बेथ संख्या: Difference between revisions
Line 1: | Line 1: | ||
{{short description|Infinite Cardinal number}} | {{short description|Infinite Cardinal number}} | ||
गणित में, विशेष रूप से समुच्चय सिद्धांत में, ' | गणित में, विशेष रूप से समुच्चय सिद्धांत में, ''''बेथ संख्याएँ'''' अनंत गणनांक संख्याओं का एक निश्चित क्रम हैं, परंपरागत रूप से लिखा गया <math>\beth_0, \beth_1, \beth_2, \beth_3, \dots</math>, जहाँ <math>\beth</math> दूसरे हिब्रू वर्णमाला के द्वितीय अक्षर ('बेथ') को प्रतिनिधित्व करता है। बेथ संख्याएँ अलेफ संख्याओं (<math>\aleph_0, \aleph_1, \dots</math>) से संबंधित हैं, परंतु जब तक सामान्यीकृत सातत्य परिकल्पना सत्य नहीं होती तब तक संख्या <math>\aleph</math> को अनुक्रमित किया जाता है और 'सामान्यरूपी प्रतिधारा का सिद्धांत' सत्य न हो, तो ऐसे संख्या <math>\beth</math> को अनुक्रमित नहीं किया जाता है | ||
Line 48: | Line 48: | ||
===बेथ शून्य=== | ===बेथ शून्य=== | ||
चूँकि इसे | चूँकि इसे <math>\aleph_0</math>परिभाषित किया गया है, या [[एलेफ़ नल|एलेफ़ शून्य]], कार्डिनैलिटी के साथ समुच्चय <math>\beth_0</math> होता है: | ||
*प्राकृतिक संख्याएँ N | *प्राकृतिक संख्याएँ N | ||
Line 54: | Line 54: | ||
*[[बीजगणितीय संख्या]]एँ | *[[बीजगणितीय संख्या]]एँ | ||
*गणनायोग्य संख्याएँ और संगणनीय समुच्चय | *गणनायोग्य संख्याएँ और संगणनीय समुच्चय | ||
* | *पूर्णांकों के परिमित समुच्चयो का समुच्चय | ||
*पूर्णांकों के [[मल्टीसेट| | *पूर्णांकों के बहु[[मल्टीसेट|समुच्चय]] का समुच्चय | ||
*पूर्णांकों के परिमित अनुक्रमों का समुच्चय | *पूर्णांकों के परिमित अनुक्रमों का समुच्चय | ||
Line 62: | Line 62: | ||
{{main|cardinality of the continuum}} | {{main|cardinality of the continuum}} | ||
गणनांक के साथ समुच्चय <math>\beth_1</math>सम्मिलित करना: | |||
*[[पारलौकिक संख्याएँ]] | *[[पारलौकिक संख्याएँ]] | ||
*[[अपरिमेय संख्या]]एँ | *[[अपरिमेय संख्या]]एँ | ||
*वास्तविक संख्या | *वास्तविक संख्या R | ||
* | *मिश्रितसंख्या C | ||
*[[अगणनीय वास्तविक संख्या]]एँ | *[[अगणनीय वास्तविक संख्या]]एँ | ||
*[[ यूक्लिडियन स्थान | यूक्लिडियन स्थान]] | *[[ यूक्लिडियन स्थान | यूक्लिडियन स्थान]] R<sup>n</sup> | ||
*प्राकृतिक संख्याओं का घात समुच्चय | *प्राकृतिक संख्याओं का घात समुच्चय | ||
*पूर्णांकों के [[अनुक्रम]] | *पूर्णांकों के [[अनुक्रम|अनुक्रमो]] का समुच्चय अर्थात् सभी फ़ंक्शन ' '''N''' → '''Z''',', जिसे अक्सर ''''Z<sup>N</sup>''' कहा जाता है | ||
*वास्तविक संख्याओं के अनुक्रमों का समुच्चय, R<sup> | *वास्तविक संख्याओं के अनुक्रमों का समुच्चय, '''R<sup>N</sup>''' | ||
* | *'''R''' से '''R''' तक सभीवास्तविक [[विश्लेषणात्मक कार्य]] का समुच्चय | ||
