendly]] (2008). [http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf "Milestones in the history of thematic cartography, statistical graphics, and data visualization"] {{Webarchive|url=https://web.archive.org/web/20180926124138/http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf |date=2018-09-26 }}.</ref> रडार चार्ट [[ग्लिफ़ प्लॉट]] से इस मायने में भिन्न होते हैं कि प्लॉट किए गए स्टार आकृति के निर्माण के लिए सभी चर का उपयोग किया जाता है। [[अग्रभूमि चर]] और [[पृष्ठभूमि चर]] में कोई पृथक्करण नहीं है। इसके बजाय, तारे के आकार की आकृतियाँ आमतौर पर पृष्ठ पर एक आयताकार सरणी में व्यवस्थित होती हैं। यदि अवलोकनों को कुछ गैर-मनमाना क्रम में व्यवस्थित किया जाता है (यदि चर को कुछ सार्थक क्रम में तारे की किरणों को सौंपा गया है) तो डेटा में पैटर्न देखना कुछ हद तक आसान है।<ref>Michael Friendly (1991). [http://www.math.yorku.ca/SCS/sugi/sugi16-paper.html "Statistical Graphics for Multivariate Data"]. Paper presented at the SAS SUGI 16 Conference, Apr, 1991.</ref>


रडार चार्ट मनमाने ढंग से चर की संख्या के साथ बहुभिन्नरूपी सांख्यिकी अवलोकन प्रदर्शित करने का उपयोगी तरीका है।<ref>Chambers, John, William Cleveland, Beat Kleiner, and Paul Tukey, (1983). ''Graphical Methods for Data Analysis''. Wadsworth. pp. 158–162</ref> प्रत्येक तारा एकल अवलोकन का प्रतिनिधित्व करता है। आमतौर पर, रडार चार्ट मल्टी-प्लॉट प्रारूप में तैयार किए जाते हैं, जिसमें प्रत्येक पृष्ठ पर कई सितारे होते हैं और प्रत्येक सितारा अवलोकन का प्रतिनिधित्व करता है।<ref name="NIST03">NIST/SEMATECH (2003). [http://www.itl.nist.gov/div898/handbook/eda/section3/starplot.htm Star Plot] in: ''e-Handbook of Statistical Methods''. 6/01/2003 (Date created)</ref> स्टार प्लॉट का उपयोग पहली बार 1877 में [[जॉर्ज वॉन मेयर]] द्वारा किया गया था।<ref>{{Citation |last=Mayr |first=Georg von |year=1877 |title=Die Gesetzmäßigkeit im Gesellschaftsleben |language=de |publisher=Oldenbourg |location=Munich |ol=23294909M }}, p.78. Linien-Diagramme im Kreise: Line charts in circles.</ref><ref name = "MF08">[[Michael Friendly]] (2008). [http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf "Milestones in the history of thematic cartography, statistical graphics, and data visualization"] {{Webarchive|url=https://web.archive.org/web/20180926124138/http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf |date=2018-09-26 }}.</ref> रडार चार्ट [[ग्लिफ़ प्लॉट]] से इस मायने में भिन्न होते हैं कि प्लॉट किए गए स्टार आकृति के निर्माण के लिए सभी चर का उपयोग किया जाता है। [[अग्रभूमि चर]] और [[पृष्ठभूमि चर]] में कोई पृथक्करण नहीं है। इसके बजाय, तारे के आकार की आकृतियाँ आमतौर पर पृष्ठ पर आयताकार सरणी में व्यवस्थित होती हैं। यदि अवलोकनों को कुछ गैर-मनमाना क्रम में व्यवस्थित किया जाता है (यदि चर को कुछ सार्थक क्रम में तारे की किरणों को सौंपा गया है) तो डेटा में पैटर्न देखना कुछ हद तक आसान है।<ref>Michael Friendly (1991). [http://www.math.yorku.ca/SCS/sugi/sugi16-paper.html "Statistical Graphics for Multivariate Data"]. Paper presented at the SAS SUGI 16 Conference, Apr, 1991.</ref>


