स्पर्शरेखा अर्ध-कोण सूत्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Relates the tangent of half of an angle to trigonometric functions of the entire angle}}{{Trigonometry}}
{{short description|Relates the tangent of half of an angle to trigonometric functions of the entire angle}}{{Trigonometry}}
[[त्रिकोणमिति]] में, स्पर्शरेखा अर्ध-कोण सूत्र किसी कोण के आधे हिस्से की स्पर्शरेखा को पूरे कोण के त्रिकोणमितीय कार्यों से जोड़ते हैं। आधे कोण की स्पर्शरेखा एक रेखा पर वृत्त का [[त्रिविम प्रक्षेपण]] है। इनमें से निम्नलिखित सूत्र हैं:
[[त्रिकोणमिति]] में, '''स्पर्शरेखा अर्ध-कोण सूत्र''' किसी कोण के अर्ध भाग की स्पर्शरेखा को पूर्ण कोण के त्रिकोणमितीय कार्यों से जोड़ते हैं। अर्ध कोण की स्पर्शरेखा किसी रेखा पर वृत्त का [[त्रिविम प्रक्षेपण]] है। इनमें से निम्नलिखित सूत्र हैं:


<math display="block">
<math display="block">
Line 41: Line 41:
\end{align}
\end{align}
</math>
</math>
इनसे अर्ध-कोणों की स्पर्शरेखाओं के कार्यों के रूप में साइन, कोसाइन और स्पर्शरेखा को व्यक्त करने वाली पहचान प्राप्त की जा सकती है:
इनसे अर्ध-कोणों की स्पर्शरेखाओं के कार्यों के रूप में साइन, कोज्या एवं स्पर्शरेखा को व्यक्त करने वाली पहचान प्राप्त की जा सकती है:


== <math display="block">
== <math display="block">
Line 52: Line 52:


===बीजगणितीय प्रमाण===
===बीजगणितीय प्रमाण===
दोहरे कोण सूत्रों और पायथागॉरियन पहचान का उपयोग करना <math display="inline">1 + \tan^2 \alpha = 1 \big/ \cos^2 \alpha</math> देता है
दोहरे कोण सूत्रों एवं पायथागॉरियन पहचान <math display="inline">1 + \tan^2 \alpha = 1 \big/ \cos^2 \alpha</math> का उपयोग प्रदान करता है,


<math display="block">
<math display="block">
Line 73: Line 73:
\quad \text{and}
\quad \text{and}
</math>
</math>
साइन और कोसाइन पैदावार के लिए सूत्रों का भागफल लेना
साइन एवं कोज्या उत्पादक के लिए सूत्रों का भागफल लेना


<math display="block">\tan \alpha = \frac{2\tan \tfrac12 \alpha}{1 - \tan ^2 \tfrac12 \alpha}.</math>
<math display="block">\tan \alpha = \frac{2\tan \tfrac12 \alpha}{1 - \tan ^2 \tfrac12 \alpha}.</math>
कोसाइन के लिए पाइथागोरस पहचान को दोहरे कोण सूत्र के साथ जोड़कर, <math display="inline"> \cos 2\alpha  =  \cos^2 \alpha - \sin^2 \alpha  =  1 - 2\sin^2 \alpha  =  2\cos^2 \alpha - 1, </math>
कोज्या के लिए पाइथागोरस पहचान को दोहरे कोण सूत्र के साथ जोड़कर, <math display="inline"> \cos 2\alpha  =  \cos^2 \alpha - \sin^2 \alpha  =  1 - 2\sin^2 \alpha  =  2\cos^2 \alpha - 1, </math>पुनर्व्यवस्थित करने एवं वर्गमूल लेने से परिणाम प्राप्त होते हैं,
पुनर्व्यवस्थित करने और वर्गमूल लेने से परिणाम प्राप्त होते हैं


<math display="block"> \left|\sin \alpha\right| = \sqrt {\frac{1-\cos2\alpha}{2}} </math> और <math display="block"> \left|\cos \alpha\right| = \sqrt {\frac{1+\cos2\alpha}{2}} </math>
<math display="block"> \left|\sin \alpha\right| = \sqrt {\frac{1-\cos2\alpha}{2}} </math> एवं <math display="block"> \left|\cos \alpha\right| = \sqrt {\frac{1+\cos2\alpha}{2}} </math>
जो विभाजन करने पर मिलता है
जो विभाजन करने पर प्राप्त होता है,


<math display="block"> \left|\tan \alpha\right| = \frac {\sqrt {1 - \cos 2\alpha}}{\sqrt {1 + \cos 2\alpha}} = \frac { {\sqrt {1 - \cos 2\alpha}}{\sqrt {1 + \cos 2\alpha}} }{1 + \cos 2\alpha} =\frac{{\sqrt {1 - \cos^2 2\alpha}}}{1 + \cos 2\alpha} = \frac{\left|\sin 2\alpha\right|}{1 + \cos 2\alpha}. </math> वैकल्पिक रूप से,
<math display="block"> \left|\tan \alpha\right| = \frac {\sqrt {1 - \cos 2\alpha}}{\sqrt {1 + \cos 2\alpha}} = \frac { {\sqrt {1 - \cos 2\alpha}}{\sqrt {1 + \cos 2\alpha}} }{1 + \cos 2\alpha} =\frac{{\sqrt {1 - \cos^2 2\alpha}}}{1 + \cos 2\alpha} = \frac{\left|\sin 2\alpha\right|}{1 + \cos 2\alpha}. </math> वैकल्पिक रूप से,


