डब्ल्यू अवस्था: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
: <math>|\mathrm{W}\rangle = \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle)</math> | : <math>|\mathrm{W}\rangle = \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle)</math> | ||
और जो विशिष्ट प्रकार के [[बहुपक्षीय उलझाव|बहुपक्षीय जटिलता]] का प्रतिनिधित्व करने और [[क्वांटम सूचना सिद्धांत]] में कई अनुप्रयोगों में होने के लिए उल्लेखनीय है। इस प्रकार इस अवस्था में तैयार किए गए कण बेल के प्रमेय के गुणों को पुन: उत्पन्न करते हैं, जो बताता है कि स्थानीय छिपे हुए चर का कोई भी मौलिक सिद्धांत क्वांटम यांत्रिकी की पूर्वानुमान नहीं हो सकता है। इस प्रकार अवस्था का नाम वोल्फगैंग ड्यूर के नाम पर रखा गया है,<ref>{{Cite journal|last=Cabello|first=Adán|date=2002-02-05|title=थ्री-क्विट ग्रीनबर्गर-हॉर्न-ज़ीलिंगर और डब्ल्यू राज्यों के लिए असमानताओं के साथ और बिना बेल का प्रमेय|url=https://link.aps.org/doi/10.1103/PhysRevA.65.032108|journal=Physical Review A|language=en|volume=65|issue=3|pages=032108|doi=10.1103/PhysRevA.65.032108|issn=1050-2947|arxiv=quant-ph/0107146|bibcode=2002PhRvA..65c2108C |s2cid=55659305 }}</ref> जिन्होंने सबसे पहले 2002 में गुइफ़्रे विडाल और [[जुआन इग्नासियो सिराक सस्टुरैन]] के साथ मिलकर अवस्था की रिपोर्ट की थी।<ref name="Duer2000">{{cite journal|author1=W. Dür |author2=G. Vidal |author3=J. I. Cirac |name-list-style=amp |title=तीन क्वैबिट को दो असमान तरीकों से उलझाया जा सकता है|journal=Phys. Rev. A|volume=62|pages=062314|year=2000|issue=6 | doi=10.1103/PhysRevA.62.062314|arxiv=quant-ph/0005115|bibcode = 2000PhRvA..62f2314D |s2cid=16636159 }}</ref> | और जो विशिष्ट प्रकार के [[बहुपक्षीय उलझाव|बहुपक्षीय जटिलता]] का प्रतिनिधित्व करने और [[क्वांटम सूचना सिद्धांत]] में कई अनुप्रयोगों में होने के लिए उल्लेखनीय है। इस प्रकार इस अवस्था में तैयार किए गए कण बेल के प्रमेय के गुणों को पुन: उत्पन्न करते हैं, जो बताता है कि स्थानीय छिपे हुए चर का कोई भी मौलिक सिद्धांत क्वांटम यांत्रिकी की पूर्वानुमान नहीं हो सकता है। इस प्रकार अवस्था का नाम वोल्फगैंग ड्यूर के नाम पर रखा गया है,<ref>{{Cite journal|last=Cabello|first=Adán|date=2002-02-05|title=थ्री-क्विट ग्रीनबर्गर-हॉर्न-ज़ीलिंगर और डब्ल्यू राज्यों के लिए असमानताओं के साथ और बिना बेल का प्रमेय|url=https://link.aps.org/doi/10.1103/PhysRevA.65.032108|journal=Physical Review A|language=en|volume=65|issue=3|pages=032108|doi=10.1103/PhysRevA.65.032108|issn=1050-2947|arxiv=quant-ph/0107146|bibcode=2002PhRvA..65c2108C |s2cid=55659305 }}</ref> जिन्होंने सबसे पहले 2002 में गुइफ़्रे विडाल और [[जुआन इग्नासियो सिराक सस्टुरैन]] के साथ मिलकर अवस्था की रिपोर्ट की थी।<ref name="Duer2000">{{cite journal|author1=W. Dür |author2=G. Vidal |author3=J. I. Cirac |name-list-style=amp |title=तीन क्वैबिट को दो असमान तरीकों से उलझाया जा सकता है|journal=Phys. Rev. A|volume=62|pages=062314|year=2000|issue=6 | doi=10.1103/PhysRevA.62.062314|arxiv=quant-ph/0005115|bibcode = 2000PhRvA..62f2314D |s2cid=16636159 }}</ref> | ||
==गुण== | ==गुण == | ||
