सम्मिश्र सह-बॉर्डिज्म: Difference between revisions

From Vigyanwiki
(Created page with "गणित में, जटिल सह-बॉर्डिज्म एक सामान्यीकृत सह-समरूपता सिद्धांत...")
 
No edit summary
 
(25 intermediate revisions by 4 users not shown)
Line 1: Line 1:
गणित में, जटिल [[सह-बॉर्डिज्म]] एक सामान्यीकृत [[सह-समरूपता]] सिद्धांत है जो [[ कई गुना ]]्स के सह-बॉर्डिज्म से संबंधित है। इसके स्पेक्ट्रम (होमोटोपी सिद्धांत) को एमयू द्वारा दर्शाया जाता है। यह एक असाधारण रूप से शक्तिशाली कोहोमोलॉजी सिद्धांत है, लेकिन इसकी गणना करना काफी कठिन हो सकता है, इसलिए अक्सर इसे सीधे उपयोग करने के बजाय इससे प्राप्त कुछ कमजोर सिद्धांतों का उपयोग किया जाता है, जैसे कि ब्राउन-पीटरसन कोहोमोलॉजी या मोरवा के-सिद्धांत, जिनकी गणना करना आसान होता है .
गणित में, सामान्यीकृत [[सह-समरूपता]] सिद्धांत जो [[ कई गुना |बहुखण्डों]] के सह-बॉर्डिज्म से संबंधित होता है उसे सम्मिश्र [[सह-बॉर्डिज्म]] कहा जाता है। इसकी श्रेणी को MU द्वारा दर्शाया जाता है। यह एक असामान्य रूप से प्रभावशाली सह-समरूपता सिद्धांत है, लेकिन इसकी गणना करना काफी कठिन होता है, इसलिए अक्सर इसे सीधे उपयोग करने के अपेक्षा इससे प्राप्त कुछ सरल सिद्धांतों जैसे कि ब्राउन-पीटरसन सह-समरूपता या मोरवा के-सिद्धांत का उपयोग किया जाता है, जिनकी गणना करना आसान होता है।


सामान्यीकृत होमोलॉजी और कोहोमोलॉजी जटिल कोबॉर्डिज्म सिद्धांत पेश किए गए थे {{harvs|txt|last=Atiyah|first=Michael|authorlink=Michael Atiyah|year=1961}} [[थॉम स्पेक्ट्रम]] का उपयोग करना।
[[थॉम स्पेक्ट्रम|थॉम श्रेणी]] का उपयोग करके माइकल अतियाह (1961) ने सामान्यीकृत समरूपता और सह-समरूपता सम्मिश्र [[सह-बॉर्डिज्म|सह]]-बॉर्डिज्म सिद्धांत प्रस्तुत किए थे।


==जटिल सह-बॉर्डिज्म का स्पेक्ट्रम==
==सम्मिश्र सह-बॉर्डिज्म की श्रेणी==


जटिल बोर्डिज्म <math>MU^*(X)</math> एक स्थान का <math>X</math> मोटे तौर पर कई गुना अधिक बोर्डिज्म वर्गों का समूह है <math>X</math> स्थिर [[सामान्य बंडल]] पर एक जटिल रैखिक संरचना के साथ। कॉम्प्लेक्स बोर्डिज़्म एक सामान्यीकृत होमोलॉजी सिद्धांत है, जो एक स्पेक्ट्रम एमयू के अनुरूप है जिसे थॉम रिक्त स्थान के संदर्भ में स्पष्ट रूप से वर्णित किया जा सकता है।
समष्टि <math>X</math> का सम्मिश्र बोर्डिज्म <math>MU^*(X)</math> [[सामान्य बंडल|सामान्य]] तौर पर स्थिर [[सामान्य बंडल]] पर एक सम्मिश्र रैखिक संरचना के साथ बहुखण्ड बोर्डिज्म वर्गों का समूह <math>X</math> है। सम्मिश्र बोर्डिज़्म एक सामान्यीकृत समतुल्य सिद्धांत है, जो एक श्रेणी MU के अनुरूप है जिसे थॉम समष्टि के संदर्भ में स्पष्ट रूप से वर्णित किया जा सकता है।