  <math display="block"> \left|\tan \alpha\right| = \frac {\sqrt {1 - \cos 2\alpha}}{\sqrt {1 + \cos 2\alpha}} = \frac {1 - \cos 2\alpha}{ {\sqrt {1 + \cos 2\alpha}}{\sqrt {1 - \cos 2\alpha}} } = \frac{1 - \cos 2\alpha}{{\sqrt {1 - \cos^2 2\alpha}}} = \frac{1 - \cos 2\alpha}{\left|\sin 2\alpha\right|}. </math>
  <math display="block"> \left|\tan \alpha\right| = \frac {\sqrt {1 - \cos 2\alpha}}{\sqrt {1 + \cos 2\alpha}} = \frac {1 - \cos 2\alpha}{ {\sqrt {1 + \cos 2\alpha}}{\sqrt {1 - \cos 2\alpha}} } = \frac{1 - \cos 2\alpha}{{\sqrt {1 - \cos^2 2\alpha}}} = \frac{1 - \cos 2\alpha}{\left|\sin 2\alpha\right|}. </math>
इससे पता चलता है कि इन अंतिम दो सूत्रों में निरपेक्ष मान चिह्न हटाये जा सकते हैं, चाहे कोई भी चतुर्थांश हो {{mvar|α}} में है। निरपेक्ष मान पट्टियों के साथ या उसके बिना ये सूत्र तब लागू नहीं होते जब दाहिनी ओर अंश और हर दोनों शून्य हों।
इससे ज्ञात होता है कि इन अंतिम दो सूत्रों में निरपेक्ष मान चिह्न हटाये जा सकते हैं, चाहे {{mvar|α}} कोई भी चतुर्थांश में हो। निरपेक्ष मान पट्टियों के साथ या उसके अभाव में ये सूत्र तब प्रस्तावित नहीं होते जब दाहिनी ओर अंश एवं हर दोनों शून्य होते हैं।


इसके अलावा, साइन और कोसाइन दोनों के लिए कोण जोड़ और घटाव सूत्रों का उपयोग करके कोई प्राप्त करता है:
इसके अतिरिक्त, साइन एवं कोज्या दोनों के लिए कोण जोड़ एवं घटाव सूत्रों का उपयोग करके कोई प्राप्त करता है:


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 108: Line 107:
\end{align}
\end{align}
</math>
</math>
सेटिंग <math display="inline">a= \tfrac12 (p+q)</math> और <math>b= \tfrac12 (p-q)</math> और उपज को प्रतिस्थापित करना:


<math display="block">
 
समायोजन <math display="inline">a= \tfrac12 (p+q)</math> एवं <math>b= \tfrac12 (p-q)</math> एवं उपज को प्रतिस्थापित करना:<math display="block">
\begin{align}
\begin{align}
& \sin p + \sin q \\[5mu]
& \sin p + \sin q \\[5mu]
Line 127: Line 126:


'''ज्यामितीय प्रमाण'''
'''ज्यामितीय प्रमाण'''
[[File:Tan.half.svg|right|400px|thumb|इस समचतुर्भुज की भुजाओं की लंबाई 1 है। क्षैतिज रेखा और दिखाए गए विकर्ण के बीच का कोण है{{math|{{sfrac|1|2}} (''a'' + ''b'')}}. यह विशेष स्पर्शरेखा अर्ध-कोण सूत्र को सिद्ध करने का एक ज्यामितीय तरीका है जो कहता है {{math|tan {{sfrac|1|2}} (''a'' + ''b'') {{=}} (sin ''a'' + sin ''b'') / (cos ''a'' + cos ''b'')}}. सूत्र {{math|sin {{sfrac|1|2}}(''a'' + ''b'')}} और {{math|cos {{sfrac|1|2}}(''a'' + ''b'')}} विकर्ण की लंबाई से वास्तविक दूरियों का अनुपात है।]]ऊपर दिए गए सूत्रों को दाईं ओर समचतुर्भुज आकृति पर लागू करने से यह आसानी से दिखाया जा सकता है
[[File:Tan.half.svg|right|400px|thumb|इस समचतुर्भुज की भुजाओं की लंबाई 1 है। क्षैतिज रेखा एवं दिखाए गए विकर्ण के मध्य का कोण {{math|{{sfrac|1|2}} (''a'' + ''b'')}} है। यह विशेष स्पर्शरेखा अर्ध-कोण सूत्र को सिद्ध करने का ज्यामितीय उपाय है जो बताता है कि {{math|tan {{sfrac|1|2}} (''a'' + ''b'') {{=}} (sin ''a'' + sin ''b'') / (cos ''a'' + cos ''b'')}} है। सूत्र {{math|sin {{sfrac|1|2}}(''a'' + ''b'')}} एवं {{math|cos {{sfrac|1|2}}(''a'' + ''b'')}} विकर्ण की लंबाई से वास्तविक दूरियों का अनुपात है।]]ऊपर दिए गए सूत्रों को दाईं ओर समचतुर्भुज आकृति पर प्रस्तावित करने से यह सरलता से प्रदर्शित किया जा सकता है,


<math display="block">\tan \tfrac12 (a+b) = \frac{\sin \tfrac12 (a + b)}{\cos \tfrac12 (a + b)} = \frac{\sin a + \sin b}{\cos a + \cos b}.</math>
<math display="block">\tan \tfrac12 (a+b) = \frac{\sin \tfrac12 (a + b)}{\cos \tfrac12 (a + b)} = \frac{\sin a + \sin b}{\cos a + \cos b}.</math>
यूनिट सर्कल में, उपरोक्त का अनुप्रयोग यह दर्शाता है <math display="inline">t = \tan \tfrac12 \varphi</math>. [[समरूप त्रिभुज]]ों द्वारा,
यूनिट सर्कल में, उपरोक्त का अनुप्रयोग यह प्रदर्शित करता है कि <math display="inline">t = \tan \tfrac12 \varphi</math> है। [[समरूप त्रिभुज|समरूप त्रिभुजों]] द्वारा,