== अनुप्रयोग ==
== अनुप्रयोग ==
[[File:MLB2021ShoheivsLeague.png|alt=Shohei Ohtaniके बल्लेबाजी आँकड़े बनाम एमएलबी औसत बल्लेबाजी आँकड़े|अंगूठे |300px |2021 एमएलबी सीज़न से बल्लेबाजी के आँकड़े दिखाने वाला एक रडार चार्ट। शूही ओहतानी, हरा, उस सीज़न के लिए डीएच, लाल और एमएलबी, नीले, औसत से बेहतर प्रदर्शन करता है, लेकिन अधिक बार स्ट्राइक भी करता है। https://www.baseball-reference.com/ से डेटा।]]रडार चार्ट का उपयोग खेल में खिलाड़ियों की ताकत और कमजोरियों को चार्ट करने के लिए किया जा सकता है<ref>[http://howtowatchsports.com/spider-graphs-charting-basketball-statistics/ Spider Graphs: Charting Basketball Statistics]</ref> खिलाड़ी से संबंधित विभिन्न आँकड़ों की गणना करके जिसे चार्ट के केंद्रीय अक्ष के साथ ट्रैक किया जा सकता है। उदाहरणों में बास्केट खिलाड़ी द्वारा लगाए गए शॉट, रिबाउंड, सहायता आदि, या बेसबॉल खिलाड़ी की बल्लेबाजी या पिचिंग आँकड़े शामिल हैं। यह किसी खिलाड़ी की ताकत और कमजोरियों का एक केंद्रीकृत दृश्य बनाता है, और यदि अन्य खिलाड़ियों या लीग औसत के आंकड़ों के साथ ओवरलैप किया जाता है, तो यह प्रदर्शित हो सकता है कि खिलाड़ी कहां उत्कृष्टता प्राप्त करता है और वे कहां सुधार कर सकते हैं।<ref>{{cite web |title=डेटा विज़ुअलाइज़ेशन को समझना|author=Seeing Data |publisher=Seeing Data|url=http://seeingdata.org/taketime/inside-the-chart-radar-chart/ |language=en-US}}</ref> These insights into player strengths and weakness could prove crucial to player development as it allows coaches and trainers to adjust a player's training regiment to help improve on their weaknesses. The results of the radar chart can also be useful in situational play. If a batter is shown to hit poorly against left-handed pitching, then his team knows to limit his plate appearances against left-handed pitchers, while the opposing team may try to force a situation where the batter is forced to hit against the pitcher.[[File:3VehiclePerformanceMetrics.png|alt=The performance metrics of 3 different types of vehicle|thumb |300px |सेडान, स्पोर्ट्स कार और पिकअप ट्रक के प्रदर्शन मेट्रिक्स में अंतर दिखाने वाला एक रडार चार्ट।]]रडार चार्ट का एक अन्य अनुप्रयोग कंप्यूटर प्रोग्राम सहित विभिन्न वस्तुओं के प्रदर्शन मेट्रिक्स को प्रदर्शित करने के लिए [[गुणवत्ता प्रबंधन]] का नियंत्रण है,<ref>Ron Basu (2004). ''Implementing Quality: A Practical Guide to Tools and Techniques''. p.131.</ref> कंप्यूटर, फ़ोन, वाहन, और बहुत कुछ। कंप्यूटर प्रोग्रामर अक्सर दूसरों की तुलना में अपने प्रोग्राम के प्रदर्शन का परीक्षण करने के लिए एनालिटिक्स का उपयोग करते हैं। इसका एक उदाहरण जहां रडार चार्ट उपयोगी हो सकते हैं वह विभिन्न सॉर्टिंग एल्गोरिदम का प्रदर्शन विश्लेषण है। एक प्रोग्रामर चयन, बबल और क्विक जैसे कई अलग-अलग सॉर्टिंग एल्गोरिदम इकट्ठा कर सकता है, फिर उनकी गति, मेमोरी उपयोग और पावर उपयोग को मापकर इन एल्गोरिदम के प्रदर्शन का विश्लेषण कर सकता है, फिर इन्हें रडार चार्ट पर ग्राफ़ करके देख सकता है कि प्रत्येक सॉर्ट कैसा प्रदर्शन करता है। डेटा के विभिन्न आकारों के अंतर्गत. एक अन्य प्रदर्शन एप्लिकेशन एक दूसरे के मुकाबले समान कारों के प्रदर्शन को माप रहा है। एक उपभोक्ता कारों की शीर्ष गति, मील प्रति गैलन, अश्वशक्ति और टॉर्क जैसे चर देख सकता है। फिर डेटा की कल्पना करने के लिए रडार चार्ट का उपयोग करने के बाद, वे परिणामों के आधार पर यह तय कर सकते हैं कि कौन सी कार उनके लिए सबसे अच्छी है।
[[File:MLB2021ShoheivsLeague.png|alt=Shohei Ohtaniके बल्लेबाजी आँकड़े बनाम एमएलबी औसत बल्लेबाजी आँकड़े|अंगूठे |300px |2021 एमएलबी सीज़न से बल्लेबाजी के आँकड़े दिखाने वाला एक रडार चार्ट। शूही ओहतानी, हरा, उस सीज़न के लिए डीएच, लाल और एमएलबी, नीले, औसत से बेहतर प्रदर्शन करता है, लेकिन अधिक बार स्ट्राइक भी करता है। https://www.baseball-reference.com/ से डेटा।]]रडार चार्ट का उपयोग खेल में खिलाड़ियों की ताकत और कमजोरियों को चार्ट करने के लिए किया जा सकता है<ref>[http://howtowatchsports.com/spider-graphs-charting-basketball-statistics/ Spider Graphs: Charting Basketball Statistics]</ref> खिलाड़ी से संबंधित विभिन्न आँकड़ों की गणना करके जिसे चार्ट के केंद्रीय अक्ष के साथ ट्रैक किया जा सकता है। उदाहरणों में बास्केट खिलाड़ी द्वारा लगाए गए शॉट, रिबाउंड, सहायता आदि, या बेसबॉल खिलाड़ी की बल्लेबाजी या पिचिंग आँकड़े शामिल हैं। यह किसी खिलाड़ी की ताकत और कमजोरियों का केंद्रीकृत दृश्य बनाता है, और यदि अन्य खिलाड़ियों या लीग औसत के आंकड़ों के साथ ओवरलैप किया जाता है, तो यह प्रदर्शित हो सकता है कि खिलाड़ी कहां उत्कृष्टता प्राप्त करता है और वे कहां सुधार कर सकते हैं।<ref>{{cite web |title=डेटा विज़ुअलाइज़ेशन को समझना|author=Seeing Data |publisher=Seeing Data|url=http://seeingdata.org/taketime/inside-the-chart-radar-chart/ |language=en-US}}</ref> These insights into player strengths and weakness could prove crucial to player development as it allows coaches and trainers to adjust a player's training regiment to help improve on their weaknesses. The results of the radar chart can also be useful in situational play. If a batter is shown to hit poorly against left-handed pitching, then his team knows to limit his plate appearances against left-handed pitchers, while the opposing team may try to force a situation where the batter is forced to hit against the pitcher.[[File:3VehiclePerformanceMetrics.png|alt=The performance metrics of 3 different types of vehicle|thumb |300px |सेडान, स्पोर्ट्स कार और पिकअप ट्रक के प्रदर्शन मेट्रिक्स में अंतर दिखाने वाला रडार चार्ट।]]रडार चार्ट का अन्य अनुप्रयोग कंप्यूटर प्रोग्राम सहित विभिन्न वस्तुओं के प्रदर्शन मेट्रिक्स को प्रदर्शित करने के लिए [[गुणवत्ता प्रबंधन]] का नियंत्रण है,<ref>Ron Basu (2004). ''Implementing Quality: A Practical Guide to Tools and Techniques''. p.131.</ref> कंप्यूटर, फ़ोन, वाहन, और बहुत कुछ। कंप्यूटर प्रोग्रामर अक्सर दूसरों की तुलना में अपने प्रोग्राम के प्रदर्शन का परीक्षण करने के लिए एनालिटिक्स का उपयोग करते हैं। इसका उदाहरण जहां रडार चार्ट उपयोगी हो सकते हैं वह विभिन्न सॉर्टिंग एल्गोरिदम का प्रदर्शन विश्लेषण है। प्रोग्रामर चयन, बबल और क्विक जैसे कई अलग-अलग सॉर्टिंग एल्गोरिदम इकट्ठा कर सकता है, फिर उनकी गति, मेमोरी उपयोग और पावर उपयोग को मापकर इन एल्गोरिदम के प्रदर्शन का विश्लेषण कर सकता है, फिर इन्हें रडार चार्ट पर ग्राफ़ करके देख सकता है कि प्रत्येक सॉर्ट कैसा प्रदर्शन करता है। डेटा के विभिन्न आकारों के अंतर्गत. अन्य प्रदर्शन एप्लिकेशन दूसरे के मुकाबले समान कारों के प्रदर्शन को माप रहा है। उपभोक्ता कारों की शीर्ष गति, मील प्रति गैलन, अश्वशक्ति और टॉर्क जैसे चर देख सकता है। फिर डेटा की कल्पना करने के लिए रडार चार्ट का उपयोग करने के बाद, वे परिणामों के आधार पर यह तय कर सकते हैं कि कौन सी कार उनके लिए सबसे अच्छी है।
[[Image:Wiki Radar Chart Example.png|thumb|300px|एक रडार चार्ट जो दो समुदायों की समानता दर्शाता है जिसमें कनेक्टेड जीनोमिक विंडो शामिल हैं; [[ जीनोम वास्तुकला मानचित्रण ]] देखें।]]रडार चार्ट का उपयोग जीवन विज्ञान में दवाओं और अन्य दवाओं की ताकत और कमजोरी को प्रदर्शित करने के लिए किया जा सकता है।<ref>{{cite web |title=रडार चार्ट का प्रभावी उपयोग|author=Model Systems Knowledge Translation Center |publisher=Model Systems Knowledge Translation Center |url=https://msktc.org/lib/docs/KT_Toolkit/Charts_and_Graphs/Charts_and_Graphics_Radar_508c.pdf |language=en-US}}</ref> दो अवसाद रोधी दवाओं के उदाहरण का उपयोग करके, एक शोधकर्ता एक से दस के पैमाने पर प्रभावकारिता, दुष्प्रभाव, लागत आदि जैसे चर को रैंक कर सकता है। फिर वे चर के प्रसार को देखने के लिए रडार चार्ट का उपयोग करके परिणामों को ग्राफ़ कर सकते हैं और पता लगा सकते हैं कि वे कैसे भिन्न हैं, जैसे कि एक एंटी-डिप्रेसेंट सस्ता और तेज़ काम करता है, लेकिन समय के साथ बड़ी राहत नहीं देता है। इस बीच, अन्य अवसाद रोधी दवा मजबूत राहत प्रदान करती है और समय के साथ बेहतर बनी रहती है लेकिन अधिक महंगी होती है। जीवन विज्ञान का एक अन्य अनुप्रयोग रोगी विश्लेषण में है। रडार चार्ट का उपयोग किसी व्यक्ति के स्वास्थ्य को प्रभावित करने वाले जीवन के चरों को रेखांकन करने के लिए किया जा सकता है, और फिर उनकी मदद के लिए उनका विश्लेषण किया जा सकता है। एक अधिक विशिष्ट उदाहरण एथलीटों के मामले में है, जिनकी विभिन्न स्वास्थ्य आदतों जैसे नींद, आहार और तनाव की निगरानी की जाती है ताकि यह सुनिश्चित किया जा सके कि वे चरम शारीरिक स्थिति में रहें।<ref>{{cite web |title=डी-सामान्यीकृत स्पाइडर और रडार ग्राफ़|author=John Maguire |publisher=Kitman Labs |url=https://www.kitmanlabs.com/ |language=en-US}}</ref> यदि किसी भी क्षेत्र में गिरावट दिखाई देती है, तो डॉक्टर और प्रशिक्षक एथलीट की सहायता के लिए आगे आ सकते हैं और उनके स्वास्थ्य में सुधार कर सकते हैं।
[[Image:Wiki Radar Chart Example.png|thumb|300px|रडार चार्ट जो दो समुदायों की समानता दर्शाता है जिसमें कनेक्टेड जीनोमिक विंडो शामिल हैं; [[ जीनोम वास्तुकला मानचित्रण ]] देखें।]]रडार चार्ट का उपयोग जीवन विज्ञान में दवाओं और अन्य दवाओं की ताकत और कमजोरी को प्रदर्शित करने के लिए किया जा सकता है।<ref>{{cite web |title=रडार चार्ट का प्रभावी उपयोग|author=Model Systems Knowledge Translation Center |publisher=Model Systems Knowledge Translation Center |url=https://msktc.org/lib/docs/KT_Toolkit/Charts_and_Graphs/Charts_and_Graphics_Radar_508c.pdf |language=en-US}}</ref> दो अवसाद रोधी दवाओं के उदाहरण का उपयोग करके, शोधकर्ता से दस के पैमाने पर प्रभावकारिता, दुष्प्रभाव, लागत आदि जैसे चर को रैंक कर सकता है। फिर वे चर के प्रसार को देखने के लिए रडार चार्ट का उपयोग करके परिणामों को ग्राफ़ कर सकते हैं और पता लगा सकते हैं कि वे कैसे भिन्न हैं, जैसे कि एंटी-डिप्रेसेंट सस्ता और तेज़ काम करता है, लेकिन समय के साथ बड़ी राहत नहीं देता है। इस बीच, अन्य अवसाद रोधी दवा मजबूत राहत प्रदान करती है और समय के साथ बेहतर बनी रहती है लेकिन अधिक महंगी होती है। जीवन विज्ञान का अन्य अनुप्रयोग रोगी विश्लेषण में है। रडार चार्ट का उपयोग किसी व्यक्ति के स्वास्थ्य को प्रभावित करने वाले जीवन के चरों को रेखांकन करने के लिए किया जा सकता है, और फिर उनकी मदद के लिए उनका विश्लेषण किया जा सकता है। अधिक विशिष्ट उदाहरण एथलीटों के मामले में है, जिनकी विभिन्न स्वास्थ्य आदतों जैसे नींद, आहार और तनाव की निगरानी की जाती है ताकि यह सुनिश्चित किया जा सके कि वे चरम शारीरिक स्थिति में रहें।<ref>{{cite web |title=डी-सामान्यीकृत स्पाइडर और रडार ग्राफ़|author=John Maguire |publisher=Kitman Labs |url=https://www.kitmanlabs.com/ |language=en-US}}</ref> यदि किसी भी क्षेत्र में गिरावट दिखाई देती है, तो डॉक्टर और प्रशिक्षक एथलीट की सहायता के लिए आगे आ सकते हैं और उनके स्वास्थ्य में सुधार कर सकते हैं।