* | *'''R''' से '''R''' तक सभी निरंतर कार्यों का समुच्चय | ||
*वास्तविक संख्याओं के परिमित उपसमुच्चय का समुच्चय | *वास्तविक संख्याओं के परिमित उपसमुच्चय का समुच्चय | ||
* | *'''C''' से '''C''' तक सभी विश्लेषणात्मक कार्यों का समुच्चय | ||
===बेथ दो=== | ===बेथ दो=== | ||
<math>\beth_2</math> | <math>\beth_2</math> को ''''2<sup>''c''</sup>''' भी कहा जाता है' उच्चारण में c की घात दो होती है। | ||
गणनांक के साथ समुच्चय <math>\beth_2</math> सम्मिलित करना: | |||
*वास्तविक संख्याओं के समुच्चय का घात समुच्चय, इसलिए यह वास्तविक रेखा के उपसमुच्चयों की संख्या, या वास्तविक संख्याओं के समुच्चयों की संख्या है | *वास्तविक संख्याओं के समुच्चय का घात समुच्चय, इसलिए यह वास्तविक रेखा के उपसमुच्चयों की संख्या, या वास्तविक संख्याओं के समुच्चयों की संख्या है | ||
*प्राकृतिक संख्याओं के | *प्राकृतिक संख्याओं के समुच्चयो के घात समुच्चय | ||
* | *'''R''' से '''R''' तक सभी फलन का [[सबसेट|सबसमुच्चय]] | ||
* | *'''R'''<sup>''m''</sup> से '''R'''<sup>''n''</sup> सभी कार्यों का समुच्चय | ||
*प्राकृतिक संख्याओं के समुच्चय | *प्राकृतिक संख्याओं के समुच्चय से सभी कार्यों के समुच्चय की शक्ति समुच्चय, इसलिए यह प्राकृतिक संख्याओं के अनुक्रमों के समुच्चय की संख्या है | ||
*' | *''''R''', '''Q'''<nowiki/>' और ''''N'''<nowiki/>' का स्टोन-सेच कॉम्पेक्टिफिकेशन | ||
*' | *''''R'''<sup>''n''</sup>' में नियतात्मक फ्रैक्टल का समुच्चय <ref name=":3">{{Cite journal|title= नियतात्मक भग्न के लिए हॉसडॉर्फ आयाम प्रमेय का एक सामान्यीकरण|year=2021 |doi=10.3390/math9131546 |doi-access=free |last1=Soltanifar |first1=Mohsen |journal=Mathematics |volume=9 |issue=13 |page=1546 }}</ref> | ||
* | *'''R'''<sup>''n''</sup> में यादृच्छिक फ्रैक्टल्स का समुच्चय <ref name=":4">{{Cite journal|title= रैंडम फ्रैक्टल्स के लिए हॉसडॉर्फ आयाम प्रमेय का दूसरा सामान्यीकरण|year=2022 |doi=10.3390/math10050706 |doi-access=free |last1=Soltanifar |first1=Mohsen |journal=Mathematics |volume=10 |issue=5 |page=706 }}</ref> | ||
===बेथ ओमेगा=== | ===बेथ ओमेगा=== | ||
<math>\beth_\omega</math> | <math>\beth_\omega</math> को बेथ ओमेगा कहते हैं, जो सबसे छोटी अगणित सबल सीमा संख्या होती है। | ||
==सामान्यीकरण== | ==सामान्यीकरण== | ||
कभी-कभी, बेथ संख्या <math>\beth_\alpha(\kappa)</math>,को अधिक सामान्य चिह्न α के रूप में उपयोग किया जाता है जहां κ एक गणन है जिसे परिभाषित किया गया है | |||
:<math>\beth_0(\kappa)=\kappa,</math> | :<math>\beth_0(\kappa)=\kappa,</math> | ||
:<math>\beth_{\alpha+1}(\kappa)=2^{\beth_\alpha(\kappa)},</math> | :<math>\beth_{\alpha+1}(\kappa)=2^{\beth_\alpha(\kappa)},</math> | ||