[[File:Wstate quantumcircuit.png|thumb|400x400px|राई-रोटेशन गेट, नियंत्रित [[हैडमार्ड गेट]], 2 नियंत्रित नॉट गेट और क्वांटम लॉजिक गेट#एक्स गेट। घूर्णन का कोण है <math display="inline">\phi_3=2\arccos\left(1/\sqrt{3}\right)</math>.]]डब्ल्यू अवस्था दो गैर-विभाज्य में से का प्रतिनिधि है <ref>A pure state <math>|\psi\rangle</math> of <math>N</math> parties is called ''biseparable'', if one can find a partition of the parties in two disjoint subsets <math>A</math> and <math>B</math> with <math>A\cup B=\{1,...,N\}</math> such that <math>|\psi\rangle = |\phi\rangle_A\otimes|\gamma\rangle_B</math>, i.e. <math>|\psi\rangle</math> is a [[product state]] with respect to the partition <math>A|B</math>.</ref> तीन-क्विबिट अवस्थाों की कक्षाएं, दूसरा ग्रीनबर्गर-हॉर्न-ज़ीलिंगर <math>|\mathrm{GHZ}\rangle = (|000\rangle + |111\rangle)/\sqrt{2}</math> अवस्था है, जिन्हें [[LOCC|एलओसीसी]] द्वारा दूसरे में परिवर्तित नहीं किया जा सकता (संभावित रूप से भी नहीं)।<ref name="Duer2000">{{cite journal|author1=W. Dür |author2=G. Vidal |author3=J. I. Cirac |name-list-style=amp |title=तीन क्वैबिट को दो असमान तरीकों से उलझाया जा सकता है|journal=Phys. Rev. A|volume=62|pages=062314|year=2000|issue=6 | doi=10.1103/PhysRevA.62.062314|arxiv=quant-ph/0005115|bibcode = 2000PhRvA..62f2314D |s2cid=16636159 }}</ref> इस प्रकार <math>|\mathrm{W}\rangle</math> और <math>|\mathrm{GHZ}\rangle</math> दो बहुत भिन्न प्रकार के त्रिपक्षीय जटिलता का प्रतिनिधित्व करते हैं। | [[File:Wstate quantumcircuit.png|thumb|400x400px|राई-रोटेशन गेट, नियंत्रित [[हैडमार्ड गेट]], 2 नियंत्रित नॉट गेट और क्वांटम लॉजिक गेट#एक्स गेट। घूर्णन का कोण है <math display="inline">\phi_3=2\arccos\left(1/\sqrt{3}\right)</math>.]]डब्ल्यू अवस्था दो गैर-विभाज्य में से का प्रतिनिधि है <ref>A pure state <math>|\psi\rangle</math> of <math>N</math> parties is called ''biseparable'', if one can find a partition of the parties in two disjoint subsets <math>A</math> and <math>B</math> with <math>A\cup B=\{1,...,N\}</math> such that <math>|\psi\rangle = |\phi\rangle_A\otimes|\gamma\rangle_B</math>, i.e. <math>|\psi\rangle</math> is a [[product state]] with respect to the partition <math>A|B</math>.</ref> तीन-क्विबिट अवस्थाों की कक्षाएं, दूसरा ग्रीनबर्गर-हॉर्न-ज़ीलिंगर <math>|\mathrm{GHZ}\rangle = (|000\rangle + |111\rangle)/\sqrt{2}</math> अवस्था है, जिन्हें [[LOCC|एलओसीसी]] द्वारा दूसरे में परिवर्तित नहीं किया जा सकता (संभावित रूप से भी नहीं)।<ref name="Duer2000">{{cite journal|author1=W. Dür |author2=G. Vidal |author3=J. I. Cirac |name-list-style=amp |title=तीन क्वैबिट को दो असमान तरीकों से उलझाया जा सकता है|journal=Phys. Rev. A|volume=62|pages=062314|year=2000|issue=6 | doi=10.1103/PhysRevA.62.062314|arxiv=quant-ph/0005115|bibcode = 2000PhRvA..62f2314D |s2cid=16636159 }}</ref> इस प्रकार <math>|\mathrm{W}\rangle</math> और <math>|\mathrm{GHZ}\rangle</math> दो बहुत भिन्न प्रकार के त्रिपक्षीय जटिलता का प्रतिनिधित्व करते हैं। | ||
Line 12: | Line 12: | ||
