आइंस्टीन संबंध (गतिज सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
Line 46: | Line 46: | ||
==विशेष स्थिति== | ==विशेष स्थिति== | ||
===विद्युत गतिशीलता समीकरण (पारंपरिक | ===विद्युत गतिशीलता समीकरण (पारंपरिक स्थिति)=== | ||
विद्युत आवेश {{mvar|q}} वाले एक कण के लिए, इसकी विद्युत गतिशीलता {{math|''μ<sub>q</sub>''}} इसकी सामान्यीकृत गतिशीलता {{mvar|μ}} से समीकरण {{math|1=''μ'' = ''μ<sub>q</sub>''/''q''}} द्वारा संबंधित होती है। पैरामीटर {{math|''μ<sub>q</sub>''}} कण के टर्मिनल अपवाह वेग और लागू [[विद्युत क्षेत्र]]त्र का अनुपात है। इसलिए, आवेशित कण के स्थिति में समीकरण इस प्रकार दिया गया है | विद्युत आवेश {{mvar|q}} वाले एक कण के लिए, इसकी विद्युत गतिशीलता {{math|''μ<sub>q</sub>''}} इसकी सामान्यीकृत गतिशीलता {{mvar|μ}} से समीकरण {{math|1=''μ'' = ''μ<sub>q</sub>''/''q''}} द्वारा संबंधित होती है। पैरामीटर {{math|''μ<sub>q</sub>''}} कण के टर्मिनल अपवाह वेग और लागू [[विद्युत क्षेत्र]]त्र का अनुपात है। इसलिए, आवेशित कण के स्थिति में समीकरण इस प्रकार दिया गया है | ||
Line 68: | Line 68: | ||
=== स्टोक्स-आइंस्टीन समीकरण === | === स्टोक्स-आइंस्टीन समीकरण === | ||
निम्न रेनॉल्ड्स संख्या की सीमा में, गतिशीलता μ ड्रैग गुणांक | निम्न रेनॉल्ड्स संख्या की सीमा में, गतिशीलता μ ड्रैग गुणांक <math>\zeta</math> का व्युत्क्रम है। एक अवमंदन स्थिरांक <math>\gamma = \zeta / m</math> का उपयोग अधिकांश विसरित वस्तु के व्युत्क्रम गति विश्राम समय (यादृच्छिक गति की तुलना में जड़ता गति को नगण्य होने के लिए आवश्यक समय) के लिए किया जाता है। त्रिज्या r के गोलाकार कणों के लिए, स्टोक्स का नियम देता है | ||
<math display="block">\zeta = 6 \pi \, \eta \, r,</math> | <math display="block">\zeta = 6 \pi \, \eta \, r,</math> | ||
जहाँ <math>\eta</math> माध्यम की श्यानता | जहाँ <math>\eta</math> माध्यम की श्यानता है। इस प्रकार आइंस्टीन-स्मोलुचोव्स्की संबंध स्टोक्स-आइंस्टीन संबंध में परिणत होता है | ||
<math display="block">D = \frac{k_\text{B} T}{6\pi\,\eta\,r}.</math> | <math display="block">D = \frac{k_\text{B} T}{6\pi\,\eta\,r}.</math> | ||
इसे तरल पदार्थों में स्व-प्रसार गुणांक का अनुमान लगाने के लिए कई वर्षों से लागू किया गया है, और आइसोमोर्फ सिद्धांत के अनुरूप संस्करण की पुष्टि [[लेनार्ड-जोन्स क्षमता | इसे तरल पदार्थों में स्व-प्रसार गुणांक का अनुमान लगाने के लिए कई वर्षों से लागू किया गया है, और आइसोमोर्फ सिद्धांत के अनुरूप संस्करण की पुष्टि [[लेनार्ड-जोन्स क्षमता|लेनार्ड-जोन्स प्रणाली]] के कंप्यूटर सिमुलेशन द्वारा की गई है।<ref>{{Cite journal |last1=Costigliola|first1=Lorenzo|last2=Heyes|first2=David M.