अर्ध-पक्षीय सूत्र: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 22: | Line 22: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Created On 18/07/2023]] | [[Category:Created On 18/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:गोलाकार त्रिकोणमिति]] |
Latest revision as of 15:16, 2 August 2023
गोलाकार त्रिकोणमिति में, अर्ध पक्षीय सूत्र गोलाकार त्रिभुजों की पक्षीय के कोणों और लंबाई से संबंधित होता है, जो एक गोले की सतह पर खींचे गए त्रिभुज होते हैं और इसलिए उनकी पक्षीय घुमावदार होती हैं और समतल त्रिभुजों के सूत्रों का पालन नहीं करते हैं।[1]
सूत्र
त्रिज्या r वाले गोले पर बने त्रिभुज के लिए, अर्ध-पक्षीय सूत्र हैं:[2]
जहाँ
- a, b, और c क्रमशः विपरीत कोणों की पक्षीय लंबाई A, B, और C हैं;
- कोणों के योग का अर्ध है; और
तीनों सूत्र वास्तव में एक ही सूत्र हैं, जिनमें चरों के नाम क्रमबद्ध हैं।
पक्षीय a, b, और c को 1/r कारक द्वारा सामान्यीकृत किया जाता है जिससे वे इकाई गोले पर चाप की लंबाई का प्रतिनिधित्व करते है।
यह भी देखें
- कोसाइन का गोलाकार नियम
- हावर्साइन्स का नियम
संदर्भ
- ↑ Bronshtein, I. N.; Semendyayev, K. A.; Musiol, Gerhard; Mühlig, Heiner (2007), Handbook of Mathematics, Springer, p. 165, ISBN 9783540721222[1]
- ↑ Nelson, David (2008), The Penguin Dictionary of Mathematics (4th ed.), Penguin UK, p. 529, ISBN 9780141920870.