अंतरिक्ष <math>MU(n)</math> सार्वभौमिक का थॉम स्थान है <math>n</math>वर्गीकृत स्थान पर -प्लेन बंडल <math>BU(n)</math> [[एकात्मक समूह]] का <math>U(n)</math>. से प्राकृतिक समावेशन <math>U(n)</math> में <math>U(n+1)</math> डबल [[ निलंबन (टोपोलॉजी) ]] से एक मानचित्र तैयार करता है <math>\Sigma^2MU(n)</math> को <math>MU(n+1)</math>. ये मानचित्र मिलकर स्पेक्ट्रम देते हैं <math>MU</math>; अर्थात्, यह का समरूप कोलिमिट है <math>MU(n)</math>.
समष्टि <math>MU(n)</math> थॉम समष्टि का सर्वसामान्‍य <math>n</math>- सतह समूह पर [[एकात्मक समूह]] <math>U(n)</math> का वर्गीकृत समष्टि <math>BU(n)</math> है। प्राकृतिक समावेशन <math>U(n)</math> में <math>U(n+1)</math> दोहरा [[ निलंबन (टोपोलॉजी) |स्थगन <math>\Sigma^2MU(n)</math>]] से <math>MU(n+1)</math> से एक आलेखन तैयार करता है। ये आलेखन मिलकर श्रेणी <math>MU</math> देते हैं; अर्थात्, यह <math>MU(n)</math> का '''होमोटॉपी कोलिमिट''' है।


उदाहरण: <math>MU(0)</math> गोलाकार स्पेक्ट्रम है. <math>MU(1)</math> [[निलंबन]] है <math>\Sigma^{\infty -2} \mathbb{CP}^\infty</math> का <math>\mathbb{CP}^\infty</math>.
उदाहरण: <math>MU(0)</math> वृत्ताकार श्रेणी है और <math>MU(1)</math> <math>\mathbb{CP}^\infty</math> का [[निलंबन|स्थगन]] <math>\Sigma^{\infty -2} \mathbb{CP}^\infty</math>है।


[[निलपोटेंस प्रमेय]] बताता है कि, किसी भी [[रिंग स्पेक्ट्रम]] के लिए <math>R</math>, का कर्नेल <math>\pi_* R \to \operatorname{MU}_*(R)</math> शून्यशक्तिशाली तत्वों से युक्त है।<ref>http://www.math.harvard.edu/~lurie/252xnotes/Lecture25.pdf {{Bare URL PDF|date=March 2022}}</ref> प्रमेय का तात्पर्य विशेष रूप से यह है कि, यदि <math>\mathbb{S}</math> गोला स्पेक्ट्रम है, फिर किसी के लिए <math>n>0</math>, का प्रत्येक तत्व <math>\pi_n \mathbb{S}</math> निलपोटेंट ([[ ग्राउंडर निशिदा ]] का एक प्रमेय) है। (प्रमाण: यदि <math>x</math> में है <math>\pi_n S</math>, तब <math>x</math> एक मरोड़ है लेकिन इसकी छवि में है <math>\operatorname{MU}_*(\mathbb{S}) \simeq L</math>, लैजार्ड वलय, तब से मरोड़ नहीं सकता <math>L</math> एक बहुपद वलय है. इस प्रकार, <math>x</math> कर्नेल में होना चाहिए.)
[[निलपोटेंस प्रमेय|शून्य प्रमेय]] बताता है कि, किसी भी [[रिंग स्पेक्ट्रम|वलय श्रेणी]] <math>R</math> के लिए <math>\pi_* R \to \operatorname{MU}_*(R)</math> का अभाज्य तत्व [[निलपोटेंस प्रमेय|शून्य]] तत्वों से युक्त है।<ref>http://www.math.harvard.edu/~lurie/252xnotes/Lecture25.pdf {{Bare URL PDF|date=March 2022}}</ref> प्रमेय का तात्पर्य विशेष रूप से यह है कि, यदि <math>\mathbb{S}</math> वृत्ताकार श्रेणी है, तो किसी <math>n>0</math> के लिए  <math>\pi_n \mathbb{S}</math> का प्रत्येक तत्व [[निलपोटेंस प्रमेय|शून्य]]([[ ग्राउंडर निशिदा ]]का एक प्रमेय) है। उदाहरण के लिए, यदि <math>x</math>, <math>\pi_n S</math> में है तब <math>x</math> वक्र है लेकिन इसकी छवि <math>\operatorname{MU}_*(\mathbb{S}) \simeq L</math> में है, '''लैजार्ड''' वलय, वक्र नहीं हो सकता क्योंकि <math>L</math> एक बहुपद वलय है इसलिए <math>x</math> अभाज्य तत्व में होना चाहिए।