|last3=Schrøder|first3=Thomas B.|last4=Dyre|first4=Jeppe C.| date=2019-01-14|title=हाइड्रोडायनामिक व्यास के बिना स्टोक्स-आइंस्टीन संबंध पर दोबारा गौर करना|journal=The Journal of Chemical Physics |language=en|volume=150|issue=2|pages=021101|doi=10.1063/1.5080662|pmid=30646717|bibcode=2019JChPh.150b1101C |issn=0021-9606|doi-access=free}}</ref> [[घूर्णी प्रसार]] के स्थिति में, घर्षण <math>\zeta_\text{r} = 8 \pi \eta r^3</math> है, और घूर्णी प्रसार स्थिरांक <math>D_\text{r}</math> है | ||
<math display="block">D_\text{r} = \frac{k_\text{B} T}{8\pi\,\eta\,r^3}.</math> | <math display="block">D_\text{r} = \frac{k_\text{B} T}{8\pi\,\eta\,r^3}.</math> | ||
इसे कभी-कभी स्टोक्स-आइंस्टीन-डेबी संबंध के रूप में जाना जाता है। | इसे कभी-कभी स्टोक्स-आइंस्टीन-डेबी संबंध के रूप में जाना जाता है। | ||
===[[अर्धचालक]]=== | ===[[अर्धचालक]]=== | ||
अर्धचालक में | अवस्थाओं के स्वैच्छिक घनत्व वाले अर्धचालक में, अर्थात् छिद्रों या इलेक्ट्रॉनों <math>p</math> के घनत्व और संबंधित अर्ध फर्मी स्तर (या [[विद्युत रासायनिक क्षमता]]) <math>\varphi</math> के बीच फॉर्म <math>p = p(\varphi)</math> का संबंध, आइंस्टीन संबंध है<ref>{{cite book | ||
|author1=Ashcroft, N. W. |author2=Mermin, N. D. | |author1=Ashcroft, N. W. |author2=Mermin, N. D. | ||
|title=Solid State Physics | |title=Solid State Physics | ||
Line 92: | Line 92: | ||
|language=fr}}</ref> | |language=fr}}</ref> | ||
<math display="block">D = \frac{\mu_q p}{q \frac{dp}{d\varphi}},</math> | <math display="block">D = \frac{\mu_q p}{q \frac{dp}{d\varphi}},</math> | ||
जहाँ <math>\mu_q</math> विद्युत गतिशीलता | |||
जहाँ <math>\mu_q</math> विद्युत गतिशीलता (इस संबंध के प्रमाण के लिए {{slink||सामान्य स्थिति का प्रमाण}} देखें) है। अवस्थाओं के घनत्व और मैक्सवेल-बोल्ट्जमैन सांख्यिकी के लिए एक परवलयिक फैलाव संबंध मानने वाला एक उदाहरण, जिसका उपयोग अधिकांश [[अकार्बनिक यौगिक]] अर्धचालक सामग्रियों का वर्णन करने के लिए किया जाता है, जिनकी गणना (अवस्थाओं का घनत्व और वितरण कार्य देखें) की जा सकती है: | |||
<math display="block">p(\varphi) = N_0 e^{\frac{q \varphi}{k_\text{B} T}},</math> | <math display="block">p(\varphi) = N_0 e^{\frac{q \varphi}{k_\text{B} T}},</math> | ||
जहाँ <math>N_0</math> उपलब्ध ऊर्जा अवस्थाओं का कुल घनत्व है, जो सरलीकृत संबंध देता है: | जहाँ <math>N_0</math> उपलब्ध ऊर्जा अवस्थाओं का कुल घनत्व है, जो सरलीकृत संबंध देता है: | ||
Line 118: | Line 120: | ||
बहाव धारा के कारण कणों का शुद्ध प्रवाह होता है | बहाव धारा के कारण कणों का शुद्ध प्रवाह होता है | ||