== सीमाएँ ==
== सीमाएँ ==
रडार चार्ट मुख्य रूप से आउटलेर्स और [[समानता]] दिखाने के लिए उपयुक्त होते हैं, या जब एक चार्ट दूसरे की तुलना में प्रत्येक चर में अधिक होता है, और मुख्य रूप से सामान्य स्केल के लिए उपयोग किया जाता है - जहां प्रत्येक चर कुछ मामलों में बेहतर से मेल खाता है, और सभी चर एक ही पैमाने पर होते हैं।
रडार चार्ट मुख्य रूप से आउटलेर्स और [[समानता]] दिखाने के लिए उपयुक्त होते हैं, या जब चार्ट दूसरे की तुलना में प्रत्येक चर में अधिक होता है, और मुख्य रूप से सामान्य स्केल के लिए उपयोग किया जाता है - जहां प्रत्येक चर कुछ मामलों में बेहतर से मेल खाता है, और सभी चर ही पैमाने पर होते हैं।


इसके विपरीत, रडार चार्ट की आलोचना की गई है क्योंकि यह व्यापार-बंद निर्णय लेने के लिए उपयुक्त नहीं है - जब एक चार्ट कुछ चर पर दूसरे से अधिक होता है, लेकिन दूसरों पर कम होता है।<ref>[http://chandoo.org/wp/2008/09/18/better-radar-charts-excel/ You are NOT spider man, so why do you use radar charts?], by Chandoo, September 18th, 2008</ref>
इसके विपरीत, रडार चार्ट की आलोचना की गई है क्योंकि यह व्यापार-बंद निर्णय लेने के लिए उपयुक्त नहीं है - जब चार्ट कुछ चर पर दूसरे से अधिक होता है, लेकिन दूसरों पर कम होता है।<ref>[http://chandoo.org/wp/2008/09/18/better-radar-charts-excel/ You are NOT spider man, so why do you use radar charts?], by Chandoo, September 18th, 2008</ref>
इसके अलावा, विभिन्न तीलियों की लंबाई की तुलना करना कठिन है, क्योंकि रेडियल दूरियों का आकलन करना कठिन है, हालांकि संकेंद्रित वृत्त ग्रिड लाइनों के रूप में मदद करते हैं। इसके बजाय, कोई एक सरल रेखा ग्राफ़ का उपयोग कर सकता है, विशेष रूप से समय श्रृंखला के लिए।<ref name="ratc" />
इसके अलावा, विभिन्न तीलियों की लंबाई की तुलना करना कठिन है, क्योंकि रेडियल दूरियों का आकलन करना कठिन है, हालांकि संकेंद्रित वृत्त ग्रिड लाइनों के रूप में मदद करते हैं। इसके बजाय, कोई सरल रेखा ग्राफ़ का उपयोग कर सकता है, विशेष रूप से समय श्रृंखला के लिए।<ref name="ratc" />


रडार चार्ट कुछ हद तक डेटा को विकृत कर सकते हैं, खासकर जब क्षेत्र भरे हुए हों, क्योंकि इसमें शामिल क्षेत्र रैखिक माप के वर्ग के समानुपाती हो जाता है। उदाहरण के लिए, 1 से 100 तक के 5 चर वाले चार्ट में, जब सभी माप 90 होते हैं, तो 5 बिंदुओं से घिरे बहुभुज में निहित क्षेत्र 82 के सभी मान वाले चार्ट की तुलना में 10% से अधिक बड़ा होता है।
रडार चार्ट कुछ हद तक डेटा को विकृत कर सकते हैं, खासकर जब क्षेत्र भरे हुए हों, क्योंकि इसमें शामिल क्षेत्र रैखिक माप के वर्ग के समानुपाती हो जाता है। उदाहरण के लिए, 1 से 100 तक के 5 चर वाले चार्ट में, जब सभी माप 90 होते हैं, तो 5 बिंदुओं से घिरे बहुभुज में निहित क्षेत्र 82 के सभी मान वाले चार्ट की तुलना में 10% से अधिक बड़ा होता है।
Line 27: Line 26:
रडार चार्ट डेटा पर कई संरचनाएं लगाते हैं, जो अक्सर कृत्रिम होती हैं:
रडार चार्ट डेटा पर कई संरचनाएं लगाते हैं, जो अक्सर कृत्रिम होती हैं:
* पड़ोसियों की संबद्धता - रडार चार्ट का उपयोग अक्सर तब किया जाता है जब पड़ोसी चर असंबंधित होते हैं, जिससे नकली कनेक्शन बनते हैं।
* पड़ोसियों की संबद्धता - रडार चार्ट का उपयोग अक्सर तब किया जाता है जब पड़ोसी चर असंबंधित होते हैं, जिससे नकली कनेक्शन बनते हैं।
* चक्रीय संरचना - पहला और अंतिम चर एक दूसरे के बगल में रखे गए हैं।
* चक्रीय संरचना - पहला और अंतिम चर दूसरे के बगल में रखे गए हैं।
* लंबाई - चर अक्सर सबसे स्वाभाविक रूप से क्रमिक होते हैं: बेहतर या बदतर, हालांकि अंतर की डिग्री कृत्रिम हो सकती है।
* लंबाई - चर अक्सर सबसे स्वाभाविक रूप से क्रमिक होते हैं: बेहतर या बदतर, हालांकि अंतर की डिग्री कृत्रिम हो सकती है।
* क्षेत्रफल - क्षेत्रफल को मानों के वर्ग के रूप में मापा जाता है, जो बड़ी संख्याओं के प्रभाव को बढ़ा-चढ़ाकर बताता है। उदाहरण के लिए, 2, 2, 1, 1 के क्षेत्रफल का 4 गुना लेता है। क्षेत्रफल ग्राफ़ के साथ यह एक सामान्य समस्या है, और क्षेत्रफल का निर्धारण करना कठिन है - क्लीवलैंड का पदानुक्रम देखें।<ref>{{cite journal |last1=Cleveland |first1=William |last2=McGill |first2=Robert |title=Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods |date=1984 |journal=Journal of the American Statistical Association |volume=79 |issue=387 |pages=531–554 |jstor=2288400}} [https://web.archive.org/web/20100325233432/http://processtrends.com/toc_data_visualization.htm Summary of Cleveland's hierarchy]</ref>
* क्षेत्रफल - क्षेत्रफल को मानों के वर्ग के रूप में मापा जाता है, जो बड़ी संख्याओं के प्रभाव को बढ़ा-चढ़ाकर बताता है। उदाहरण के लिए, 2, 2, 1, 1 के क्षेत्रफल का 4 गुना लेता है। क्षेत्रफल ग्राफ़ के साथ यह सामान्य समस्या है, और क्षेत्रफल का निर्धारण करना कठिन है - क्लीवलैंड का पदानुक्रम देखें।<ref>{{cite journal |last1=Cleveland |first1=William |last2=McGill |first2=Robert |title=Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods |date=1984 |journal=Journal of the American Statistical Association |volume=79 |issue=387 |pages=531–554 |jstor=2288400}} [https://web.archive.org/web/20100325233432/http://processtrends.com/toc_data_visualization.htm Summary of Cleveland's hierarchy]</ref>  
<!--{{Harv|Cleveland|1984}}, summarized at http://processtrends.com/toc_data_visualization.htm (dead link) {{webarchive |url=https://web.archive.org/web/20100325233432/http://processtrends.com/toc_data_visualization.htm |date=March 25, 2010 }}</ref> -->
उदाहरण के लिए, वैकल्पिक डेटा 9, 1, 9, 1, 9, 1 स्पाइकिंग रडार चार्ट उत्पन्न करता है (जो अंदर और बाहर जाता है), जबकि 9, 9, 9, 1, 1, 1 के रूप में डेटा को पुन: व्यवस्थित करने के बजाय दो अलग-अलग परिणाम मिलते हैं वेजेज (सेक्टर)।
उदाहरण के लिए, वैकल्पिक डेटा 9, 1, 9, 1, 9, 1 एक स्पाइकिंग रडार चार्ट उत्पन्न करता है (जो अंदर और बाहर जाता है), जबकि 9, 9, 9, 1, 1, 1 के रूप में डेटा को पुन: व्यवस्थित करने के बजाय दो अलग-अलग परिणाम मिलते हैं वेजेज (सेक्टर)।