डब्ल्यू वर्ग के अवस्थाों को मल्टीपार्टाइट जटिलता शुद्ध अवस्थाों के लिए मल्टीपार्टाइट जटिलता उपायों के माध्यम से अन्य सभी 3-क्विबिट अवस्थाों से अलग किया जा सकता है। विशेष रूप से, डब्ल्यू अवस्थाों में किसी भी द्विविभाजन में गैर-शून्य जटिलता होता है,<ref>A bipartition of the three qubits <math>1,2,3</math> is any grouping <math>(12) 3, 1 (23)</math> and <math>(13) 2</math> in which two qubits are considered to belong to the same party. The 3-qubit state can then be considered as a state on <math>\mathbb{C}^4 \otimes \mathbb{C}^2</math> and studied with bipartite entanglement measures.</ref> जबकि 3-टेंगल विलुप्त हो जाता है, जो गीगाहर्ट्ज-प्रकार के अवस्थाों के लिए भी गैर-शून्य है।<ref name="Duer2000" /> | डब्ल्यू वर्ग के अवस्थाों को मल्टीपार्टाइट जटिलता शुद्ध अवस्थाों के लिए मल्टीपार्टाइट जटिलता उपायों के माध्यम से अन्य सभी 3-क्विबिट अवस्थाों से अलग किया जा सकता है। विशेष रूप से, डब्ल्यू अवस्थाों में किसी भी द्विविभाजन में गैर-शून्य जटिलता होता है,<ref>A bipartition of the three qubits <math>1,2,3</math> is any grouping <math>(12) 3, 1 (23)</math> and <math>(13) 2</math> in which two qubits are considered to belong to the same party. The 3-qubit state can then be considered as a state on <math>\mathbb{C}^4 \otimes \mathbb{C}^2</math> and studied with bipartite entanglement measures.</ref> जबकि 3-टेंगल विलुप्त हो जाता है, जो गीगाहर्ट्ज-प्रकार के अवस्थाों के लिए भी गैर-शून्य है।<ref name="Duer2000" /> | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
डब्ल्यू अवस्था की धारणा <math>n</math> क्वैबिट्स को सामान्यीकृत किया गया है <ref name="Duer2000" /> और इस प्रकार फिर सभी संभावित शुद्ध अवस्थाओं के समान विस्तार गुणांक वाले क्वांटम सुपरपोजिशन को संदर्भित करता है जिसमें वास्तव में क्वैबिट उत्तेजित अवस्था <math> |1\rangle</math> में होता है जबकि अन्य सभी जमीनी अवस्था <math> |0\rangle</math> में हैं : | डब्ल्यू अवस्था की धारणा <math>n</math> क्वैबिट्स को सामान्यीकृत किया गया है <ref name="Duer2000" /> और इस प्रकार फिर सभी संभावित शुद्ध अवस्थाओं के समान विस्तार गुणांक वाले क्वांटम सुपरपोजिशन को संदर्भित करता है जिसमें वास्तव में क्वैबिट उत्तेजित अवस्था <math> |1\rangle</math> में होता है जबकि अन्य सभी जमीनी अवस्था <math> |0\rangle</math> में हैं : |
Revision as of 13:11, 16 July 2023
डब्ल्यू अवस्था तीन क्वैबिट की एक उलझी हुई क्वांटम अवस्था है जिसका ब्रा-केट नोटेशन में निम्नलिखित आकार होता है
और जो विशिष्ट प्रकार के बहुपक्षीय जटिलता का प्रतिनिधित्व करने और क्वांटम सूचना सिद्धांत में कई अनुप्रयोगों में होने के लिए उल्लेखनीय है। इस प्रकार इस अवस्था में तैयार किए गए कण बेल के प्रमेय के गुणों को पुन: उत्पन्न करते हैं, जो बताता है कि स्थानीय छिपे हुए चर का कोई भी मौलिक सिद्धांत क्वांटम यांत्रिकी की पूर्वानुमान नहीं हो सकता है। इस प्रकार अवस्था का नाम वोल्फगैंग ड्यूर के नाम पर रखा गया है,[1] जिन्होंने सबसे पहले 2002 में गुइफ़्रे विडाल और जुआन इग्नासियो सिराक सस्टुरैन के साथ मिलकर अवस्था की रिपोर्ट की थी।[2]
गुण