Line 104: | Line 104: | ||
इसलिए | इसलिए | ||
:<math>\beth_\alpha=\beth_\alpha(\aleph_0).</math> | :<math>\beth_\alpha=\beth_\alpha(\aleph_0).</math> | ||
ज़र्मेलो-फ्रेंकेल समुच्चय | ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ) में, किसी भी गणन κ और μ के लिए, एक क्रमिक संख्या α होता है जैसे: | ||
:<math>\kappa \le \beth_\alpha(\mu).</math> | :<math>\kappa \le \beth_\alpha(\mu).</math> | ||
और ZF में, किसी भी | और ZF में, किसी भी गणन κ और गणनांक α और β के लिए: | ||
:<math>\beth_\beta(\beth_\alpha(\kappa)) = \beth_{\alpha+\beta}(\kappa).</math> | :<math>\beth_\beta(\beth_\alpha(\kappa)) = \beth_{\alpha+\beta}(\kappa).</math> | ||
परिणाम स्वरूप, ZF में अभाव में या चयन के अभिगृहीत के साथ, किसी भी परिमाणों κ और μ के लिए निम्नलिखित समानता होती है: | |||
:<math>\beth_\beta(\kappa) = \beth_\beta(\mu)</math> | :<math>\beth_\beta(\kappa) = \beth_\beta(\mu)</math> | ||
सभी पर्याप्त रूप से बड़े | सभी पर्याप्त रूप से बड़े गणनांक β के लिए मान्य है। अर्थात्, एक क्रमसूचक α है, जो प्रत्येक क्रमसूचक β ≥ α के लिए समानता रखता है। | ||
यह उर- | यह समानता ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के साथ भी सत्य है जहां उर-तत्व के साथ चयन या बिना चयन के, यदि उर-तत्व एक समुच्चय बनाते हैं जो एक प्योर समुच्चय के समान संख्यक होता है। यदि चयन अभिगृहीत है, तो किसी भी समुच्चय के उर-तत्व का समुच्चय एक शुद्ध समुच्चय के समान संख्यक होता है। | ||
==[[बोरेल निर्धारण]]== | ==[[बोरेल निर्धारण]]== | ||
Line 134: | Line 134: | ||
*अनंत संख्या | *अनंत संख्या | ||
*[[बेशुमार सेट| | *[[बेशुमार सेट|अगणनीय समुच्चय]] | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 13:36, 26 July 2023
गणित में, विशेष रूप से समुच्चय सिद्धांत में, 'बेथ संख्याएँ' अनंत गणनांक संख्याओं का एक निश्चित क्रम हैं, परंपरागत रूप से लिखा गया , जहाँ दूसरे हिब्रू वर्णमाला के द्वितीय अक्षर ('बेथ') को प्रतिनिधित्व करता है। बेथ संख्याएँ अलेफ संख्याओं () से संबंधित हैं, परंतु जब तक सामान्यीकृत सातत्य परिकल्पना सत्य नहीं होती तब तक संख्या को अनुक्रमित किया जाता है और 'सामान्यरूपी प्रतिधारा का सिद्धांत' सत्य न हो, तो ऐसे संख्या को अनुक्रमित नहीं किया जाता है
परिभाष
बेथ संख्याओं को ट्रांसफ़िनिट रिकर्सन द्वारा परिभाषित किया गया है:
यहाँ एक क्रमसूचक और एक सीमा क्रमसूचक हैं।
गणित में, कोई भी गिनती योग्य अनंत समुच्चय की परिमाणता होती है, जैसे का समुच्चय, जिससे हो।
यदि एक क्रमसूचक हो, और गणनांक के साथ एक समुच्चय हो तो, निम्नलिखित संबंध होते हैं:
- के ऊर्जा समुच्चय को दर्शाता है, अर्थात, सभी उपसमुच्चयों का समुच्चय ,
- समुच्चय से सभी कार्यों के समुच्चय को दर्शाता है {0,1} तक,