कुछ मामलों में एक प्राकृतिक संरचना होती है, और रडार चार्ट उपयुक्त हो सकते हैं। उदाहरण के लिए, डेटा के आरेखों के लिए जो 24-घंटे के चक्र में भिन्न होते हैं, प्रति घंटा डेटा स्वाभाविक रूप से अपने पड़ोसी से संबंधित होता है, और इसमें चक्रीय संरचना होती है, इसलिए इसे स्वाभाविक रूप से रडार चार्ट के रूप में प्रदर्शित किया जा सकता है।<ref name="ratc">{{cite web|last=Peltier |first=Jon |url=http://peltiertech.com/WordPress/rock-around-the-clock/ |title=रॉक अराउंड द क्लॉक - पेल्टियर टेक ब्लॉग|publisher=Peltiertech.com |date=2008-08-14 |access-date=2013-09-11}}</ref><ref>{{cite web|url=http://www.excelcharts.com/blog/charting-around-the-clock/ |title=चौबीस घंटे चार्टिंग एक्सेल चार्ट ब्लॉग|publisher=Excelcharts.com |date=2008-08-15 |access-date=2013-09-11}}</ref><ref name="clockthis">[http://i-ocean.blogspot.com/2008/08/clock-this.html Clock This]</ref>
कुछ मामलों में प्राकृतिक संरचना होती है, और रडार चार्ट उपयुक्त हो सकते हैं। उदाहरण के लिए, डेटा के आरेखों के लिए जो 24-घंटे के चक्र में भिन्न होते हैं, प्रति घंटा डेटा स्वाभाविक रूप से अपने पड़ोसी से संबंधित होता है, और इसमें चक्रीय संरचना होती है, इसलिए इसे स्वाभाविक रूप से रडार चार्ट के रूप में प्रदर्शित किया जा सकता है।<ref name="ratc">{{cite web|last=Peltier |first=Jon |url=http://peltiertech.com/WordPress/rock-around-the-clock/ |title=रॉक अराउंड द क्लॉक - पेल्टियर टेक ब्लॉग|publisher=Peltiertech.com |date=2008-08-14 |access-date=2013-09-11}}</ref><ref>{{cite web|url=http://www.excelcharts.com/blog/charting-around-the-clock/ |title=चौबीस घंटे चार्टिंग एक्सेल चार्ट ब्लॉग|publisher=Excelcharts.com |date=2008-08-15 |access-date=2013-09-11}}</ref><ref name="clockthis">[http://i-ocean.blogspot.com/2008/08/clock-this.html Clock This]</ref>
रडार चार्ट (या बल्कि निकट से संबंधित ध्रुवीय क्षेत्र ग्राफ) के उपयोग पर दिशानिर्देशों का एक सेट है:<ref name="clockthis" />* आपको सामान्य पैमाने पर स्थिति के बजाय स्टैक्ड क्षेत्रों को पढ़ने में कोई आपत्ति नहीं है (क्लीवलैंड के पदानुक्रम देखें),
रडार चार्ट (या बल्कि निकट से संबंधित ध्रुवीय क्षेत्र ग्राफ) के उपयोग पर दिशानिर्देशों का सेट है:<ref name="clockthis" />* आपको सामान्य पैमाने पर स्थिति के बजाय स्टैक्ड क्षेत्रों को पढ़ने में कोई आपत्ति नहीं है (क्लीवलैंड के पदानुक्रम देखें),
* डेटा सेट वास्तव में चक्रीय है, रैखिक नहीं, और
* डेटा सेट वास्तव में चक्रीय है, रैखिक नहीं, और
* तुलना करने के लिए दो श्रृंखलाएँ हैं, एक दूसरी से बहुत छोटी
* तुलना करने के लिए दो श्रृंखलाएँ हैं, दूसरी से बहुत छोटी


=== [[डेटा सेट]] का आकार ===
=== [[डेटा सेट]] का आकार ===
Line 43: Line 41:
इसके अलावा, जब कई आयामों या नमूनों के साथ रडार चार्ट का उपयोग किया जाता है, तो नमूनों की संख्या बढ़ने पर रडार चार्ट अव्यवस्थित हो सकता है और इसकी व्याख्या करना कठिन हो सकता है।
इसके अलावा, जब कई आयामों या नमूनों के साथ रडार चार्ट का उपयोग किया जाता है, तो नमूनों की संख्या बढ़ने पर रडार चार्ट अव्यवस्थित हो सकता है और इसकी व्याख्या करना कठिन हो सकता है।


उदाहरण के लिए, एमएलबी 2021 एमवीपी शोहेई ओहतानी की तुलना लीग के औसत नामित हिटरों और कुछ हॉल ऑफ फेम खिलाड़ियों के आंकड़ों से तुलना करने वाली बल्लेबाजी सांख्यिकी तालिका को लें। ये आँकड़े किसी खिलाड़ी के बल्ले पर हिट, होम रन, स्ट्राइक आउट आदि का प्रतिशत दर्शाते हैं। तालिका में प्रयुक्त प्रत्येक आँकड़ा क्या दर्शाता है, इसके बारे में अधिक जानकारी के लिए, आप एमएलबी के इस संदर्भ का संदर्भ ले सकते हैं।<ref>{{Cite web |title=मानक आँकड़े|url=https://www.mlb.com/glossary/standard-stats |access-date=2022-04-26 |website=www.mlb.com}}</ref> प्रदर्शन मेट्रिक्स की कल्पना करने और स्पष्ट रूप से इस निष्कर्ष पर पहुंचने के प्रयास में कि हम नामित हिटर्स और नियमित बल्लेबाजों के लिए 2021 एमवीपी बल्लेबाजी आंकड़ों की लीग औसत से तुलना करते हुए रडार चार्ट बनाने के लिए नीचे दी गई इस तालिका का उपयोग करेंगे और इस निष्कर्ष पर पहुंचेंगे कि शोहेई ने औसत खिलाड़ी का प्रदर्शन किया है। इसके बाद हम हॉल ऑफ फेम खिलाड़ियों जैकी रॉबिन्सन, जिम थॉम और फ्रैंक थॉमस का उपयोग करके रडार चार्ट में अतिरिक्त नमूने शामिल करेंगे, ताकि शोहेई की तुलना सभी समय के कुछ महानतम बल्लेबाजों से की जा सके। यह राडार चार्ट न केवल हमें यह अंतर्ज्ञान दे सकता है कि शोहेई शीर्ष ऐतिहासिक खिलाड़ियों की तुलना कैसे करता है, बल्कि राडार चार्ट में बहुत सारे नमूने होने की सीमाओं को दिखाने में भी एक उद्देश्य पूरा करेगा।
उदाहरण के लिए, एमएलबी 2021 एमवीपी शोहेई ओहतानी की तुलना लीग के औसत नामित हिटरों और कुछ हॉल ऑफ फेम खिलाड़ियों के आंकड़ों से तुलना करने वाली बल्लेबाजी सांख्यिकी तालिका को लें। ये आँकड़े किसी खिलाड़ी के बल्ले पर हिट, होम रन, स्ट्राइक आउट आदि का प्रतिशत दर्शाते हैं। तालिका में प्रयुक्त प्रत्येक आँकड़ा क्या दर्शाता है, इसके बारे में अधिक जानकारी के लिए, आप एमएलबी के इस संदर्भ का संदर्भ ले सकते हैं।<ref>{{Cite web |title=मानक आँकड़े|url=https://www.mlb.com/glossary/standard-stats |access-date=2022-04-26 |website=www.mlb.com}}</ref> प्रदर्शन मेट्रिक्स की कल्पना करने और स्पष्ट रूप से इस निष्कर्ष पर पहुंचने के प्रयास में कि हम नामित हिटर्स और नियमित बल्लेबाजों के लिए 2021 एमवीपी बल्लेबाजी आंकड़ों की लीग औसत से तुलना करते हुए रडार चार्ट बनाने के लिए नीचे दी गई इस तालिका का उपयोग करेंगे और इस निष्कर्ष पर पहुंचेंगे कि शोहेई ने औसत खिलाड़ी का प्रदर्शन किया है। इसके बाद हम हॉल ऑफ फेम खिलाड़ियों जैकी रॉबिन्सन, जिम थॉम और फ्रैंक थॉमस का उपयोग करके रडार चार्ट में अतिरिक्त नमूने शामिल करेंगे, ताकि शोहेई की तुलना सभी समय के कुछ महानतम बल्लेबाजों से की जा सके। यह राडार चार्ट न केवल हमें यह अंतर्ज्ञान दे सकता है कि शोहेई शीर्ष ऐतिहासिक खिलाड़ियों की तुलना कैसे करता है, बल्कि राडार चार्ट में बहुत सारे नमूने होने की सीमाओं को दिखाने में भी उद्देश्य पूरा करेगा।