<math display="block">\frac{t}{\sin \varphi} = \frac{1}{1+ \cos \varphi}.</math>
<math display="block">\frac{t}{\sin \varphi} = \frac{1}{1+ \cos \varphi}.</math>
यह इस प्रकार है कि
यह इस प्रकार है,


== <math display="block">t = \frac{\sin \varphi}{1+ \cos \varphi} = \frac{\sin \varphi(1- \cos \varphi)}{(1+ \cos \varphi)(1- \cos \varphi)} = \frac{1- \cos \varphi}{\sin \varphi}.</math>अभिन्न कलन में स्पर्शरेखा अर्ध-कोण प्रतिस्थापन ==
== <math display="block">t = \frac{\sin \varphi}{1+ \cos \varphi} = \frac{\sin \varphi(1- \cos \varphi)}{(1+ \cos \varphi)(1- \cos \varphi)} = \frac{1- \cos \varphi}{\sin \varphi}.</math>अभिन्न कलन में स्पर्शरेखा अर्ध-कोण प्रतिस्थापन ==
{{Main|Weierstrass substitution}}
{{Main|
 


[[Image:Weierstrass substitution.svg|right|400px|thumb|वीयरस्ट्रैस प्रतिस्थापन का एक ज्यामितीय प्रमाण]]त्रिकोणमिति के विभिन्न अनुप्रयोगों में, एक नए चर के [[तर्कसंगत कार्य]]ों के संदर्भ में त्रिकोणमितीय कार्यों (जैसे [[ उन लोगों के ]] और [[ कोज्या ]]) को फिर से लिखना उपयोगी है। <math>t</math>. की परिभाषा के कारण इन सर्वसमिकाओं को सामूहिक रूप से स्पर्शरेखा अर्ध-कोण सूत्र के रूप में जाना जाता है <math>t</math>. ये पहचानें साइन और कोसाइन में तर्कसंगत कार्यों को के कार्यों में परिवर्तित करने के लिए [[ गणना ]] में उपयोगी हो सकती हैं {{math|''t''}} उनके प्रतिअवकलज खोजने के लिए।
वीयरस्ट्रैस प्रतिस्थापन}}


ज्यामितीय रूप से, निर्माण इस प्रकार होता है: किसी भी बिंदु के लिए {{math|(cos ''φ'', sin ''φ'')}} [[इकाई चक्र]] पर, इससे होकर गुजरने वाली रेखा और बिंदु खींचें {{math|(−1, 0)}}. यह बिंदु पार करता है {{math|''y''}}-किसी बिंदु पर अक्ष {{math|1=''y'' = ''t''}}. कोई सरल ज्यामिति का उपयोग करके यह दिखा सकता है {{math|1=''t'' = tan(φ/2)}}. खींची गई रेखा का समीकरण है {{math|1=''y'' = (1 + ''x'')''t''}}. रेखा और वृत्त के प्रतिच्छेदन का समीकरण तब एक [[द्विघात समीकरण]] होता है {{math|''t''}}. इस समीकरण के दो समाधान हैं {{math|(−1, 0)}} और {{math|(cos ''φ'', sin ''φ'')}}. यह हमें बाद वाले को तर्कसंगत कार्यों के रूप में लिखने की अनुमति देता है {{math|''t''}} (समाधान नीचे दिए गए हैं)।
[[Image:Weierstrass substitution.svg|right|400px|thumb|वीयरस्ट्रैस प्रतिस्थापन का ज्यामितीय प्रमाण]]त्रिकोणमिति के विभिन्न अनुप्रयोगों में, नए चर <math>t</math> के [[तर्कसंगत कार्य|तर्कसंगत कार्यों]] के संदर्भ में त्रिकोणमितीय कार्यों (जैसे [[ उन लोगों के |साइन]] एवं [[ कोज्या |कोज्या]]) को पुनः लिखना उपयोगी है। <math>t</math> की परिभाषा के कारण इन सर्वसमिकाओं को सामूहिक रूप से स्पर्शरेखा अर्ध-कोण सूत्र के रूप में जाना जाता है। ये पहचानें साइन एवं कोज्या में तर्कसंगत कार्यों को उनके प्रतिअवकलज की शोध के लिए {{math|''t''}} के कार्यों में परिवर्तित करने के लिए [[ गणना |कैलकुलसन]] में उपयोगी हो सकती हैं।