==औपचारिक समूह कानून==
==निरंतर समूह नियम==
{{harvs|txt|last=Milnor|first=John|authorlink=John Milnor|year=1960}} और {{harvs|txt=yes|last=Novikov|first=Sergei|authorlink=Sergei Novikov (mathematician)|year1=1960|year2=1962}}दिखाया कि गुणांक वलय <math>\pi_*(\operatorname{MU})</math> (एक बिंदु के जटिल कोबॉर्डिज़्म के बराबर, या समकक्ष रूप से जटिल मैनिफोल्ड्स के कोबॉर्डिज़्म वर्गों की अंगूठी) एक बहुपद अंगूठी है <math>\Z[x_1,x_2,\ldots]</math> अनंत रूप से अनेक जनरेटरों पर <math>x_i \in \pi_{2i}(\operatorname{MU})</math> सकारात्मक सम डिग्री का.
जॉन मिल्नोर (1960) और सर्गेई नोविकोव( 1960,1962 ) ने दर्शाया कि गुणांक वलय <math>\pi_*(\operatorname{MU})</math> अनंत रूप से अनेक उत्पादकों <math>x_i \in \pi_{2i}(\operatorname{MU})</math> पर धनात्मक सम डिग्री का एक बहुपद वलय  <math>\Z[x_1,x_2,\ldots]</math> है। इसका अर्थ है की एक बिंदु के सम्मिश्र [[सह-बॉर्डिज्म|सह]] बॉर्डिज़्म के समतुल्य या समकक्ष रूप से सम्मिश्र बहुखण्डो के [[सह-बॉर्डिज्म|सह]] बॉर्डिज़्म वर्गों का वलय होना चाहिए।


लिखना <math>\mathbb{CP}^{\infty}</math> अनंत आयामी [[जटिल प्रक्षेप्य स्थान]] के लिए, जो जटिल रेखा बंडलों के लिए वर्गीकृत स्थान है, ताकि रेखा बंडलों का टेंसर उत्पाद एक मानचित्र को प्रेरित कर सके <math>\mu : \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}\to \mathbb{CP}^{\infty}.</math> एसोसिएटिव [[ क्रमविनिमेय वलय स्पेक्ट्रम ]] '''' पर एक जटिल अभिविन्यास एक तत्व ''x'' है <math>E^2(\mathbb{CP}^{\infty})</math> किसका प्रतिबंध <math>E^2(\mathbb{CP}^{1})</math> 1 है, यदि बाद वाली रिंग की पहचान E के गुणांक रिंग से की जाती है। ऐसे तत्व x वाले स्पेक्ट्रम E को 'कॉम्प्लेक्स ओरिएंटेड रिंग स्पेक्ट्रम' कहा जाता है।
अनंत आकारीय [[जटिल प्रक्षेप्य स्थान|सम्मिश्र प्रक्षेप्य समष्टि]] को <math>\mathbb{CP}^{\infty}</math>द्वारा दर्शाया जाता है, जो सम्मिश्र रैखिक समूहों के लिए वर्गीकृत समष्टि है, ताकि रैखिक समूहों का क्षेत्र गुणनफल एक आलेखन <math>\mu : \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}\to \mathbb{CP}^{\infty}</math> को उत्पन्न कर सके। यदि बाद वाली वलय की पहचान E के गुणांक वलय से की जाती है तो सहयोगी [[ क्रमविनिमेय वलय स्पेक्ट्रम |क्रमविनिमेय वलय श्रेणी]] ''E'' एक सम्मिश्र अभिविन्यास <math>E^2(\mathbb{CP}^{\infty})</math> पर एक तत्व ''x'' है जिसका प्रतिबंध <math>E^2(\mathbb{CP}^{1})</math>पर 1 है। ऐसे x तत्व वाले श्रेणी E को 'सम्मिश्र '''उन्मुख''' वलय श्रेणी' कहा जाता है।