{| class="wikitable"
{| class="wikitable"
Line 76: Line 74:
#  लंबाई
#  लंबाई


हम इन भूखंडों को व्यक्तिगत रूप से देख सकते हैं या समान सुविधाओं वाली कारों के समूहों की पहचान करने के लिए उनका उपयोग कर सकते हैं। उदाहरण के लिए, हम [[कैडिलैक]] सेविले (छवि पर आखिरी वाली) के स्टार प्लॉट को देख सकते हैं और देख सकते हैं कि यह सबसे महंगी कारों में से एक है, औसत से नीचे (लेकिन सबसे खराब में से नहीं) गैस माइलेज देती है, औसत है मरम्मत रिकॉर्ड, और इसमें औसत से औसत से ऊपर की जगह और आकार है। फिर हम कैडिलैक मॉडल (अंतिम तीन प्लॉट) की तुलना एएमसी मॉडल (पहले तीन प्लॉट) से कर सकते हैं। यह तुलना अलग-अलग पैटर्न दिखाती है. एएमसी मॉडल सस्ते होते हैं, उनका गैस माइलेज औसत से कम होता है, और ऊंचाई, वजन और जगह दोनों में छोटे होते हैं। कैडिलैक मॉडल महंगे हैं, गैस माइलेज कम है, और आकार और जगह दोनों में बड़े हैं।<ref name="NIST03"/>
हम इन भूखंडों को व्यक्तिगत रूप से देख सकते हैं या समान सुविधाओं वाली कारों के समूहों की पहचान करने के लिए उनका उपयोग कर सकते हैं। उदाहरण के लिए, हम [[कैडिलैक]] सेविले (छवि पर आखिरी वाली) के स्टार प्लॉट को देख सकते हैं और देख सकते हैं कि यह सबसे महंगी कारों में से है, औसत से नीचे (लेकिन सबसे खराब में से नहीं) गैस माइलेज देती है, औसत है मरम्मत रिकॉर्ड, और इसमें औसत से औसत से ऊपर की जगह और आकार है। फिर हम कैडिलैक मॉडल (अंतिम तीन प्लॉट) की तुलना एएमसी मॉडल (पहले तीन प्लॉट) से कर सकते हैं। यह तुलना अलग-अलग पैटर्न दिखाती है. एएमसी मॉडल सस्ते होते हैं, उनका गैस माइलेज औसत से कम होता है, और ऊंचाई, वजन और जगह दोनों में छोटे होते हैं। कैडिलैक मॉडल महंगे हैं, गैस माइलेज कम है, और आकार और जगह दोनों में बड़े हैं।<ref name="NIST03"/>
 


== विकल्प ==
== विकल्प ==
कोई समय श्रृंखला और अन्य डेटा के लिए लाइन ग्राफ़ का उपयोग कर सकता है,<ref name="ratc" />समानांतर निर्देशांक के रूप में.
कोई समय श्रृंखला और अन्य डेटा के लिए लाइन ग्राफ़ का उपयोग कर सकता है,<ref name="ratc" />समानांतर निर्देशांक के रूप में.


कई चरों में 2-आयामी सारणीबद्ध डेटा की ग्राफिकल गुणात्मक तुलना के लिए, एक सामान्य विकल्प [[हार्वे बॉल्स]] हैं, जिनका [[उपभोक्ता रिपोर्ट]] द्वारा बड़े पैमाने पर उपयोग किया जाता है।<ref>{{cite web |url=http://supportanalytics.com/blog/2007/12/qualitative-comparison/ |title=गुणात्मक तुलना|author=<!--Staff writer(s); no by-line.--> |date=11 December 2007 |website=Support Analytics Blog |publisher=<!--Substantially similar to website.--> |archive-url=https://web.archive.org/web/20120408192509/http://supportanalytics.com/blog/2007/12/qualitative-comparison/ |archive-date=2012-04-08}}</ref> हार्वे गेंदों (और रडार चार्ट) में तुलना को क्रम जोड़ने के लिए एल्गोरिदमिक रूप से चर को क्रमबद्ध करके महत्वपूर्ण सहायता मिल सकती है।<ref name="reorder" />
कई चरों में 2-आयामी सारणीबद्ध डेटा की ग्राफिकल गुणात्मक तुलना के लिए, सामान्य विकल्प [[हार्वे बॉल्स]] हैं, जिनका [[उपभोक्ता रिपोर्ट]] द्वारा बड़े पैमाने पर उपयोग किया जाता है।<ref>{{cite web |url=http://supportanalytics.com/blog/2007/12/qualitative-comparison/ |title=गुणात्मक तुलना|author=<!--Staff writer(s); no by-line.--> |date=11 December 2007 |website=Support Analytics Blog |publisher=<!--Substantially similar to website.--> |archive-url=https://web.archive.org/web/20120408192509/http://supportanalytics.com/blog/2007/12/qualitative-comparison/ |archive-date=2012-04-08}}</ref> हार्वे गेंदों (और रडार चार्ट) में तुलना को क्रम जोड़ने के लिए एल्गोरिदमिक रूप से चर को क्रमबद्ध करके महत्वपूर्ण सहायता मिल सकती है।<ref name="reorder" />
 
बहुभिन्नरूपी डेटा के भीतर संरचनाओं को देखने का एक उत्कृष्ट तरीका प्रमुख घटक विश्लेषण (पीसीए) द्वारा पेश किया जाता है।


एक अन्य विकल्प छोटे, इनलाइन बार चार्ट का उपयोग करना है, जिसकी तुलना [[स्पार्कलाइन]] से की जा सकती है।<ref name="reorder">{{cite web|url=http://i-ocean.blogspot.com/2008/09/reorderable-tables-ii-bertin-versus.html |title=Information Ocean: Reorderable tables II: Bertin versus the Spiders |publisher=I-ocean.blogspot.com |date=2008-09-24 |access-date=2013-09-11}}</ref>
बहुभिन्नरूपी डेटा के भीतर संरचनाओं को देखने का उत्कृष्ट तरीका प्रमुख घटक विश्लेषण (पीसीए) द्वारा पेश किया जाता है।
हालाँकि रडार और ध्रुवीय चार्ट को अक्सर एक ही चार्ट प्रकार के रूप में वर्णित किया जाता है,<ref name=radarandpolar />कुछ स्रोत उनके बीच अंतर करते हैं और यहां तक ​​कि रडार चार्ट को एक ध्रुवीय चार्ट का रूपांतर मानते हैं जो ध्रुवीय समन्वय के संदर्भ में डेटा प्रदर्शित नहीं करता है।<ref>{{cite web|url=https://msdn.microsoft.com/en-us/library/dd239337.aspx |title=ध्रुवीय चार्ट (रिपोर्ट बिल्डर और एसएसआरएस)|publisher=Microsoft Developer Network |access-date=December 17, 2015}}</ref>


अन्य विकल्प छोटे, इनलाइन बार चार्ट का उपयोग करना है, जिसकी तुलना [[स्पार्कलाइन]] से की जा सकती है।<ref name="reorder">{{cite web|url=http://i-ocean.blogspot.com/2008/09/reorderable-tables-ii-bertin-versus.html |title=Information Ocean: Reorderable tables II: Bertin versus the Spiders |publisher=I-ocean.blogspot.com |date=2008-09-24 |access-date=2013-09-11}}</ref>
हालाँकि रडार और ध्रुवीय चार्ट को अक्सर ही चार्ट प्रकार के रूप में वर्णित किया जाता है,<ref name=radarandpolar />कुछ स्रोत उनके बीच अंतर करते हैं और यहां तक ​​कि रडार चार्ट को ध्रुवीय चार्ट का रूपांतर मानते हैं जो ध्रुवीय समन्वय के संदर्भ में डेटा प्रदर्शित नहीं करता है।<ref>{{cite web|url=https://msdn.microsoft.com/en-us/library/dd239337.aspx |title=ध्रुवीय चार्ट (रिपोर्ट बिल्डर और एसएसआरएस)|publisher=Microsoft Developer Network |access-date=December 17, 2015}}</ref>