पैरामीटर {{math|''t''}} बिंदु के त्रिविम प्रक्षेपण का प्रतिनिधित्व करता है {{math|(cos ''φ'', sin ''φ'')}} उस पर {{math|''y''}}-प्रक्षेपण के केंद्र के साथ अक्ष {{math|(−1, 0)}}. इस प्रकार, स्पर्शरेखा अर्ध-कोण सूत्र त्रिविम निर्देशांक के बीच रूपांतरण देते हैं {{math|''t''}} इकाई वृत्त और मानक कोणीय निर्देशांक पर {{math|''φ''}}.
ज्यामितीय रूप से, निर्माण इस प्रकार होता है: [[इकाई चक्र]] पर किसी भी बिंदु के लिए {{math|(cos ''φ'', sin ''φ'')}} के लिए, इससे होकर निकलने वाली रेखा एवं बिंदु के लिए {{math|(−1, 0)}} खींची जाती है। यह बिंदु किसी बिंदु {{math|1=''y'' = ''t''}} पर   {{math|''y''}}-अक्ष को पार करता है। कोई सरल ज्यामिति का उपयोग करके यह दिखा सकता है कि  {{math|1=''t'' = tan(φ/2)}} है। खींची गई रेखा का समीकरण {{math|1=''y'' = (1 + ''x'')''t''}} है। रेखा एवं वृत्त के प्रतिच्छेदन का समीकरण तब [[द्विघात समीकरण]] होता है  जिसमें {{math|''t''}} सम्मिलित होता है। इस समीकरण के दो समाधान हैं {{math|(−1, 0)}} एवं {{math|(cos ''φ'', sin ''φ'')}} हैं। यह हमें पश्चात वाले को {{math|''t''}} के तर्कसंगत कार्यों के रूप में लिखने की अनुमति देता है (समाधान नीचे दिए गए हैं)।


तो हमारे पास हैं
पैरामीटर {{math|''t''}}, प्रक्षेपण के केंद्र {{math|(−1, 0)}} के साथ {{math|''y''}}-अक्ष पर {{math|(cos ''φ'', sin ''φ'')}} के त्रिविम प्रक्षेपण का प्रतिनिधित्व करता है। इस प्रकार, स्पर्शरेखा अर्ध-कोण सूत्र त्रिविम निर्देशांक {{math|''t''}} एवं मानक कोणीय निर्देशांक पर {{math|''φ''}} के मध्य रूपांतरण देते हैं।
 
तो हमारे पास हैं,


<math display="block">
<math display="block">
Line 156: Line 158:
\end{align}
\end{align}
</math>
</math>
और
एवं


<math display="block">e^{i \varphi} = \frac{1 + i t}{1 - i t}, \qquad
<math display="block">e^{i \varphi} = \frac{1 + i t}{1 - i t}, \qquad
e^{-i \varphi} = \frac{1 - i t}{1 + i t}.
e^{-i \varphi} = \frac{1 - i t}{1 + i t}.
</math>
</math>
सीधे ऊपर और प्रारंभिक परिभाषा के बीच फाई को समाप्त करके <math>t</math>, कोई [[प्राकृतिक]] लघुगणक के संदर्भ में [[आर्कटिक स्पर्शरेखा]] के लिए निम्नलिखित उपयोगी संबंध पर पहुंचता है
सीधे ऊपर एवं <math>t</math> की प्रारंभिक परिभाषा के मध्य फाई को समाप्त करके, कोई [[प्राकृतिक]] लघुगणक के संदर्भ में [[आर्कटिक स्पर्शरेखा]] के लिए निम्नलिखित उपयोगी संबंध पर पहुंचता है,
<math display="block">2 \arctan t = -i \ln\frac{1+it}{1-it}.</math>
<math display="block">2 \arctan t = -i \ln\frac{1+it}{1-it}.</math>
कैलकुलस में, वेयरस्ट्रैस प्रतिस्थापन का उपयोग [[तर्कसंगत कार्य]]ों के प्रतिअवकलन खोजने के लिए किया जाता है {{math|sin ''φ''}} और{{math|cos ''φ''}}. सेटिंग के बाद
कैलकुलस में, वेयरस्ट्रैस प्रतिस्थापन का उपयोग {{math|sin ''φ''}} एवं {{math|cos ''φ''}} [[तर्कसंगत कार्य|तर्कसंगत कार्यों]] के प्रतिअवकलन की शोध के लिए किया जाता है। समायोजन के पश्चात


<math display="block">t=\tan\tfrac12\varphi.</math>
<math display="block">t=\tan\tfrac12\varphi.</math>
Line 169: Line 171:


<math display="block">\varphi=2\arctan(t)+2\pi n , </math>
<math display="block">\varphi=2\arctan(t)+2\pi n , </math>
कुछ पूर्णांक के लिए {{math|''n''}}, और इसलिए
कुछ पूर्णांक {{math|''n''}} के लिए, एवं इसलिए


<math display="block">d\varphi = {{2\,dt} \over {1 + t^2}}.</math>'''[[अतिशयोक्ति]]पूर्ण पहचान'''
<math display="block">d\varphi = {{2\,dt} \over {1 + t^2}}.</math>'''[[अतिशयोक्ति|अतिशयोक्तिपूर्ण]]''' '''पहचान'''
कोई भी [[अतिशयोक्तिपूर्ण कार्य]]ों के साथ एक पूरी तरह से अनुरूप खेल खेल सकता है। हाइपरबोला की (दाहिनी शाखा पर) एक बिंदु किसके द्वारा दिया जाता है{{math|(cosh ''ψ'', sinh ''ψ'')}}. इसे प्रक्षेपित करना {{math|''y''}}-केंद्र से अक्ष {{math|(−1, 0)}} निम्नलिखित देता है:
कोई भी [[अतिशयोक्तिपूर्ण कार्य|अतिशयोक्तिपूर्ण कार्यों]] के साथ पूर्ण रूप से अनुरूप खेल खेल सकता है। हाइपरबोला की (दाहिनी शाखा पर) बिंदु {{math|(cosh ''ψ'', sinh ''ψ'')}} द्वारा दिया जाता है। इसे केंद्र {{math|(−1, 0)}} से {{math|''y''}}-अक्ष पर प्रक्षेपित करने पर निम्नलिखित प्राप्त होता है:


<math display="block">t = \tanh\tfrac12\psi = \frac{\sinh\psi}{\cosh\psi+1} = \frac{\cosh\psi-1}{\sinh\psi}</math>
<math display="block">t = \tanh\tfrac12\psi = \frac{\sinh\psi}{\cosh\psi+1} = \frac{\cosh\psi-1}{\sinh\psi}</math>
Line 187: Line 189:
\end{align}
\end{align}
</math>
</math>
और
एवं


<math display="block">e^\psi = \frac{1 + t}{1 - t}, \qquad
<math display="block">e^\psi = \frac{1 + t}{1 - t}, \qquad
e^{-\psi} = \frac{1 - t}{1 + t}.</math>
e^{-\psi} = \frac{1 - t}{1 + t}.</math>
खोज {{math|''ψ''}} के अनुसार {{math|''t''}} [[व्युत्क्रम अतिशयोक्तिपूर्ण कार्य]]ों के बीच निम्नलिखित संबंध की ओर ले जाता है <math>\operatorname{artanh}</math> और प्राकृतिक लघुगणक:
{{math|''t''}} के संदर्भ में {{math|''ψ''}} शोध से [[व्युत्क्रम अतिशयोक्तिपूर्ण कार्य|व्युत्क्रम हाइपरबोलिक स्पर्शरेखा]] <math>\operatorname{artanh}</math> एवं प्राकृतिक लघुगणक के मध्य निम्नलिखित संबंध बनता है:


== <math display="block">2 \operatorname{artanh} t = \ln\frac{1+t}{1-t}.</math>गुडरमैनियन फ़ंक्शन ==
== <math display="block">2 \operatorname{artanh} t = \ln\frac{1+t}{1-t}.</math>गुडरमैनियन फलन ==
{{Main|Gudermannian function}}
{{Main|गुडर्मनियन फलन}}


अतिशयोक्तिपूर्ण पहचानों की तुलना वृत्ताकार पहचानों से करने पर, कोई यह नोटिस करता है कि उनमें समान कार्य शामिल हैं {{math|''t''}}, अभी क्रमपरिवर्तित किया गया। यदि हम पैरामीटर की पहचान करते हैं {{math|''t''}} दोनों ही मामलों में हम वृत्ताकार फलनों और अतिपरवलयिक फलनों के बीच एक संबंध पर पहुंचते हैं। अर्थात यदि
अतिशयोक्तिपूर्ण पहचानों की अपेक्षा वृत्ताकार पहचानों से करने पर, कोई यह ध्यान देता है कि उनमें {{math|''t''}} के समान कार्य सम्मिलित हैं, अभी क्रमबद्ध किया गया है। यदि हम दोनों ही विषयों में पैरामीटर {{math|''t''}} की पहचान करते हैं तो हम वृत्ताकार फलनों एवं अतिपरवलयिक फलनों के मध्य संबंध पर पहुंचते हैं। अर्थात यदि


<math display="block">t = \tan\tfrac12 \varphi = \tanh\tfrac12 \psi</math>
<math display="block">t = \tan\tfrac12 \varphi = \tanh\tfrac12 \psi</math>
Line 202: Line 204:


<math display="block">\varphi = 2\arctan \bigl(\tanh \tfrac12 \psi\,\bigr) \equiv \operatorname{gd} \psi.</math>
<math display="block">\varphi = 2\arctan \bigl(\tanh \tfrac12 \psi\,\bigr) \equiv \operatorname{gd} \psi.</math>
कहाँ {{math|gd(''ψ'')}}[[गुडर्मनियन फ़ंक्शन]] है। गुडेरमैनियन फ़ंक्शन वृत्ताकार फ़ंक्शंस और हाइपरबोलिक फ़ंक्शंस के बीच सीधा संबंध देता है जिसमें जटिल संख्याएं शामिल नहीं होती हैं। स्पर्शरेखा अर्ध-कोण सूत्रों के उपरोक्त विवरण (इकाई वृत्त और मानक हाइपरबोला को प्रक्षेपित करें)। {{math|''y''}}-अक्ष) इस फ़ंक्शन की ज्यामितीय व्याख्या दें।
जहाँ {{math|gd(''ψ'')}} [[गुडर्मनियन फ़ंक्शन|गुडर्मनियन फलन]] है। गुडेरमैनियन फलन वृत्ताकार फलन एवं हाइपरबोलिक फलन के मध्य सीधा संबंध देता है जिसमें समष्टि संख्याएं सम्मिलित नहीं होती हैं। स्पर्शरेखा अर्ध-कोण सूत्रों के उपरोक्त विवरण (इकाई वृत्त एवं मानक हाइपरबोला को {{math|''y''}}-अक्ष प्रक्षेपित करें)इस फलन की ज्यामितीय व्याख्या देते हैं।


==तर्कसंगत मान और पायथागॉरियन त्रिगुण==
==तर्कसंगत मान एवं पायथागॉरियन त्रिगुण==
{{main article|Pythagorean triple}}
{{main article|पायथागॉरियन त्रिगुण}}
भुजाओं की लंबाई वाले पाइथागोरस त्रिभुज से प्रारंभ करना {{mvar|a}}, {{mvar|b}}, और {{mvar|c}} जो धनात्मक पूर्णांक हैं और संतुष्ट करते हैं {{math|''a''{{sup|2}} + ''b''{{sup|2}} {{=}} ''c''{{sup|2}}}}, इससे तुरंत पता चलता है कि त्रिभुज के प्रत्येक [[आंतरिक कोण]] में साइन और कोसाइन के लिए तर्कसंगत मान हैं, क्योंकि ये केवल भुजाओं की लंबाई के अनुपात हैं। इस प्रकार, इनमें से प्रत्येक कोण का उपयोग करते हुए, इसके अर्ध-कोण स्पर्शरेखा के लिए एक तर्कसंगत मान होता है {{math|tan ''φ''/2 {{=}} sin ''φ'' / (1 + cos ''φ'')}}.


