पूर्ण गैलोज़ समूह: Difference between revisions

From Vigyanwiki
No edit summary
Line 112: Line 112:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 14/07/2023]]
[[Category:Created On 14/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 14:52, 2 August 2023

वास्तविक संख्याओं का पूर्ण गैलोज़ समूह समष्टि संयुग्मन द्वारा उत्पन्न क्रम 2 का एक चक्रीय समूह है, क्योंकि C, R और [C:R] = 2 का वियोज्य समापन है।

गणित में, पूर्ण गैलोज़ समूह GK जी एक क्षेत्र (गणित) का K, K का गैलोज़ समूह है Ksep के ऊपर, जहां Ksep K का एक पृथक्करणीय समापन है। वैकल्पिक रूप से यह K के बीजगणितीय समापन के आंतरिक स्वचालितता का समूह है जो K को ठीक करता है। पूर्ण गैलोज़ समूह को आंतरिक ऑटोमोर्फिज्म तक अच्छी तरह से परिभाषित किया गया है। यह एक अनंत समूह है.

(जब K एक आदर्श क्षेत्र है, Ksep बीजगणितीय समापन K के समान है K alg। यह उदाहरण रखता है। विशेषता शून्य के K के लिए, या K एक परिमित क्षेत्र के लिए।)

उदाहरण

  • बीजगणितीय रूप से संवृत क्षेत्र का पूर्ण गैलोज़ समूह नगण्य है।
  • वास्तविक संख्याओं का पूर्ण गैलोज़ समूह दो तत्वों (समष्टि संयुग्मन और पहचान मानचित्र) का एक चक्रीय समूह है, क्योंकि C, R और [C:R] = 2 का वियोज्य समापन है।
  • एक परिमित क्षेत्र K का पूर्ण गैलोज़ समूह समूह के लिए समरूपी है

(नोटेशन के लिए, व्युत्क्रम सीमा देखें।)

फ्रोबेनियस ऑटोमोर्फिज्म Fr, GK का एक विहित (टोपोलॉजिकल) जनरेटर है. (याद रखें कि Fr(x) = xq for all x in Kalg ,जहां q, K में तत्वों की संख्या है।)
  • समष्टि गुणांक वाले तर्कसंगत कार्यों के क्षेत्र का पूर्ण गैलोज़ समूह स्वतंत्र है, (एक अनंत समूह के रूप में)। यह परिणाम एड्रियन डौडी के कारण है और इसकी व्युत्पत्ति रीमैन के अस्तित्व प्रमेय में हुई है [1]
  • अधिक सामान्यतः, मान लीजिए कि C बीजगणितीय रूप से संवृत फ़ील्ड है और x एक चर है। तब K = C(x) का पूर्ण गैलोज़ समूह C की कार्डिनैलिटी के बराबर रैंक से स्वतंत्र है। यह परिणाम डेविड हार्बेटर और फ्लोरियन पॉप के कारण है, और बाद में बीजगणितीय तरीकों का उपयोग करके डैन हरन और मोशे जार्डन द्वारा भी सिद्ध किया गया था। [2][3][4]
  • मान लीजिए K, p-adic संख्याओं Qp का एक परिमित विस्तार है। पी ≠ 2 के लिए, इसका पूर्ण गैलोज़ समूह [K:Qp] + 3 तत्वों द्वारा उत्पन्न होता है और जनरेटर और संबंधों द्वारा इसका स्पष्ट विवरण होता है। यह उवे जैनसेन और के विंगबर्ग का परिणाम है। [5][6] स्थितियों में कुछ परिणाम ज्ञात हैं case p = 2,किन्तु Q2 की संरचना ज्ञात नहीं है। [7]
  • एकअन्य स्थिति जिसमें पूर्ण गैलोज़ समूह निर्धारित किया गया है वह बीजगणितीय संख्याओं के क्षेत्र के सबसे बड़े पूर्णतः वास्तविक उपक्षेत्र के लिए है। [8]


समस्याएँ

  • परिमेय संख्याओं के पूर्ण गैलोज़ समूह के लिए कोई प्रत्यक्ष विवरण ज्ञात नहीं है। इस स्थितियों में, बेली के प्रमेय से यह पता चलता है कि पूर्ण गैलोज़ समूह का ग्रोथेंडिक (सतहों पर मानचित्र) के डेसिन्स डी एनफैंट्स पर एक विश्वसनीय कार्रवाई है, जो हमें बीजगणितीय संख्या क्षेत्रों के गैलोज़ सिद्धांत को देखने में सक्षम बनाता है।
  • मान लीजिए K परिमेय संख्याओं का अधिकतम एबेलियन विस्तार है। फिर 'शफ़ारेविच का अनुमान' अनुरोध करता है कि K का पूर्ण गैलोज़ समूह स्वतंत्र अनंत समूह है। [9]


कुछ सामान्य परिणाम

  • प्रत्येक अनंत समूह कुछ गैलोज़ विस्तार के गैलोज़ समूह के रूप में होता है,[10] चूंकि, प्रत्येक अनंत समूह पूर्ण गैलोज़ समूह के रूप में नहीं होता है। उदाहरण सामान्यतः, रियल क्लोज्ड फील्ड|आर्टिन-श्रेयर प्रमेय का अनुरोध है कि एकमात्र परिमित निरपेक्ष गैलोज़ समूह या तो नगण्य हैं या क्रम 2 के हैं, अर्थात केवल दो समरूपता वर्ग हैं।
  • प्रत्येक प्रक्षेप्य अनंत समूह को छद्म बीजगणितीय रूप से संवृत क्षेत्र के पूर्ण गैलोज़ समूह के रूप में स्पष्ट किया जा सकता है। यह परिणाम अलेक्जेंडर लुबोट्ज़की और लुई वैन डेन ड्रीस के कारण है।[11]


संदर्भ

  1. Douady 1964
  2. Harbater 1995
  3. Pop 1995
  4. Haran & Jarden 2000
  5. Jannsen & Wingberg 1982
  6. Neukirch, Schmidt & Wingberg 2000, theorem 7.5.10
  7. Neukirch, Schmidt & Wingberg 2000, §VII.5
  8. "क्वार्टर" (PDF). Retrieved 2019-09-04.
  9. Neukirch, Schmidt & Wingberg 2000, p. 449.
  10. Fried & Jarden (2008) p.12
  11. Fried & Jarden (2008) pp.208,545



स्रोत

श्रेणी:गैलोइस सिद्धांत