<math display="block">\mathbf{J}_\mathrm{drift}(\mathbf{x}) = \mu(\mathbf{x}) F(\mathbf{x}) \rho(\mathbf{x}) = -\rho(\mathbf{x}) \mu(\mathbf{x}) \nabla U(\mathbf{x}),</math> | <math display="block">\mathbf{J}_\mathrm{drift}(\mathbf{x}) = \mu(\mathbf{x}) F(\mathbf{x}) \rho(\mathbf{x}) = -\rho(\mathbf{x}) \mu(\mathbf{x}) \nabla U(\mathbf{x}),</math> | ||
अर्थात्, किसी दिए गए स्थान से बहने वाले कणों की संख्या कण की सांद्रता के औसत वेग से गुणा के बराबर होती है। | |||
विसरण धारा के कारण कणों का प्रवाह, फ़िक के नियम के अनुसार होता है, | विसरण धारा के कारण कणों का प्रवाह, फ़िक के नियम के अनुसार होता है, | ||
Line 124: | Line 126: | ||
जहां ऋण चिह्न का अर्थ है कि कण उच्च से निम्न सांद्रता की ओर प्रवाहित होते हैं। | जहां ऋण चिह्न का अर्थ है कि कण उच्च से निम्न सांद्रता की ओर प्रवाहित होते हैं। | ||
अब संतुलन की स्थिति पर विचार करें। सबसे पहले, कोई शुद्ध प्रवाह नहीं है, अर्थात। <math>\mathbf{J}_\mathrm{drift} + \mathbf{J}_\mathrm{diffusion} = 0</math>. दूसरा, गैर-अंतःक्रियात्मक बिंदु कणों के लिए, संतुलन घनत्व <math>\rho</math> यह पूरी तरह से स्थानीय संभावित ऊर्जा का कार्य है <math>U</math>, | अब संतुलन की स्थिति पर विचार करें। सबसे पहले, कोई शुद्ध प्रवाह नहीं है, अर्थात। <math>\mathbf{J}_\mathrm{drift} + \mathbf{J}_\mathrm{diffusion} = 0</math>. दूसरा, गैर-अंतःक्रियात्मक बिंदु कणों के लिए, संतुलन घनत्व <math>\rho</math> यह पूरी तरह से स्थानीय संभावित ऊर्जा का कार्य है <math>U</math>, अर्थात् यदि दो स्थानों पर समान है <math>U</math> तो उनके पास भी वैसा ही होगा <math>\rho</math> (उदाहरण के लिए [[मैक्सवेल-बोल्ट्ज़मैन आँकड़े]] देखें जैसा कि नीचे चर्चा की गई है।) इसका मतलब है, [[श्रृंखला नियम]] को लागू करना, | ||
<math display="block">\nabla\rho = \frac{\mathrm{d}\rho}{\mathrm{d} U} \nabla U.</math> | <math display="block">\nabla\rho = \frac{\mathrm{d}\rho}{\mathrm{d} U} \nabla U.</math> | ||
इसलिए, संतुलन पर: | इसलिए, संतुलन पर: |
Revision as of 05:41, 26 July 2023
भौतिकी में (विशेष रूप से, गैसों का गतिज सिद्धांत), आइंस्टीन संबंध एक पूर्व अप्रत्याशित संबंध है जिसे विलियम सदरलैंड (भौतिक विज्ञानी) ने 1904 में,[1][2][3] अल्बर्ट आइंस्टीन 1905 में,[4] और मैरियन स्मोलुचोव्स्की द्वारा 1906 में[5] ब्राउनियन गति पर अपने कार्यों में स्वतंत्र रूप से प्रकट किया था। पारंपरिक स्थिति में समीकरण का अधिक सामान्य रूप है[6]
- D फ़िक का प्रसार का नियम है;
- μ गतिशीलता है, या लागू बल के लिए कण के टर्मिनल वेग अपवाह वेग का अनुपात है, μ = vd/F;
- kB बोल्ट्ज़मैन स्थिरांक है;
- T पूर्ण तापमान है.