डब्ल्यू अवस्था दो गैर-विभाज्य में से का प्रतिनिधि है [3] तीन-क्विबिट अवस्थाों की कक्षाएं, दूसरा ग्रीनबर्गर-हॉर्न-ज़ीलिंगर अवस्था है, जिन्हें एलओसीसी द्वारा दूसरे में परिवर्तित नहीं किया जा सकता (संभावित रूप से भी नहीं)।[2] इस प्रकार और दो बहुत भिन्न प्रकार के त्रिपक्षीय जटिलता का प्रतिनिधित्व करते हैं।
यह अंतर, उदाहरण के लिए, डब्ल्यू अवस्था की निम्नलिखित रोचक प्रोपर्टी द्वारा चित्रित किया गया है: इस प्रकार यदि तीन क्विबिट में से खो जाता है, जिससे शेष 2-क्विबिट प्रणाली की स्थिति अभी भी उलझी हुई है। इस प्रकार डब्ल्यू-प्रकार के जटिलता की यह सशक्त जीएचजेड स्थिति के साथ दृढ़ता से विपरीत है, जो क्विबिट के हानि के बाद पूरी तरह से अलग हो जाती है।
डब्ल्यू वर्ग के अवस्थाों को मल्टीपार्टाइट जटिलता शुद्ध अवस्थाों के लिए मल्टीपार्टाइट जटिलता उपायों के माध्यम से अन्य सभी 3-क्विबिट अवस्थाों से अलग किया जा सकता है। विशेष रूप से, डब्ल्यू अवस्थाों में किसी भी द्विविभाजन में गैर-शून्य जटिलता होता है,[4] जबकि 3-टेंगल विलुप्त हो जाता है, जो गीगाहर्ट्ज-प्रकार के अवस्थाों के लिए भी गैर-शून्य है।[2]
सामान्यीकरण
डब्ल्यू अवस्था की धारणा क्वैबिट्स को सामान्यीकृत किया गया है [2] और इस प्रकार फिर सभी संभावित शुद्ध अवस्थाओं के समान विस्तार गुणांक वाले क्वांटम सुपरपोजिशन को संदर्भित करता है जिसमें वास्तव में क्वैबिट उत्तेजित अवस्था में होता है जबकि अन्य सभी जमीनी अवस्था में हैं :
इस प्रकार कण हानि के विरुद्ध सशक्त और (सामान्यीकृत) गीगाहर्ट्ज अवस्था के साथ एलओसीसी-असमानता दोनों भी -क्विबिट डब्ल्यू अवस्था इसके लिए मान्य हैं।
अनुप्रयोग
जिन प्रणालियों में एकल क्वबिट को कई दो-स्तरीय प्रणालियों के समूह में संग्रहीत किया जाता है, इस प्रकार तार्किक 1 को अधिकांशतः डब्ल्यू अवस्था द्वारा दर्शाया जाता है, जबकि तार्किक 0 को अवस्था द्वारा दर्शाया जाता है। यहां कण हानि के विरुद्ध डब्ल्यू अवस्था की सशक्त बहुत ही लाभकारी प्रोपर्टी है जो इन संयोजन-आधारित क्वांटम यादों के अच्छे संग्रहण गुणों को सुनिश्चित करती है।[5]
यह भी देखें
संदर्भ
- ↑ Cabello, Adán (2002-02-05). "थ्री-क्विट ग्रीनबर्गर-हॉर्न-ज़ीलिंगर और डब्ल्यू राज्यों के लिए असमानताओं के साथ और बिना बेल का प्रमेय". Physical Review A (in English). 65 (3): 032108. arXiv:quant-ph/0107146. Bibcode:2002PhRvA..65c2108C. doi:10.1103/PhysRevA.65.032108. ISSN 1050-2947. S2CID 55659305.
- ↑ 2.0 2.1 2.2 2.3 W. Dür; G. Vidal & J. I. Cirac (2000). "तीन क्वैबिट को दो असमान तरीकों से उलझाया जा सकता है". Phys. Rev. A. 62 (6): 062314. arXiv:quant-ph/0005115. Bibcode:2000PhRvA..62f2314D. doi:10.1103/PhysRevA.62.062314. S2CID 16636159.
- ↑ A pure state of parties is called biseparable, if one can find a partition of the parties in two disjoint subsets and with such that , i.e. is a product state with respect to the partition .
- ↑ A bipartition of the three qubits is any grouping and in which two qubits are considered to belong to the same party. The 3-qubit state can then be considered as a state on and studied with bipartite entanglement measures.
- ↑ M. Fleischhauer & M. D. Lukin (2002). "Quantum memory for photons: Dark-state polaritons". Phys. Rev. A. 65 (2): 022314. arXiv:quant-ph/0106066. Bibcode:2002PhRvA..65b2314F. doi:10.1103/PhysRevA.65.022314. S2CID 54532771.