विपरीत भी सही है। यदि दो धनात्मक कोण हैं जिनका योग 90° है, प्रत्येक एक परिमेय अर्ध-कोण स्पर्शरेखा के साथ है, और तीसरा कोण एक [[समकोण]] है तो इन आंतरिक कोणों वाला एक त्रिभुज पाइथागोरस त्रिभुज के [[समान (ज्यामिति)]] हो सकता है। यदि तीसरे कोण का समकोण होना आवश्यक नहीं है, लेकिन वह कोण है जो तीन धनात्मक कोणों का योग 180° बनाता है तो तीसरे कोण के पास आवश्यक रूप से अपने अर्ध-कोण स्पर्शरेखा के लिए एक तर्कसंगत संख्या होगी जब पहले दो ऐसा करते हैं (का उपयोग करके) स्पर्शरेखाओं के लिए कोण जोड़ और घटाव सूत्र) और त्रिभुज को हेरोनियन त्रिभुज में स्केल किया जा सकता है।
भुजाओं की लंबाई वाले पाइथागोरस त्रिभुज से प्रारंभ करने पर जिसकी भुजाओं की लंबाई {{mvar|a}}, {{mvar|b}}, एवं {{mvar|c}} है, जो धनात्मक पूर्णांक हैं एवं संतुष्ट {{math|''a''{{sup|2}} + ''b''{{sup|2}} {{=}} ''c''{{sup|2}}}} को करते हैं, इससे तुरंत ज्ञात होता है कि त्रिभुज के प्रत्येक [[आंतरिक कोण]] में साइन एवं कोज्या के लिए तर्कसंगत मान हैं, क्योंकि ये केवल भुजाओं की लंबाई के अनुपात हैं। इस प्रकार, {{math|tan ''φ''/2 {{=}} sin ''φ'' / (1 + cos ''φ'')}} का उपयोग करते हुए, इनमें से प्रत्येक कोण के अर्ध-कोण स्पर्शरेखा के लिए तर्कसंगत मान होता है।


आम तौर पर, अगर {{mvar|K}} सम्मिश्र संख्याओं का [[फ़ील्ड विस्तार]] है {{math|tan ''φ''/2 ∈ ''K'' ∪ {{(}}∞{{)}}}} इसका आशय है {{math|{sin ''φ'', cos ''φ'', tan ''φ'', sec ''φ'', csc ''φ'', cot ''φ''} ⊆ ''K'' ∪ {{(}}∞{{)}}}}.
विपरीत भी सही है। यदि दो धनात्मक कोण हैं जिनका योग 90° है, प्रत्येक परिमेय अर्ध-कोण स्पर्शरेखा के साथ है, एवं तीसरा कोण [[समकोण]] है तो इन आंतरिक कोणों वाला त्रिभुज पाइथागोरस त्रिभुज के [[समान (ज्यामिति)]] हो सकता है। यदि तीसरे कोण का समकोण होना आवश्यक नहीं है, किन्तु वह कोण है जो तीन धनात्मक कोणों का योग 180° बनाता है तो तीसरे कोण के पास आवश्यक रूप से अपने अर्ध-कोण स्पर्शरेखा के लिए तर्कसंगत संख्या होगी जब पूर्व दो ऐसा करते हैं (स्पर्शरेखाओं के लिए कोण जोड़ एवं घटाव सूत्र का उपयोग करके) एवं त्रिभुज को हेरोनियन त्रिभुज में स्केल किया जा सकता है।
 
सामान्यतः, यदि {{mvar|K}} सम्मिश्र संख्याओं का [[फ़ील्ड विस्तार|उपक्षेत्र]] है तो {{math|tan ''φ''/2 ∈ ''K'' ∪ {{(}}∞{{)}}}} का तात्पर्य है कि {{math|{sin ''φ'', cos ''φ'', tan ''φ'', sec ''φ'', csc ''φ'', cot ''φ''} ⊆ ''K'' ∪ {{(}}∞{{)}}}} होता है।


==यह भी देखें==
==यह भी देखें==
Line 221: Line 224:
* [http://planetmath.org/encyclopedia/TangentOfHalvedAngle.html ''Tangent Of Halved Angle''] at [[Planetmath]]
* [http://planetmath.org/encyclopedia/TangentOfHalvedAngle.html ''Tangent Of Halved Angle''] at [[Planetmath]]
   