यह समीकरण उतार-चढ़ाव अपव्यय संबंध का प्रारंभिक उदाहरण है।[7]
ध्यान दें कि उपरोक्त समीकरण पारंपरिक स्थिति का वर्णन करता है और क्वांटम प्रभाव प्रासंगिक होने पर इसे संशोधित किया जाना चाहिए।
संबंध के दो अधिकांश उपयोग किए जाने वाले महत्वपूर्ण विशेष रूप हैं:
- विद्युत आवेश कणों के प्रसार के लिए आइंस्टीन-स्मोलुचोव्स्की समीकरण:[8]
- कम रेनॉल्ड्स संख्या वाले तरल के माध्यम से गोलाकार कणों के प्रसार के लिए स्टोक्स-आइंस्टीन समीकरण:
यहाँ
- q कण का विद्युत आवेश है;
- μqआवेशित कण की विद्युत गतिशीलता है;
- η गतिशील श्यानता है;
- r गोलाकार कण की त्रिज्या है।
विशेष स्थिति
विद्युत गतिशीलता समीकरण (पारंपरिक स्थिति)
विद्युत आवेश q वाले एक कण के लिए, इसकी विद्युत गतिशीलता μq इसकी सामान्यीकृत गतिशीलता μ से समीकरण μ = μq/q द्वारा संबंधित होती है। पैरामीटर μq कण के टर्मिनल अपवाह वेग और लागू विद्युत क्षेत्रत्र का अनुपात है। इसलिए, आवेशित कण के स्थिति में समीकरण इस प्रकार दिया गया है
- प्रसार गुणांक () है।
- विद्युत गतिशीलता () है।
- कण का विद्युत आवेश (C, कूलम्ब) है।
- प्लाज्मा में इलेक्ट्रॉन तापमान या आयन तापमान (K) है।[9]
यदि तापमान वाल्ट में दिया गया है, जो प्लाज्मा के लिए अधिक सामान्य है:
- कण (इकाई रहित) की आवेश संख्या है
- प्लाज्मा में इलेक्ट्रॉन तापमान या आयन तापमान (V) है।
विद्युत गतिशीलता समीकरण (क्वांटम केस)
सामान्य धातुओं में इलेक्ट्रॉन गतिशीलता के लिए प्रासंगिक फर्मी गैस (फर्मी तरल) के स्थिति में, आइंस्टीन संबंध को संशोधित किया जाना चाहिए:
स्टोक्स-आइंस्टीन समीकरण
निम्न रेनॉल्ड्स संख्या की सीमा में, गतिशीलता μ ड्रैग गुणांक का व्युत्क्रम है। एक अवमंदन स्थिरांक का उपयोग अधिकांश विसरित वस्तु के व्युत्क्रम गति विश्राम समय (यादृच्छिक गति की तुलना में जड़ता गति को नगण्य होने के लिए आवश्यक समय) के लिए किया जाता है। त्रिज्या r के गोलाकार कणों के लिए, स्टोक्स का नियम देता है
अर्धचालक
अवस्थाओं के स्वैच्छिक घनत्व वाले अर्धचालक में, अर्थात् छिद्रों या इलेक्ट्रॉनों के घनत्व और संबंधित अर्ध फर्मी स्तर (या विद्युत रासायनिक क्षमता) के बीच फॉर्म का संबंध, आइंस्टीन संबंध है[11][12]
जहाँ विद्युत गतिशीलता (इस संबंध के प्रमाण के लिए § सामान्य स्थिति का प्रमाण देखें) है। अवस्थाओं के घनत्व और मैक्सवेल-बोल्ट्जमैन सांख्यिकी के लिए एक परवलयिक फैलाव संबंध मानने वाला एक उदाहरण, जिसका उपयोग अधिकांश अकार्बनिक यौगिक अर्धचालक सामग्रियों का वर्णन करने के लिए किया जाता है, जिनकी गणना (अवस्थाओं का घनत्व और वितरण कार्य देखें) की जा सकती है:
नर्नस्ट-आइंस्टीन समीकरण
इलेक्ट्रोलाइट की समतुल्य चालकता की अभिव्यक्तियों से धनायनों और आयनों की विद्युत आयनिक गतिशीलता की अभिव्यक्तियों में विवर्तनशीलता को प्रतिस्थापित करके नर्नस्ट-आइंस्टीन समीकरण प्राप्त किया गया है:
सामान्य स्थिति का प्रमाण
आइंस्टीन संबंध का प्रमाण कई संदर्भों में पाया जा सकता है, उदाहरण के लिए कुबो देखें।[13] मान लीजिए कुछ निश्चित, बाह्य स्थितिज ऊर्जा रूढ़िवादी शक्ति उत्पन्न करता है (उदाहरण के लिए, विद्युत बल) किसी दिए गए स्थान पर स्थित कण पर . हम मानते हैं कि कण वेग से चलते हुए प्रतिक्रिया करेगा (खींचें (भौतिकी) देखें)। अब मान लीजिए कि स्थानीय सांद्रता वाले ऐसे कण बड़ी संख्या में हैं पद के कार्य के रूप में। कुछ समय के बाद, संतुलन स्थापित हो जाएगा: कण सबसे कम संभावित ऊर्जा वाले क्षेत्रों के आसपास ढेर हो जाएंगे , लेकिन फिर भी प्रसार के कारण कुछ हद तक फैल जाएगा। संतुलन पर, कणों का कोई शुद्ध प्रवाह नहीं होता है: कणों की प्रवृत्ति नीचे की ओर खिंचने की होती है , जिसे बहाव धारा कहा जाता है, विसरण के कारण कणों के फैलने की प्रवृत्ति को पूरी तरह से संतुलित करता है, जिसे विसरण धारा कहा जाता है (बहाव-प्रसार समीकरण देखें)।