- गणन गणन घातांक का परिणाम है, और
- के ऊर्जा समुच्चय की गणनांक है।
इस परिभाषा को देखते हुए,
क्रमशः की गणनात्मकताएं हैं
समुच्चय सिद्धांत में, बेथ संख्या दूसरी बेथ संख्या है और यह , के बराबर है, जो संख्या प्रकार की व्याप्ति की परिमाणता है। और इसके अतिरिक्त , तीसरी बेथ संख्या व्याप्ति की शक्ति समुच्चय की परिमाणता है।
कैंटर के सिद्धांत के कारण, पिछले अनुक्रम में प्रत्येक समुच्चय की परिमाणता पूर्व वाले समुच्चय से स्पष्ट रूप से अधिक होती है। यहाँ, प्रत्येक समुच्चय की परिमाणता बेथ संख्या होती है अनंत सीमा λ के लिए, संबंधित बेथ संख्या, λ को उस सभी क्रमसूचक से अधिक सभी बेथ संख्याओं का उच्चतम सीमा के रूप में परिभाषित किया जाता है:
वॉन नेमन विश्व की परिमाणता बेथ संख्या के बराबर होती है।
एलेफ़ संख्याओं से संबंध
चयन के अभिगृहीत को ध्यान में रखते हुए, अनंत परिमाणताएँ रेखांकित होती हैं; कोई भी दो परिमाणताएँ पूर्वानुमानित नहीं हो सकती हैं। इसलिए, परिभाषा के अनुसार, कोई भी अनंत परिमाणता और के बीच नहीं हो सकती है,
इससे निम्नलिखित परिणाम होता है:
इस तर्क को पुनरावृत्ति करते हुए
सभी अध्यादेशों के लिए .
सातत्य परिकल्पना समतुल्य है
सामान्यरूपी प्रतिधारा के सिद्धांत के अनुसार, बेथ संख्याएँ और अलेफ संख्याएँ की अनुक्रमणिका एक जैसी हैं। अर्थात्, जिस प्रकार से बेथ संख्याएँ परिभाषित की गई हैं, वे अलेफ संख्याओं की अनुक्रमणिका के साथ समान हैं। इसे सामान्यरूपी प्रतिधारा के सिद्धांत कहा जाता है।
सभी अध्यादेशों के लिए .
विशिष्ट गणन्स
बेथ शून्य
चूँकि इसे परिभाषित किया गया है, या एलेफ़ शून्य, कार्डिनैलिटी के साथ समुच्चय होता है:
- प्राकृतिक संख्याएँ N
- परिमेय संख्याएं Q
- बीजगणितीय संख्याएँ
- गणनायोग्य संख्याएँ और संगणनीय समुच्चय
- पूर्णांकों के परिमित समुच्चयो का समुच्चय
- पूर्णांकों के बहुसमुच्चय का समुच्चय
- पूर्णांकों के परिमित अनुक्रमों का समुच्चय
बेथ एक
गणनांक के साथ समुच्चय सम्मिलित करना:
- पारलौकिक संख्याएँ
- अपरिमेय संख्याएँ
- वास्तविक संख्या R
- मिश्रितसंख्या C
- अगणनीय वास्तविक संख्याएँ
- यूक्लिडियन स्थान Rn
- प्राकृतिक संख्याओं का घात समुच्चय
- पूर्णांकों के अनुक्रमो का समुच्चय अर्थात् सभी फ़ंक्शन ' N → Z,', जिसे अक्सर 'ZN कहा जाता है
- वास्तविक संख्याओं के अनुक्रमों का समुच्चय, RN
- R से R तक सभीवास्तविक विश्लेषणात्मक कार्य का समुच्चय
- R से R तक सभी निरंतर कार्यों का समुच्चय
- वास्तविक संख्याओं के परिमित उपसमुच्चय का समुच्चय
- C से C तक सभी विश्लेषणात्मक कार्यों का समुच्चय
बेथ दो
को '2c भी कहा जाता है' उच्चारण में c की घात दो होती है।
गणनांक के साथ समुच्चय सम्मिलित करना:
- वास्तविक संख्याओं के समुच्चय का घात समुच्चय, इसलिए यह वास्तविक रेखा के उपसमुच्चयों की संख्या, या वास्तविक संख्याओं के समुच्चयों की संख्या है