यदि E एक जटिल उन्मुख रिंग स्पेक्ट्रम है, तो
यदि E एक सम्मिश्र उन्मुख वलय श्रेणी है, तो


:<math>E^*(\mathbb{CP}^\infty) = E^*(\text{point})[[x]]</math>
:<math>E^*(\mathbb{CP}^\infty) = E^*(\text{point})[[x]]</math>
:<math>E^*(\mathbb{CP}^\infty)\times E^*(\mathbb{CP}^\infty) = E^*(\text{point})[[x\otimes1, 1\otimes x]]</math>
:<math>E^*(\mathbb{CP}^\infty)\times E^*(\mathbb{CP}^\infty) = E^*(\text{point})[[x\otimes1, 1\otimes x]]</math>
और <math>\mu^*(x) \in E^*(\text{point})[[x\otimes 1, 1\otimes x]]</math> रिंग पर एक [[औपचारिक समूह कानून]] है <math>E^*(\text{point}) = \pi^*(E)</math>.
और <math>\mu^*(x) \in E^*(\text{point})[[x\otimes 1, 1\otimes x]]</math> वलय <math>E^*(\text{point}) = \pi^*(E)</math> पर एक [[औपचारिक समूह कानून|निरंतर समूह नियम]] है।


जटिल सह-बॉर्डिज़्म में एक प्राकृतिक जटिल अभिविन्यास होता है। {{harvs|txt|last=Quillen|first=Daniel|authorlink=Daniel Quillen|year=1969}}दिखाया गया कि इसके गुणांक वलय से लेज़ार्ड के सार्वभौमिक वलय तक एक प्राकृतिक समरूपता है, जो जटिल कोबर्डिज्म के औपचारिक समूह कानून को सार्वभौमिक औपचारिक समूह कानून में बदल देती है। दूसरे शब्दों में, किसी भी क्रमविनिमेय वलय R पर किसी औपचारिक समूह नियम F के लिए, MU से एक अद्वितीय वलय समरूपता है<sup>*</sup>(बिंदु) R की ओर इस प्रकार कि F जटिल सह-बॉर्डिज्म के औपचारिक समूह कानून का प्रतिरूप है।
सम्मिश्र सह-बॉर्डिज़्म में एक प्राकृतिक सम्मिश्र अभिविन्यास होता है। {{harvs|txt|last=क्विलेन|first=डेनियल|authorlink=Daniel Quillen|year=1969}} ने दर्शाया कि इसके गुणांक वलय से लेज़ार्ड के सार्वभौमिक वलय तक एक प्राकृतिक समरूपता है, जो सम्मिश्र कोबर्डिज्म के निरंतर समूह [[औपचारिक समूह कानून|नियम]] को सार्वभौमिक निरंतर समूह [[औपचारिक समूह कानून|नियम]] में बदल देती है। दूसरे शब्दों में, किसी भी क्रमविनिमेय वलय R पर किसी निरंतर समूह नियम F के लिए MU से R तक एक अद्वितीय वलय समरूपता है जो इस प्रकार कि F सम्मिश्र सह-बॉर्डिज्म के निरंतर समूह नियम का प्रतिरूप है।