== यह भी देखें ==
== यह भी देखें ==

Revision as of 20:49, 14 July 2023

नासा के स्टार प्लॉट का उदाहरण, कुछ सबसे वांछनीय डिज़ाइन परिणामों को केंद्र में दर्शाया गया है
यह स्पाइडर चार्ट किसी दिए गए संगठन के लिए आवंटित बजट बनाम वास्तविक खर्च का प्रतिनिधित्व करता है।

रडार चार्ट ही बिंदु से शुरू होने वाले अक्षों पर दर्शाए गए तीन या अधिक मात्रात्मक चर के दो-आयामी चार्ट के रूप में बहुभिन्नरूपी सांख्यिकी डेटा प्रदर्शित करने के ग्राफिकल तरीकों की सूची है। अक्षों की सापेक्ष स्थिति और कोण आम तौर पर सूचनात्मक नहीं है, लेकिन विभिन्न आंकड़े, जैसे कि एल्गोरिदम जो डेटा को अधिकतम कुल क्षेत्र के रूप में प्लॉट करते हैं, को चर (अक्षों) को सापेक्ष स्थितियों में क्रमबद्ध करने के लिए लागू किया जा सकता है जो अलग-अलग सहसंबंध, व्यापार-बंद प्रकट करते हैं, और कई अन्य तुलनात्मक उपाय।[1]

रडार चार्ट को वेब चार्ट, स्पाइडर चार्ट, स्पाइडर ग्राफ, स्पाइडर वेब चार्ट, स्टार चार्ट, के रूप में भी जाना जाता है।[2] स्टार प्लॉट, कोबवेब चार्ट, अनियमित बहुभुज, ध्रुवीय चार्ट, या किविएट आरेख।[3][4] यह समानांतर निर्देशांक प्लॉट के समतुल्य है, जिसमें अक्ष रेडियल रूप से व्यवस्थित हैं।

सिंहावलोकन

रडार चार्ट चार्ट और/या प्लॉट (ग्राफिक्स) है जिसमें सम-कोणीय तीलियों का क्रम होता है, जिसे रेडी कहा जाता है, जिसमें प्रत्येक तीली चर का प्रतिनिधित्व करती है। किसी स्पोक की डेटा लंबाई सभी डेटा बिंदुओं पर चर के अधिकतम परिमाण के सापेक्ष डेटा बिंदु के लिए चर के परिमाण के समानुपाती होती है। प्रत्येक स्पोक के लिए डेटा मानों को जोड़ने वाली रेखा खींची जाती है। इससे कथानक को तारे जैसा स्वरूप मिलता है और इस कथानक के लिए लोकप्रिय नामों में से की उत्पत्ति होती है। स्टार प्लॉट का उपयोग निम्नलिखित प्रश्नों के उत्तर देने के लिए किया जा सकता है:[5]* कौन से अवलोकन सबसे अधिक समान हैं, यानी, क्या अवलोकनों के समूह हैं? (रडार चार्ट का उपयोग एकल डेटा बिंदु के सापेक्ष मूल्यों की जांच करने के लिए किया जाता है (उदाहरण के लिए, बिंदु 3 चर 2 और 4 के लिए बड़ा है, चर 1, 3, 5, और 6 के लिए छोटा है) और समान बिंदुओं या असमान बिंदुओं का पता लगाने के लिए।)[5]*क्या आउटलेयर हैं?

रडार चार्ट मनमाने ढंग से चर की संख्या के साथ बहुभिन्नरूपी सांख्यिकी अवलोकन प्रदर्शित करने का उपयोगी तरीका है।[6] प्रत्येक तारा एकल अवलोकन का प्रतिनिधित्व करता है। आमतौर पर, रडार चार्ट मल्टी-प्लॉट प्रारूप में तैयार किए जाते हैं, जिसमें प्रत्येक पृष्ठ पर कई सितारे होते हैं और प्रत्येक सितारा अवलोकन का प्रतिनिधित्व करता है।[5] स्टार प्लॉट का उपयोग पहली बार 1877 में जॉर्ज वॉन मेयर द्वारा किया गया था।[7][8] रडार चार्ट ग्लिफ़ प्लॉट से इस मायने में भिन्न होते हैं कि प्लॉट किए गए स्टार आकृति के निर्माण के लिए सभी चर का उपयोग किया जाता है। अग्रभूमि चर और पृष्ठभूमि चर में कोई पृथक्करण नहीं है। इसके बजाय, तारे के आकार की आकृतियाँ आमतौर पर पृष्ठ पर आयताकार सरणी में व्यवस्थित होती हैं। यदि अवलोकनों को कुछ गैर-मनमाना क्रम में व्यवस्थित किया जाता है (यदि चर को कुछ सार्थक क्रम में तारे की किरणों को सौंपा गया है) तो डेटा में पैटर्न देखना कुछ हद तक आसान है।[9]

अनुप्रयोग

Shohei Ohtaniके बल्लेबाजी आँकड़े बनाम एमएलबी औसत बल्लेबाजी आँकड़ेरडार चार्ट का उपयोग खेल में खिलाड़ियों की ताकत और कमजोरियों को चार्ट करने के लिए किया जा सकता है[10] खिलाड़ी से संबंधित विभिन्न आँकड़ों की गणना करके जिसे चार्ट के केंद्रीय अक्ष के साथ ट्रैक किया जा सकता है। उदाहरणों में बास्केट खिलाड़ी द्वारा लगाए गए शॉट, रिबाउंड, सहायता आदि, या बेसबॉल खिलाड़ी की बल्लेबाजी या पिचिंग आँकड़े शामिल हैं। यह किसी खिलाड़ी की ताकत और कमजोरियों का केंद्रीकृत दृश्य बनाता है, और यदि अन्य खिलाड़ियों या लीग औसत के आंकड़ों के साथ ओवरलैप किया जाता है, तो यह प्रदर्शित हो सकता है कि खिलाड़ी कहां उत्कृष्टता प्राप्त करता है और वे कहां सुधार कर सकते हैं।[11] These insights into player strengths and weakness could prove crucial to player development as it allows coaches and trainers to adjust a player's training regiment to help improve on their weaknesses. The results of the radar chart can also be useful in situational play. If a batter is shown to hit poorly against left-handed pitching, then his team knows to limit his plate appearances against left-handed pitchers, while the opposing team may try to force a situation where the batter is forced to hit against the pitcher.

The performance metrics of 3 different types of vehicle
सेडान, स्पोर्ट्स कार और पिकअप ट्रक के प्रदर्शन मेट्रिक्स में अंतर दिखाने वाला रडार चार्ट।

रडार चार्ट का अन्य अनुप्रयोग कंप्यूटर प्रोग्राम सहित विभिन्न वस्तुओं के प्रदर्शन मेट्रिक्स को प्रदर्शित करने के लिए गुणवत्ता प्रबंधन का नियंत्रण है,[12] कंप्यूटर, फ़ोन, वाहन, और बहुत कुछ। कंप्यूटर प्रोग्रामर अक्सर दूसरों की तुलना में अपने प्रोग्राम के प्रदर्शन का परीक्षण करने के लिए एनालिटिक्स का उपयोग करते हैं। इसका उदाहरण जहां रडार चार्ट उपयोगी हो सकते हैं वह विभिन्न सॉर्टिंग एल्गोरिदम का प्रदर्शन विश्लेषण है। प्रोग्रामर चयन, बबल और क्विक जैसे कई अलग-अलग सॉर्टिंग एल्गोरिदम इकट्ठा कर सकता है, फिर उनकी गति, मेमोरी उपयोग और पावर उपयोग को मापकर इन एल्गोरिदम के प्रदर्शन का विश्लेषण कर सकता है, फिर इन्हें रडार चार्ट पर ग्राफ़ करके देख सकता है कि प्रत्येक सॉर्ट कैसा प्रदर्शन करता है। डेटा के विभिन्न आकारों के अंतर्गत. अन्य प्रदर्शन एप्लिकेशन दूसरे के मुकाबले समान कारों के प्रदर्शन को माप रहा है। उपभोक्ता कारों की शीर्ष गति, मील प्रति गैलन, अश्वशक्ति और टॉर्क जैसे चर देख सकता है। फिर डेटा की कल्पना करने के लिए रडार चार्ट का उपयोग करने के बाद, वे परिणामों के आधार पर यह तय कर सकते हैं कि कौन सी कार उनके लिए सबसे अच्छी है।

रडार चार्ट जो दो समुदायों की समानता दर्शाता है जिसमें कनेक्टेड जीनोमिक विंडो शामिल हैं; जीनोम वास्तुकला मानचित्रण देखें।