- प्राकृतिक संख्याओं के समुच्चयो के घात समुच्चय
- R से R तक सभी फलन का सबसमुच्चय
- Rm से Rn सभी कार्यों का समुच्चय
- प्राकृतिक संख्याओं के समुच्चय से सभी कार्यों के समुच्चय की शक्ति समुच्चय, इसलिए यह प्राकृतिक संख्याओं के अनुक्रमों के समुच्चय की संख्या है
- 'R, Q' और 'N' का स्टोन-सेच कॉम्पेक्टिफिकेशन
- 'Rn' में नियतात्मक फ्रैक्टल का समुच्चय [1]
- Rn में यादृच्छिक फ्रैक्टल्स का समुच्चय [2]
बेथ ओमेगा
को बेथ ओमेगा कहते हैं, जो सबसे छोटी अगणित सबल सीमा संख्या होती है।
सामान्यीकरण
कभी-कभी, बेथ संख्या ,को अधिक सामान्य चिह्न α के रूप में उपयोग किया जाता है जहां κ एक गणन है जिसे परिभाषित किया गया है
- यदि λ एक सीमा क्रमसूचक है।
इसलिए
ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ) में, किसी भी गणन κ और μ के लिए, एक क्रमिक संख्या α होता है जैसे:
और ZF में, किसी भी गणन κ और गणनांक α और β के लिए:
परिणाम स्वरूप, ZF में अभाव में या चयन के अभिगृहीत के साथ, किसी भी परिमाणों κ और μ के लिए निम्नलिखित समानता होती है:
सभी पर्याप्त रूप से बड़े गणनांक β के लिए मान्य है। अर्थात्, एक क्रमसूचक α है, जो प्रत्येक क्रमसूचक β ≥ α के लिए समानता रखता है।
यह समानता ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के साथ भी सत्य है जहां उर-तत्व के साथ चयन या बिना चयन के, यदि उर-तत्व एक समुच्चय बनाते हैं जो एक प्योर समुच्चय के समान संख्यक होता है। यदि चयन अभिगृहीत है, तो किसी भी समुच्चय के उर-तत्व का समुच्चय एक शुद्ध समुच्चय के समान संख्यक होता है।
बोरेल निर्धारण
बोरेल निर्धारण गणनीय सूचकांक के सभी बेथ के अस्तित्व से निहित है।[3]
यह भी देखें
- अनंत संख्या
- अगणनीय समुच्चय
संदर्भ
- ↑ Soltanifar, Mohsen (2021). "नियतात्मक भग्न के लिए हॉसडॉर्फ आयाम प्रमेय का एक सामान्यीकरण". Mathematics. 9 (13): 1546. doi:10.3390/math9131546.
- ↑ Soltanifar, Mohsen (2022). "रैंडम फ्रैक्टल्स के लिए हॉसडॉर्फ आयाम प्रमेय का दूसरा सामान्यीकरण". Mathematics. 10 (5): 706. doi:10.3390/math10050706.
- ↑ Leinster, Tom (23 July 2021). "Borel Determinacy Does Not Require Replacement". The n-Category Café. The University of Texas at Austin. Retrieved 25 August 2021.
ग्रन्थसूची
- T. E. Forster, Set Theory with a Universal Set: Exploring an Untyped Universe, Oxford University Press, 1995 — Beth number is defined on page 5.
- Bell, John Lane; Slomson, Alan B. (2006) [1969]. Models and Ultraproducts: An Introduction (reprint of 1974 ed.). Dover Publications. ISBN 0-486-44979-3. See pages 6 and 204–205 for beth numbers.
- Roitman, Judith (2011). Introduction to Modern Set Theory. Virginia Commonwealth University. ISBN 978-0-9824062-4-3. See page 109 for beth numbers.