{{See also|complex-orientable cohomology theory}}
==ब्राउन-पीटरसन सह-समरूपता==
तर्कसंगतों पर सम्मिश्र सह-बॉर्डिज्म को सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए मुख्य रुचि सम्मिश्र सह-बॉर्डिज्म के वक्र में है। अभाज्य ''p'' पर MU को स्थानीयकृत करके एक समय में एक अभाज्य वक्र का अध्ययन करना अक्सर आसान होता है; [[सामान्य बंडल|सामान्य]] तौर पर इसका मतलब यह है कि कोई अभाज्य वक्र को ''p'' तक नष्ट कर देता है। ब्राउन-पीटरसन सह-समरूपता नामक एक सरल सह-समरूपता सिद्धांत के निलंबन के योग के रूप में स्थानीयकरण MU<sub>''p''</sub> पर MU का अभाज्य ''p'' विभाजन होता है, जिसे {{harvtxt| ब्राउन|पीटरसन|1966}} द्वारा पहले वर्णित किया गया था। सामान्यतया सम्मिश्र सह बॉर्डिज्म के अपेक्षा ब्राउन-पीटरसन सह-समरूपता के साथ गणना किया जाता है। [[सामान्य बंडल|सामान्य]] तौर पर सभी अभाज्य संख्याओं p के लिए किसी समष्टि के ब्राउन-पीटरसन सह-समरूपता का ज्ञान इसके सम्मिश्र सह-बॉर्डिज्म के ज्ञान के समतुल्य होता है।


==ब्राउन-पीटरसन कोहोमोलॉजी==
==कोनर-फ्लोयड श्रेणियाँ==
तर्कसंगतों पर जटिल सह-बॉर्डिज्म को तर्कसंगतों पर सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए मुख्य रुचि जटिल सह-बॉर्डिज्म के मरोड़ में है। प्राइम पी पर एमयू को स्थानीयकृत करके एक समय में एक प्राइम में मरोड़ का अध्ययन करना अक्सर आसान होता है; मोटे तौर पर इसका मतलब यह है कि कोई व्यक्ति मरोड़ प्राइम को पी तक खत्म कर देता है। स्थानीयकरण एमयू<sub>''p''</sub> प्राइम पी पर एमयू का विभाजन ब्राउन-पीटरसन कोहोमोलॉजी नामक एक सरल कोहोमोलॉजी सिद्धांत के निलंबन के योग के रूप में होता है, जिसे पहले वर्णित किया गया था {{harvtxt|Brown|Peterson|1966}}. व्यवहार में व्यक्ति अक्सर जटिल कोबॉर्डिज्म के बजाय ब्राउन-पीटरसन कोहोलॉजी के साथ गणना करता है। सभी अभाज्य संख्याओं p के लिए किसी स्थान के ब्राउन-पीटरसन सह-समरूपता का ज्ञान मोटे तौर पर इसके जटिल सह-बॉर्डिज्म के ज्ञान के बराबर है।


==कोनर-फ्लोयड कक्षाएं==
वलय <math>\operatorname{MU}^*(BU)</math> निरंतर घात श्रेणी वलय <math>\operatorname{MU}^*(\text{point})[[cf_1, cf_2, \ldots]]</math> के समरूपी है जहां तत्व cf को कोनर-फ्लोयड श्रेणी भी कहा जाता है। इन्हें कॉनर और फ्लॉयड (1966) द्वारा प्रस्तुत किया गया था और यह सम्मिश्र सह-बॉर्डिज्म के लिए चेर्न श्रेणियाँ के अनुरूप हैं।      