बहाव धारा के कारण कणों का शुद्ध प्रवाह होता है
विसरण धारा के कारण कणों का प्रवाह, फ़िक के नियम के अनुसार होता है,
अब संतुलन की स्थिति पर विचार करें। सबसे पहले, कोई शुद्ध प्रवाह नहीं है, अर्थात। . दूसरा, गैर-अंतःक्रियात्मक बिंदु कणों के लिए, संतुलन घनत्व यह पूरी तरह से स्थानीय संभावित ऊर्जा का कार्य है , अर्थात् यदि दो स्थानों पर समान है तो उनके पास भी वैसा ही होगा (उदाहरण के लिए मैक्सवेल-बोल्ट्ज़मैन आँकड़े देखें जैसा कि नीचे चर्चा की गई है।) इसका मतलब है, श्रृंखला नियम को लागू करना,
यह भी देखें
संदर्भ
- ↑ World Year of Physics – William Sutherland at the University of Melbourne. Essay by Prof. R Home (with contributions from Prof B. McKellar and A./Prof D. Jamieson) dated 2005. Accessed 2017-04-28.
- ↑ Sutherland William (1905). "LXXV. गैर-इलेक्ट्रोलाइट्स और एल्बुमिन के आणविक द्रव्यमान के लिए प्रसार का एक गतिशील सिद्धांत". Philosophical Magazine. Series 6. 9 (54): 781–785. doi:10.1080/14786440509463331.
- ↑ P. Hänggi, "Stokes–Einstein–Sutherland equation".
- ↑ Einstein, A. (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen". Annalen der Physik (in Deutsch). 322 (8): 549–560. Bibcode:1905AnP...322..549E. doi:10.1002/andp.19053220806.
- ↑ von Smoluchowski, M. (1906). "Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen". Annalen der Physik (in Deutsch). 326 (14): 756–780. Bibcode:1906AnP...326..756V. doi:10.1002/andp.19063261405.
- ↑ Dill, Ken A.; Bromberg, Sarina (2003). Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology (in English). Garland Science. p. 327. ISBN 9780815320517.
- ↑ Umberto Marini Bettolo Marconi, Andrea Puglisi, Lamberto Rondoni, Angelo Vulpiani, "Fluctuation-Dissipation: Response Theory in Statistical Physics".
- ↑ Van Zeghbroeck, "Principles of Semiconductor Devices", Chapter 2.7 Archived 2021-05-06 at the Wayback Machine.
- ↑ Raizer, Yuri (2001). गैस डिस्चार्ज भौतिकी. Springer. pp. 20–28. ISBN 978-3540194620.
- ↑ Costigliola, Lorenzo; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C. (2019-01-14). "हाइड्रोडायनामिक व्यास के बिना स्टोक्स-आइंस्टीन संबंध पर दोबारा गौर करना". The Journal of Chemical Physics (in English). 150 (2): 021101. Bibcode:2019JChPh.150b1101C. doi:10.1063/1.5080662. ISSN 0021-9606. PMID 30646717.
- ↑ Ashcroft, N. W.; Mermin, N. D. (1988). Solid State Physics. New York (USA): Holt, Rineheart and Winston. p. 826.
- ↑ Bonnaud, Olivier (2006). Composants à semiconducteurs (in français). Paris (France): Ellipses. p. 78.
- ↑ Kubo, R. (1966). "The fluctuation-dissipation theorem". Rep. Prog. Phys. 29 (1): 255–284. Bibcode:1966RPPh...29..255K. doi:10.1088/0034-4885/29/1/306. S2CID 250892844.