   
{{DEFAULTSORT:Tangent Half-Angle Formula}}[[Category: त्रिकोणमिति]] [[Category: शंक्वाकार खंड]] [[Category: गणितीय पहचान]]
{{DEFAULTSORT:Tangent Half-Angle Formula}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Tangent Half-Angle Formula]]
[[Category:Created On 18/07/2023]]
[[Category:Created On 18/07/2023|Tangent Half-Angle Formula]]
[[Category:Lua-based templates|Tangent Half-Angle Formula]]
[[Category:Machine Translated Page|Tangent Half-Angle Formula]]
[[Category:Mathematics sidebar templates|Tangent Half-Angle Formula]]
[[Category:Pages with empty portal template|Tangent Half-Angle Formula]]
[[Category:Pages with script errors|Tangent Half-Angle Formula]]
[[Category:Portal templates with redlinked portals|Tangent Half-Angle Formula]]
[[Category:Short description with empty Wikidata description|Tangent Half-Angle Formula]]
[[Category:Sidebars with styles needing conversion|Tangent Half-Angle Formula]]
[[Category:Templates Vigyan Ready|Tangent Half-Angle Formula]]
[[Category:Templates that add a tracking category|Tangent Half-Angle Formula]]
[[Category:Templates that generate short descriptions|Tangent Half-Angle Formula]]
[[Category:Templates using TemplateData|Tangent Half-Angle Formula]]
[[Category:गणितीय पहचान|Tangent Half-Angle Formula]]
[[Category:त्रिकोणमिति|Tangent Half-Angle Formula]]
[[Category:शंक्वाकार खंड|Tangent Half-Angle Formula]]

Latest revision as of 15:01, 2 August 2023

त्रिकोणमिति में, स्पर्शरेखा अर्ध-कोण सूत्र किसी कोण के अर्ध भाग की स्पर्शरेखा को पूर्ण कोण के त्रिकोणमितीय कार्यों से जोड़ते हैं। अर्ध कोण की स्पर्शरेखा किसी रेखा पर वृत्त का त्रिविम प्रक्षेपण है। इनमें से निम्नलिखित सूत्र हैं:

इनसे अर्ध-कोणों की स्पर्शरेखाओं के कार्यों के रूप में साइन, कोज्या एवं स्पर्शरेखा को व्यक्त करने वाली पहचान प्राप्त की जा सकती है:

प्रमाण

बीजगणितीय प्रमाण

दोहरे कोण सूत्रों एवं पायथागॉरियन पहचान का उपयोग प्रदान करता है,

साइन एवं कोज्या उत्पादक के लिए सूत्रों का भागफल लेना

कोज्या के लिए पाइथागोरस पहचान को दोहरे कोण सूत्र के साथ जोड़कर, पुनर्व्यवस्थित करने एवं वर्गमूल लेने से परिणाम प्राप्त होते हैं,

एवं
जो विभाजन करने पर प्राप्त होता है,

वैकल्पिक रूप से,

इससे ज्ञात होता है कि इन अंतिम दो सूत्रों में निरपेक्ष मान चिह्न हटाये जा सकते हैं, चाहे α कोई भी चतुर्थांश में हो। निरपेक्ष मान पट्टियों के साथ या उसके अभाव में ये सूत्र तब प्रस्तावित नहीं होते जब दाहिनी ओर अंश एवं हर दोनों शून्य होते हैं।

इसके अतिरिक्त, साइन एवं कोज्या दोनों के लिए कोण जोड़ एवं घटाव सूत्रों का उपयोग करके कोई प्राप्त करता है:

उपरोक्त चार सूत्रों को जोड़ीवार जोड़ने से प्राप्त होता है:


समायोजन एवं एवं उपज को प्रतिस्थापित करना:

ज्याओं के योग को कोज्याओं के योग से विभाजित करने पर प्राप्त होता है:

ज्यामितीय प्रमाण

इस समचतुर्भुज की भुजाओं की लंबाई 1 है। क्षैतिज रेखा एवं दिखाए गए विकर्ण के मध्य का कोण 1/2 (a + b) है। यह विशेष स्पर्शरेखा अर्ध-कोण सूत्र को सिद्ध करने का ज्यामितीय उपाय है जो बताता है कि tan 1/2 (a + b) = (sin a + sin b) / (cos a + cos b) है। सूत्र sin 1/2(a + b) एवं cos 1/2(a + b) विकर्ण की लंबाई से वास्तविक दूरियों का अनुपात है।

ऊपर दिए गए सूत्रों को दाईं ओर समचतुर्भुज आकृति पर प्रस्तावित करने से यह सरलता से प्रदर्शित किया जा सकता है,

यूनिट सर्कल में, उपरोक्त का अनुप्रयोग यह प्रदर्शित करता है कि है। समरूप त्रिभुजों द्वारा,

यह इस प्रकार है,

अभिन्न कलन में स्पर्शरेखा अर्ध-कोण प्रतिस्थापन

वीयरस्ट्रैस प्रतिस्थापन का ज्यामितीय प्रमाण

त्रिकोणमिति के विभिन्न अनुप्रयोगों में, नए चर के तर्कसंगत कार्यों के संदर्भ में त्रिकोणमितीय कार्यों (जैसे साइन एवं कोज्या) को पुनः लिखना उपयोगी है। की परिभाषा के कारण इन सर्वसमिकाओं को सामूहिक रूप से स्पर्शरेखा अर्ध-कोण सूत्र के रूप में जाना जाता है। ये पहचानें साइन एवं कोज्या में तर्कसंगत कार्यों को उनके प्रतिअवकलज की शोध के लिए t के कार्यों में परिवर्तित करने के लिए कैलकुलसन में उपयोगी हो सकती हैं।

ज्यामितीय रूप से, निर्माण इस प्रकार होता है: इकाई चक्र पर किसी भी बिंदु के लिए (cos φ, sin φ) के लिए, इससे होकर निकलने वाली रेखा एवं बिंदु के लिए (−1, 0) खींची जाती है। यह बिंदु किसी बिंदु y = t पर y-अक्ष को पार करता है। कोई सरल ज्यामिति का उपयोग करके यह दिखा सकता है कि t = tan(φ/2) है। खींची गई रेखा का समीकरण y = (1 + x)t है। रेखा एवं वृत्त के प्रतिच्छेदन का समीकरण तब द्विघात समीकरण होता है जिसमें t सम्मिलित होता है। इस समीकरण के दो समाधान हैं (−1, 0) एवं (cos φ, sin φ) हैं। यह हमें पश्चात वाले को t के तर्कसंगत कार्यों के रूप में लिखने की अनुमति देता है (समाधान नीचे दिए गए हैं)।