अंगूठी <math>\operatorname{MU}^*(BU)</math> औपचारिक शक्ति श्रृंखला वलय के समरूपी है <math>\operatorname{MU}^*(\text{point})[[cf_1, cf_2, \ldots]]</math> जहां तत्व cf कोनर-फ्लोयड वर्ग कहा जाता है। वे जटिल सह-बॉर्डिज्म के लिए चेर्न कक्षाओं के अनुरूप हैं। द्वारा उनका परिचय कराया गया {{harvtxt|Conner|Floyd|1966}}.
उसी प्रकार <math>\operatorname{MU}_*(BU)</math> बहुपद वलय <math>\operatorname{MU}_*(\text{point})[[\beta_1, \beta_2, \ldots]]</math> का समरूपी है।


उसी प्रकार <math>\operatorname{MU}_*(BU)</math> बहुपद वलय का समरूपी है <math>\operatorname{MU}_*(\text{point})[[\beta_1, \beta_2, \ldots]]</math>
<big>[[सह-समरूपता]] संचालन</big>


हॉपफ बीजगणित MU<sub>*</sub>(MU) बहुपद बीजगणित R[b<sub>1</sub>, b<sub>2</sub>, ...], का समरूपी है जहां R 0-वृत्त का घटाया हुआ बोर्डिज्म वलय है।


==सहसंगति संचालन==
सह-गणना द्वारा दिया जाता है
 
हॉपफ बीजगणित एमयू<sub>*</sub>(MU) बहुपद बीजगणित R[b का समरूपी है<sub>1</sub>, बी<sub>2</sub>, ...], जहां आर 0-गोले की कम हुई बोर्डिज्म रिंग है।
 
सहउत्पाद द्वारा दिया जाता है


:<math>\psi(b_k) = \sum_{i+j=k}(b)_{2i}^{j+1}\otimes b_j</math>
:<math>\psi(b_k) = \sum_{i+j=k}(b)_{2i}^{j+1}\otimes b_j</math>
जहां अंकन ()<sub>2''i''</sub> मतलब डिग्री 2i का टुकड़ा ले लो. इसकी व्याख्या इस प्रकार की जा सकती है। वो नक्शा
जहां अंकन ()<sub>2''i''</sub> का मतलब डिग्री 2i का एक भाग होता है। निम्नलिखित तरीके से इसकी व्याख्या की जा सकती है, इसका आलेखन:


:<math> x\to x+b_1x^2+b_2x^3+\cdots</math>
:<math> x\to x+b_1x^2+b_2x^3+\cdots</math>
एक्स में औपचारिक शक्ति श्रृंखला की अंगूठी और एमयू के सह-उत्पाद का एक निरंतर ऑटोमोर्फिज्म है<sub>*</sub>(एमयू) ऐसे दो ऑटोमोर्फिज्म की संरचना देता है।
x में निरंतर घात श्रेणी की निरंतर स्वप्रतिरूपण वलय और MU<sub>*</sub>(MU) की सह-गणना ऐसे दो स्वप्रतिरूपण की संरचना देता है।


==यह भी देखें==
==यह भी देखें==


*एडम्स-नोविकोव वर्णक्रमीय अनुक्रम
*एडम्स-नोविकोव वर्णक्रमीय अनुक्रम
*[[कोहोमोलॉजी सिद्धांतों की सूची]]
*[[कोहोमोलॉजी सिद्धांतों की सूची|सह-समरूपता सिद्धांतों की सूची]]
*[[बीजगणितीय सहबॉर्डिज्म]]
*[[बीजगणितीय सहबॉर्डिज्म]]


Line 84: Line 81:
*[https://archive.today/20121217235613/http://www.map.him.uni-bonn.de/Complex_bordism Complex bordism] at the manifold atlas
*[https://archive.today/20121217235613/http://www.map.him.uni-bonn.de/Complex_bordism Complex bordism] at the manifold atlas
*{{nlab|id=cobordism+cohomology+theory|title=cobordism cohomology theory}}
*{{nlab|id=cobordism+cohomology+theory|title=cobordism cohomology theory}}
[[Category: बीजगणितीय टोपोलॉजी]]