रडार चार्ट का उपयोग जीवन विज्ञान में दवाओं और अन्य दवाओं की ताकत और कमजोरी को प्रदर्शित करने के लिए किया जा सकता है।[13] दो अवसाद रोधी दवाओं के उदाहरण का उपयोग करके, शोधकर्ता से दस के पैमाने पर प्रभावकारिता, दुष्प्रभाव, लागत आदि जैसे चर को रैंक कर सकता है। फिर वे चर के प्रसार को देखने के लिए रडार चार्ट का उपयोग करके परिणामों को ग्राफ़ कर सकते हैं और पता लगा सकते हैं कि वे कैसे भिन्न हैं, जैसे कि एंटी-डिप्रेसेंट सस्ता और तेज़ काम करता है, लेकिन समय के साथ बड़ी राहत नहीं देता है। इस बीच, अन्य अवसाद रोधी दवा मजबूत राहत प्रदान करती है और समय के साथ बेहतर बनी रहती है लेकिन अधिक महंगी होती है। जीवन विज्ञान का अन्य अनुप्रयोग रोगी विश्लेषण में है। रडार चार्ट का उपयोग किसी व्यक्ति के स्वास्थ्य को प्रभावित करने वाले जीवन के चरों को रेखांकन करने के लिए किया जा सकता है, और फिर उनकी मदद के लिए उनका विश्लेषण किया जा सकता है। अधिक विशिष्ट उदाहरण एथलीटों के मामले में है, जिनकी विभिन्न स्वास्थ्य आदतों जैसे नींद, आहार और तनाव की निगरानी की जाती है ताकि यह सुनिश्चित किया जा सके कि वे चरम शारीरिक स्थिति में रहें।[14] यदि किसी भी क्षेत्र में गिरावट दिखाई देती है, तो डॉक्टर और प्रशिक्षक एथलीट की सहायता के लिए आगे आ सकते हैं और उनके स्वास्थ्य में सुधार कर सकते हैं।

सीमाएँ

रडार चार्ट मुख्य रूप से आउटलेर्स और समानता दिखाने के लिए उपयुक्त होते हैं, या जब चार्ट दूसरे की तुलना में प्रत्येक चर में अधिक होता है, और मुख्य रूप से सामान्य स्केल के लिए उपयोग किया जाता है - जहां प्रत्येक चर कुछ मामलों में बेहतर से मेल खाता है, और सभी चर ही पैमाने पर होते हैं।

इसके विपरीत, रडार चार्ट की आलोचना की गई है क्योंकि यह व्यापार-बंद निर्णय लेने के लिए उपयुक्त नहीं है - जब चार्ट कुछ चर पर दूसरे से अधिक होता है, लेकिन दूसरों पर कम होता है।[15] इसके अलावा, विभिन्न तीलियों की लंबाई की तुलना करना कठिन है, क्योंकि रेडियल दूरियों का आकलन करना कठिन है, हालांकि संकेंद्रित वृत्त ग्रिड लाइनों के रूप में मदद करते हैं। इसके बजाय, कोई सरल रेखा ग्राफ़ का उपयोग कर सकता है, विशेष रूप से समय श्रृंखला के लिए।[16]

रडार चार्ट कुछ हद तक डेटा को विकृत कर सकते हैं, खासकर जब क्षेत्र भरे हुए हों, क्योंकि इसमें शामिल क्षेत्र रैखिक माप के वर्ग के समानुपाती हो जाता है। उदाहरण के लिए, 1 से 100 तक के 5 चर वाले चार्ट में, जब सभी माप 90 होते हैं, तो 5 बिंदुओं से घिरे बहुभुज में निहित क्षेत्र 82 के सभी मान वाले चार्ट की तुलना में 10% से अधिक बड़ा होता है।

रडार चार्ट पर विभिन्न नमूनों के बीच दृष्टिगत रूप से तुलना करना भी कठिन हो सकता है जब उनके मान करीब होते हैं क्योंकि उनकी रेखाएं या क्षेत्र एक-दूसरे में प्रवाहित होते हैं, जैसा कि चित्र 5 में दिखाया गया है।

कृत्रिम संरचना

रडार चार्ट डेटा पर कई संरचनाएं लगाते हैं, जो अक्सर कृत्रिम होती हैं:

  • पड़ोसियों की संबद्धता - रडार चार्ट का उपयोग अक्सर तब किया जाता है जब पड़ोसी चर असंबंधित होते हैं, जिससे नकली कनेक्शन बनते हैं।
  • चक्रीय संरचना - पहला और अंतिम चर दूसरे के बगल में रखे गए हैं।
  • लंबाई - चर अक्सर सबसे स्वाभाविक रूप से क्रमिक होते हैं: बेहतर या बदतर, हालांकि अंतर की डिग्री कृत्रिम हो सकती है।
  • क्षेत्रफल - क्षेत्रफल को मानों के वर्ग के रूप में मापा जाता है, जो बड़ी संख्याओं के प्रभाव को बढ़ा-चढ़ाकर बताता है। उदाहरण के लिए, 2, 2, 1, 1 के क्षेत्रफल का 4 गुना लेता है। क्षेत्रफल ग्राफ़ के साथ यह सामान्य समस्या है, और क्षेत्रफल का निर्धारण करना कठिन है - क्लीवलैंड का पदानुक्रम देखें।[17]

उदाहरण के लिए, वैकल्पिक डेटा 9, 1, 9, 1, 9, 1 स्पाइकिंग रडार चार्ट उत्पन्न करता है (जो अंदर और बाहर जाता है), जबकि 9, 9, 9, 1, 1, 1 के रूप में डेटा को पुन: व्यवस्थित करने के बजाय दो अलग-अलग परिणाम मिलते हैं वेजेज (सेक्टर)।

कुछ मामलों में प्राकृतिक संरचना होती है, और रडार चार्ट उपयुक्त हो सकते हैं। उदाहरण के लिए, डेटा के आरेखों के लिए जो 24-घंटे के चक्र में भिन्न होते हैं, प्रति घंटा डेटा स्वाभाविक रूप से अपने पड़ोसी से संबंधित होता है, और इसमें चक्रीय संरचना होती है, इसलिए इसे स्वाभाविक रूप से रडार चार्ट के रूप में प्रदर्शित किया जा सकता है।[16][18][19] रडार चार्ट (या बल्कि निकट से संबंधित ध्रुवीय क्षेत्र ग्राफ) के उपयोग पर दिशानिर्देशों का सेट है:[19]* आपको सामान्य पैमाने पर स्थिति के बजाय स्टैक्ड क्षेत्रों को पढ़ने में कोई आपत्ति नहीं है (क्लीवलैंड के पदानुक्रम देखें),

  • डेटा सेट वास्तव में चक्रीय है, रैखिक नहीं, और
  • तुलना करने के लिए दो श्रृंखलाएँ हैं, दूसरी से बहुत छोटी

डेटा सेट का आकार

रडार चार्ट छोटे से मध्यम आकार के बहुभिन्नरूपी डेटा सेट के लिए सहायक होते हैं। उनकी प्राथमिक कमजोरी यह है कि उनकी प्रभावशीलता कुछ सौ अंकों से भी कम डेटा सेट तक सीमित है। उसके बाद, वे प्रबल हो जाते हैं।[5]

इसके अलावा, जब कई आयामों या नमूनों के साथ रडार चार्ट का उपयोग किया जाता है, तो नमूनों की संख्या बढ़ने पर रडार चार्ट अव्यवस्थित हो सकता है और इसकी व्याख्या करना कठिन हो सकता है।

उदाहरण के लिए, एमएलबी 2021 एमवीपी शोहेई ओहतानी की तुलना लीग के औसत नामित हिटरों और कुछ हॉल ऑफ फेम खिलाड़ियों के आंकड़ों से तुलना करने वाली बल्लेबाजी सांख्यिकी तालिका को लें। ये आँकड़े किसी खिलाड़ी के बल्ले पर हिट, होम रन, स्ट्राइक आउट आदि का प्रतिशत दर्शाते हैं। तालिका में प्रयुक्त प्रत्येक आँकड़ा क्या दर्शाता है, इसके बारे में अधिक जानकारी के लिए, आप एमएलबी के इस संदर्भ का संदर्भ ले सकते हैं।[20] प्रदर्शन मेट्रिक्स की कल्पना करने और स्पष्ट रूप से इस निष्कर्ष पर पहुंचने के प्रयास में कि हम नामित हिटर्स और नियमित बल्लेबाजों के लिए 2021 एमवीपी बल्लेबाजी आंकड़ों की लीग औसत से तुलना करते हुए रडार चार्ट बनाने के लिए नीचे दी गई इस तालिका का उपयोग करेंगे और इस निष्कर्ष पर पहुंचेंगे कि शोहेई ने औसत खिलाड़ी का प्रदर्शन किया है। इसके बाद हम हॉल ऑफ फेम खिलाड़ियों जैकी रॉबिन्सन, जिम थॉम और फ्रैंक थॉमस का उपयोग करके रडार चार्ट में अतिरिक्त नमूने शामिल करेंगे, ताकि शोहेई की तुलना सभी समय के कुछ महानतम बल्लेबाजों से की जा सके। यह राडार चार्ट न केवल हमें यह अंतर्ज्ञान दे सकता है कि शोहेई शीर्ष ऐतिहासिक खिलाड़ियों की तुलना कैसे करता है, बल्कि राडार चार्ट में बहुत सारे नमूने होने की सीमाओं को दिखाने में भी उद्देश्य पूरा करेगा।