पैरामीटर t, प्रक्षेपण के केंद्र (−1, 0) के साथ y-अक्ष पर (cos φ, sin φ) के त्रिविम प्रक्षेपण का प्रतिनिधित्व करता है। इस प्रकार, स्पर्शरेखा अर्ध-कोण सूत्र त्रिविम निर्देशांक t एवं मानक कोणीय निर्देशांक पर φ के मध्य रूपांतरण देते हैं।

तो हमारे पास हैं,

एवं

सीधे ऊपर एवं की प्रारंभिक परिभाषा के मध्य फाई को समाप्त करके, कोई प्राकृतिक लघुगणक के संदर्भ में आर्कटिक स्पर्शरेखा के लिए निम्नलिखित उपयोगी संबंध पर पहुंचता है,
कैलकुलस में, वेयरस्ट्रैस प्रतिस्थापन का उपयोग sin φ एवं cos φ तर्कसंगत कार्यों के प्रतिअवकलन की शोध के लिए किया जाता है। समायोजन के पश्चात

इसका अर्थ यह है कि

कुछ पूर्णांक n के लिए, एवं इसलिए

अतिशयोक्तिपूर्ण पहचान कोई भी अतिशयोक्तिपूर्ण कार्यों के साथ पूर्ण रूप से अनुरूप खेल खेल सकता है। हाइपरबोला की (दाहिनी शाखा पर) बिंदु (cosh ψ, sinh ψ) द्वारा दिया जाता है। इसे केंद्र (−1, 0) से y-अक्ष पर प्रक्षेपित करने पर निम्नलिखित प्राप्त होता है:

पहचानों के साथ

एवं

t के संदर्भ में ψ शोध से व्युत्क्रम हाइपरबोलिक स्पर्शरेखा एवं प्राकृतिक लघुगणक के मध्य निम्नलिखित संबंध बनता है:

गुडरमैनियन फलन

अतिशयोक्तिपूर्ण पहचानों की अपेक्षा वृत्ताकार पहचानों से करने पर, कोई यह ध्यान देता है कि उनमें t के समान कार्य सम्मिलित हैं, अभी क्रमबद्ध किया गया है। यदि हम दोनों ही विषयों में पैरामीटर t की पहचान करते हैं तो हम वृत्ताकार फलनों एवं अतिपरवलयिक फलनों के मध्य संबंध पर पहुंचते हैं। अर्थात यदि

तब

जहाँ gd(ψ) गुडर्मनियन फलन है। गुडेरमैनियन फलन वृत्ताकार फलन एवं हाइपरबोलिक फलन के मध्य सीधा संबंध देता है जिसमें समष्टि संख्याएं सम्मिलित नहीं होती हैं। स्पर्शरेखा अर्ध-कोण सूत्रों के उपरोक्त विवरण (इकाई वृत्त एवं मानक हाइपरबोला को y-अक्ष प्रक्षेपित करें)। इस फलन की ज्यामितीय व्याख्या देते हैं।

तर्कसंगत मान एवं पायथागॉरियन त्रिगुण

भुजाओं की लंबाई वाले पाइथागोरस त्रिभुज से प्रारंभ करने पर जिसकी भुजाओं की लंबाई a, b, एवं c है, जो धनात्मक पूर्णांक हैं एवं संतुष्ट a2 + b2 = c2 को करते हैं, इससे तुरंत ज्ञात होता है कि त्रिभुज के प्रत्येक आंतरिक कोण में साइन एवं कोज्या के लिए तर्कसंगत मान हैं, क्योंकि ये केवल भुजाओं की लंबाई के अनुपात हैं। इस प्रकार, tan φ/2 = sin φ / (1 + cos φ) का उपयोग करते हुए, इनमें से प्रत्येक कोण के अर्ध-कोण स्पर्शरेखा के लिए तर्कसंगत मान होता है।

विपरीत भी सही है। यदि दो धनात्मक कोण हैं जिनका योग 90° है, प्रत्येक परिमेय अर्ध-कोण स्पर्शरेखा के साथ है, एवं तीसरा कोण समकोण है तो इन आंतरिक कोणों वाला त्रिभुज पाइथागोरस त्रिभुज के समान (ज्यामिति) हो सकता है। यदि तीसरे कोण का समकोण होना आवश्यक नहीं है, किन्तु वह कोण है जो तीन धनात्मक कोणों का योग 180° बनाता है तो तीसरे कोण के पास आवश्यक रूप से अपने अर्ध-कोण स्पर्शरेखा के लिए तर्कसंगत संख्या होगी जब पूर्व दो ऐसा करते हैं (स्पर्शरेखाओं के लिए कोण जोड़ एवं घटाव सूत्र का उपयोग करके) एवं त्रिभुज को हेरोनियन त्रिभुज में स्केल किया जा सकता है।

सामान्यतः, यदि K सम्मिश्र संख्याओं का उपक्षेत्र है तो tan φ/2 ∈ K ∪ {∞} का तात्पर्य है कि {sin φ, cos φ, tan φ, sec φ, csc φ, cot φ} ⊆ K ∪ {∞} होता है।

यह भी देखें

बाहरी संबंध