[[Category: Machine Translated Page]]
[[Category:All articles with bare URLs for citations]]
[[Category:Articles with PDF format bare URLs for citations]]
[[Category:Articles with bare URLs for citations from March 2022]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:बीजगणितीय टोपोलॉजी]]

Latest revision as of 15:56, 2 August 2023

गणित में, सामान्यीकृत सह-समरूपता सिद्धांत जो बहुखण्डों के सह-बॉर्डिज्म से संबंधित होता है उसे सम्मिश्र सह-बॉर्डिज्म कहा जाता है। इसकी श्रेणी को MU द्वारा दर्शाया जाता है। यह एक असामान्य रूप से प्रभावशाली सह-समरूपता सिद्धांत है, लेकिन इसकी गणना करना काफी कठिन होता है, इसलिए अक्सर इसे सीधे उपयोग करने के अपेक्षा इससे प्राप्त कुछ सरल सिद्धांतों जैसे कि ब्राउन-पीटरसन सह-समरूपता या मोरवा के-सिद्धांत का उपयोग किया जाता है, जिनकी गणना करना आसान होता है।

थॉम श्रेणी का उपयोग करके माइकल अतियाह (1961) ने सामान्यीकृत समरूपता और सह-समरूपता सम्मिश्र सह-बॉर्डिज्म सिद्धांत प्रस्तुत किए थे।

सम्मिश्र सह-बॉर्डिज्म की श्रेणी

समष्टि का सम्मिश्र बोर्डिज्म सामान्य तौर पर स्थिर सामान्य बंडल पर एक सम्मिश्र रैखिक संरचना के साथ बहुखण्ड बोर्डिज्म वर्गों का समूह है। सम्मिश्र बोर्डिज़्म एक सामान्यीकृत समतुल्य सिद्धांत है, जो एक श्रेणी MU के अनुरूप है जिसे थॉम समष्टि के संदर्भ में स्पष्ट रूप से वर्णित किया जा सकता है।

समष्टि थॉम समष्टि का सर्वसामान्‍य - सतह समूह पर एकात्मक समूह का वर्गीकृत समष्टि है। प्राकृतिक समावेशन में दोहरा स्थगन से से एक आलेखन तैयार करता है। ये आलेखन मिलकर श्रेणी देते हैं; अर्थात्, यह का होमोटॉपी कोलिमिट है।

उदाहरण: वृत्ताकार श्रेणी है और का स्थगन है।

शून्य प्रमेय बताता है कि, किसी भी वलय श्रेणी के लिए का अभाज्य तत्व शून्य तत्वों से युक्त है।[1] प्रमेय का तात्पर्य विशेष रूप से यह है कि, यदि वृत्ताकार श्रेणी है, तो किसी के लिए का प्रत्येक तत्व शून्य(ग्राउंडर निशिदा का एक प्रमेय) है। उदाहरण के लिए, यदि , में है तब वक्र है लेकिन इसकी छवि में है, लैजार्ड वलय, वक्र नहीं हो सकता क्योंकि एक बहुपद वलय है इसलिए अभाज्य तत्व में होना चाहिए।

निरंतर समूह नियम

जॉन मिल्नोर (1960) और सर्गेई नोविकोव( 1960,1962 ) ने दर्शाया कि गुणांक वलय अनंत रूप से अनेक उत्पादकों पर धनात्मक सम डिग्री का एक बहुपद वलय है। इसका अर्थ है की एक बिंदु के सम्मिश्र सह बॉर्डिज़्म के समतुल्य या समकक्ष रूप से सम्मिश्र बहुखण्डो के सह बॉर्डिज़्म वर्गों का वलय होना चाहिए।

अनंत आकारीय सम्मिश्र प्रक्षेप्य समष्टि को द्वारा दर्शाया जाता है, जो सम्मिश्र रैखिक समूहों के लिए वर्गीकृत समष्टि है, ताकि रैखिक समूहों का क्षेत्र गुणनफल एक आलेखन को उत्पन्न कर सके। यदि बाद वाली वलय की पहचान E के गुणांक वलय से की जाती है तो सहयोगी क्रमविनिमेय वलय श्रेणी E एक सम्मिश्र अभिविन्यास पर एक तत्व x है जिसका प्रतिबंध पर 1 है। ऐसे x तत्व वाले श्रेणी E को 'सम्मिश्र उन्मुख वलय श्रेणी' कहा जाता है।