Target BA OBP SLG OPS HR% SO% BB%
MLB 0.244 0.317 0.411 0.728 0.037 0.232 0.087
DH 0.239 0.316 0.434 0.75 0.047 0.256 0.093
Shohei Ohtani 0.257 0.372 0.592 0.965 0.086 0.296 0.15
Jackie Robinson 0.313 0.41 0.477 0.887 0.0282 0.0582 0.151
Jim Thome 0.276 0.402 0.554 0.956 0.072 0.302 0.207
Frank Thomas 0.301 0.419 0.555 0.974 0.063 0.17 0.203

हम चित्र 10 में देख सकते हैं कि जब तीलियों और नमूनों की संख्या अपेक्षाकृत कम होती है तो रडार चार्ट की आसानी से व्याख्या कैसे की जा सकती है। जब हम चित्र 11 में अधिक नमूनों की तुलना करते हैं, यहां तक ​​​​कि रडार चार्ट पर कोई क्षेत्र भरे बिना भी, यह स्पष्ट हो जाता है कि व्याख्या करना या व्यापार-बंद निर्णय लेना कितना मुश्किल हो सकता है।

उदाहरण

354 x 4 पिक्स
File:Star plot Detail.gif
कैडिलैक सेविले के स्टार प्लॉट का विवरण

दाईं ओर का चार्ट[5] इसमें 15 कारों के स्टार प्लॉट शामिल हैं। नमूना स्टार प्लॉट के लिए परिवर्तनीय सूची है:

  1. कीमत
  2. माइलेज (एमपीजी)
  3. 1978 मरम्मत रिकॉर्ड (1 = सबसे खराब, 5 = सर्वोत्तम)
  4. 1977 मरम्मत रिकॉर्ड (1 = सबसे खराब, 5 = सर्वोत्तम)
  5. हेडरूम
  6. पीछे की सीट का कमरा
  7. ट्रंक स्पेस
  8. वज़न
  9. लंबाई

हम इन भूखंडों को व्यक्तिगत रूप से देख सकते हैं या समान सुविधाओं वाली कारों के समूहों की पहचान करने के लिए उनका उपयोग कर सकते हैं। उदाहरण के लिए, हम कैडिलैक सेविले (छवि पर आखिरी वाली) के स्टार प्लॉट को देख सकते हैं और देख सकते हैं कि यह सबसे महंगी कारों में से है, औसत से नीचे (लेकिन सबसे खराब में से नहीं) गैस माइलेज देती है, औसत है मरम्मत रिकॉर्ड, और इसमें औसत से औसत से ऊपर की जगह और आकार है। फिर हम कैडिलैक मॉडल (अंतिम तीन प्लॉट) की तुलना एएमसी मॉडल (पहले तीन प्लॉट) से कर सकते हैं। यह तुलना अलग-अलग पैटर्न दिखाती है. एएमसी मॉडल सस्ते होते हैं, उनका गैस माइलेज औसत से कम होता है, और ऊंचाई, वजन और जगह दोनों में छोटे होते हैं। कैडिलैक मॉडल महंगे हैं, गैस माइलेज कम है, और आकार और जगह दोनों में बड़े हैं।[5]

विकल्प

कोई समय श्रृंखला और अन्य डेटा के लिए लाइन ग्राफ़ का उपयोग कर सकता है,[16]समानांतर निर्देशांक के रूप में.

कई चरों में 2-आयामी सारणीबद्ध डेटा की ग्राफिकल गुणात्मक तुलना के लिए, सामान्य विकल्प हार्वे बॉल्स हैं, जिनका उपभोक्ता रिपोर्ट द्वारा बड़े पैमाने पर उपयोग किया जाता है।[21] हार्वे गेंदों (और रडार चार्ट) में तुलना को क्रम जोड़ने के लिए एल्गोरिदमिक रूप से चर को क्रमबद्ध करके महत्वपूर्ण सहायता मिल सकती है।[22]

बहुभिन्नरूपी डेटा के भीतर संरचनाओं को देखने का उत्कृष्ट तरीका प्रमुख घटक विश्लेषण (पीसीए) द्वारा पेश किया जाता है।

अन्य विकल्प छोटे, इनलाइन बार चार्ट का उपयोग करना है, जिसकी तुलना स्पार्कलाइन से की जा सकती है।[22] हालाँकि रडार और ध्रुवीय चार्ट को अक्सर ही चार्ट प्रकार के रूप में वर्णित किया जाता है,[4]कुछ स्रोत उनके बीच अंतर करते हैं और यहां तक ​​कि रडार चार्ट को ध्रुवीय चार्ट का रूपांतर मानते हैं जो ध्रुवीय समन्वय के संदर्भ में डेटा प्रदर्शित नहीं करता है।[23]

यह भी देखें

संदर्भ

Public Domain This article incorporates public domain material from the National Institute of Standards and Technology.

  1. Porter, Michael M; Niksiar, Pooya (2018). "Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts". PLOS ONE. 13 (9): e0204309. Bibcode:2018PLoSO..1304309P. doi:10.1371/journal.pone.0204309. PMC 6161877. PMID 30265707.
  2. Nancy R. Tague (2005) The quality toolbox. page 437.
  3. Kolence, Kenneth W. (1973). "सॉफ्टवेयर अनुभववादी". ACM SIGMETRICS Performance Evaluation Review. 2 (2): 31–36. doi:10.1145/1113644.1113647. S2CID 18600391. Dr. Philip J. Kiviat suggested at a recent NBS/ACM workshop on performance measurement that a circular graph, using radii as the variable axes might be a useful form. […] I recommend they be called "Kiviat Plots" or "Kiviat Graphs" to recognize his insight as to their importance.
  4. 4.0 4.1 "रडार चार्ट का उपयोग करके सामग्री अंतराल खोजें". Content Strategy Workshops. March 3, 2015. Retrieved December 17, 2015.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 NIST/SEMATECH (2003). Star Plot in: e-Handbook of Statistical Methods. 6/01/2003 (Date created)
  6. Chambers, John, William Cleveland, Beat Kleiner, and Paul Tukey, (1983). Graphical Methods for Data Analysis. Wadsworth. pp. 158–162
  7. Mayr, Georg von (1877), Die Gesetzmäßigkeit im Gesellschaftsleben (in Deutsch), Munich: Oldenbourg, OL 23294909M, p.78. Linien-Diagramme im Kreise: Line charts in circles.
  8. Michael Friendly (2008). "Milestones in the history of thematic cartography, statistical graphics, and data visualization" Archived 2018-09-26 at the Wayback Machine.
  9. Michael Friendly (1991). "Statistical Graphics for Multivariate Data". Paper presented at the SAS SUGI 16 Conference, Apr, 1991.
  10. Spider Graphs: Charting Basketball Statistics
  11. Seeing Data. "डेटा विज़ुअलाइज़ेशन को समझना" (in English). Seeing Data.
  12. Ron Basu (2004). Implementing Quality: A Practical Guide to Tools and Techniques. p.131.
  13. Model Systems Knowledge Translation Center. "रडार चार्ट का प्रभावी उपयोग" (PDF) (in English). Model Systems Knowledge Translation Center.
  14. John Maguire. "डी-सामान्यीकृत स्पाइडर और रडार ग्राफ़" (in English). Kitman Labs.
  15. You are NOT spider man, so why do you use radar charts?, by Chandoo, September 18th, 2008
  16. 16.0 16.1 16.2 Peltier, Jon (2008-08-14). "रॉक अराउंड द क्लॉक - पेल्टियर टेक ब्लॉग". Peltiertech.com. Retrieved 2013-09-11.
  17. Cleveland, William; McGill, Robert (1984). "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods". Journal of the American Statistical Association. 79 (387): 531–554. JSTOR 2288400. Summary of Cleveland's hierarchy
  18. "चौबीस घंटे चार्टिंग एक्सेल चार्ट ब्लॉग". Excelcharts.com. 2008-08-15. Retrieved 2013-09-11.
  19. 19.0 19.1 Clock This
  20. "मानक आँकड़े". www.mlb.com. Retrieved 2022-04-26.
  21. "गुणात्मक तुलना". Support Analytics Blog. 11 December 2007. Archived from the original on 2012-04-08.
  22. 22.0 22.1 "Information Ocean: Reorderable tables II: Bertin versus the Spiders". I-ocean.blogspot.com. 2008-09-24. Retrieved 2013-09-11.
  23. "ध्रुवीय चार्ट (रिपोर्ट बिल्डर और एसएसआरएस)". Microsoft Developer Network. Retrieved December 17, 2015.


बाहरी संबंध