यदि E एक सम्मिश्र उन्मुख वलय श्रेणी है, तो

और वलय पर एक निरंतर समूह नियम है।

सम्मिश्र सह-बॉर्डिज़्म में एक प्राकृतिक सम्मिश्र अभिविन्यास होता है। डेनियल क्विलेन (1969) ने दर्शाया कि इसके गुणांक वलय से लेज़ार्ड के सार्वभौमिक वलय तक एक प्राकृतिक समरूपता है, जो सम्मिश्र कोबर्डिज्म के निरंतर समूह नियम को सार्वभौमिक निरंतर समूह नियम में बदल देती है। दूसरे शब्दों में, किसी भी क्रमविनिमेय वलय R पर किसी निरंतर समूह नियम F के लिए MU से R तक एक अद्वितीय वलय समरूपता है जो इस प्रकार कि F सम्मिश्र सह-बॉर्डिज्म के निरंतर समूह नियम का प्रतिरूप है।

ब्राउन-पीटरसन सह-समरूपता

तर्कसंगतों पर सम्मिश्र सह-बॉर्डिज्म को सामान्य सह-समरूपता में कम किया जा सकता है, इसलिए मुख्य रुचि सम्मिश्र सह-बॉर्डिज्म के वक्र में है। अभाज्य p पर MU को स्थानीयकृत करके एक समय में एक अभाज्य वक्र का अध्ययन करना अक्सर आसान होता है; सामान्य तौर पर इसका मतलब यह है कि कोई अभाज्य वक्र को p तक नष्ट कर देता है। ब्राउन-पीटरसन सह-समरूपता नामक एक सरल सह-समरूपता सिद्धांत के निलंबन के योग के रूप में स्थानीयकरण MUp पर MU का अभाज्य p विभाजन होता है, जिसे ब्राउन & पीटरसन (1966) द्वारा पहले वर्णित किया गया था। सामान्यतया सम्मिश्र सह बॉर्डिज्म के अपेक्षा ब्राउन-पीटरसन सह-समरूपता के साथ गणना किया जाता है। सामान्य तौर पर सभी अभाज्य संख्याओं p के लिए किसी समष्टि के ब्राउन-पीटरसन सह-समरूपता का ज्ञान इसके सम्मिश्र सह-बॉर्डिज्म के ज्ञान के समतुल्य होता है।

कोनर-फ्लोयड श्रेणियाँ

वलय निरंतर घात श्रेणी वलय के समरूपी है जहां तत्व cf को कोनर-फ्लोयड श्रेणी भी कहा जाता है। इन्हें कॉनर और फ्लॉयड (1966) द्वारा प्रस्तुत किया गया था और यह सम्मिश्र सह-बॉर्डिज्म के लिए चेर्न श्रेणियाँ के अनुरूप हैं।      

उसी प्रकार बहुपद वलय का समरूपी है।

सह-समरूपता संचालन

हॉपफ बीजगणित MU*(MU) बहुपद बीजगणित R[b1, b2, ...], का समरूपी है जहां R 0-वृत्त का घटाया हुआ बोर्डिज्म वलय है।

सह-गणना द्वारा दिया जाता है

जहां अंकन ()2i का मतलब डिग्री 2i का एक भाग होता है। निम्नलिखित तरीके से इसकी व्याख्या की जा सकती है, इसका आलेखन:

x में निरंतर घात श्रेणी की निरंतर स्वप्रतिरूपण वलय और MU*(MU) की सह-गणना ऐसे दो स्वप्रतिरूपण की संरचना देता है।

यह भी देखें

टिप्पणियाँ


संदर्भ


बाहरी संबंध