अंकित कोण: Difference between revisions

From Vigyanwiki
No edit summary
Line 132: Line 132:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 13/07/2023]]
[[Category:Created On 13/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 17:25, 3 August 2023

उत्कीर्ण कोण θ केंद्रीय कोण 2θ का आधा है जो वृत्त पर समान चाप अंतरित करता है। कोण θ नहीं बदलता है क्योंकि इसका शीर्ष वृत्त के चारों ओर घूमता है।

ज्यामिति में, उत्कीर्ण कोण वृत्त के आंतरिक भाग में बनने वाला कोण होता है जब दो जीवा (ज्यामिति) वृत्त पर प्रतिच्छेद करती हैं। इसे वृत्त पर दिए गए दो बिंदुओं द्वारा वृत्त के बिंदु पर बनाए गए कोण के रूप में भी परिभाषित किया जा सकता है।

सामान्यतः, उत्कीर्ण कोण को समापन बिंदु साझा करने वाले वृत्त की दो जीवाओं द्वारा परिभाषित किया जाता है।

उत्कीर्ण कोण प्रमेय उत्कीर्ण कोण के कोण मापने वाले कोण को उसी वृत्ताकार चाप को अंतरित करने वाले केंद्रीय कोण से संबंधित करता है।

उत्कीर्ण कोण प्रमेय यूक्लिड के अवयव या यूक्लिड के अवयव की पुस्तक 3 पर प्रस्ताव 20 के रूप में दिखाई देता है।

प्रमेय

कथन

निश्चित बिंदु ए और बी के लिए, विमान में बिंदु एम का सेट जिसके लिए कोण एएमबी α के समान है, वृत्त का चाप है। ∠ AOB का माप, जहां O वृत्त का केंद्र है, 2α है।

उत्कीर्ण कोण प्रमेय बताता है कि वृत्त में उत्कीर्ण कोण θ केंद्रीय कोण 2θ का आधा होता है जो वृत्त पर समान चाप (ज्यामिति) को अंतरित करता है। इसलिए, कोण नहीं बदलता है क्योंकि इसके शीर्ष (ज्यामिति) को वृत्त पर विभिन्न स्थितियों में ले जाया जाता है।

प्रमाण

उत्कीर्ण कोण जहां एक जीवा एक व्यास है

केस: राग व्यास है

मान लीजिए O वृत्त का केंद्र है, जैसा कि दाईं ओर दिए गए चित्र में है। वृत्त पर दो बिंदु चुनें, और उन्हें V और A नाम दें। रेखा VO खींचें और O से आगे बढ़ाएं जिससे यह वृत्त को बिंदु B पर प्रतिच्छेद करे जो बिंदु V के व्यास के विपरीत है। कोण बनाएं जिसका शीर्ष (ज्यामिति) बिंदु V है और जिनकी भुजाएँ बिंदु A और B से होकर निकलती हैं।

रेखा OA खींचिए. कोण बीओए केंद्रीय कोण है; इसे कॉल करें θ. रेखाएँ OV और OA दोनों वृत्त की त्रिज्या हैं, इसलिए उनकी लंबाई समान है। इसलिए, त्रिभुज VOA समद्विबाहु है, इसलिए कोण BVA (उत्कीर्ण कोण) और कोण VAO समान हैं; मान लीजिए कि उनमें से प्रत्येक को ψ के रूप में दर्शाया गया है।

कोण BOA और AOV का योग 180° होता है, क्योंकि O से निकलने वाली रेखा VB सीधी रेखा है। इसलिए, कोण AOV का माप 180° - θ है।

यह ज्ञात है कि त्रिभुज के तीन कोणों का योग 180° होता है, और त्रिभुज VOA के तीन कोण हैं:

180° − θ
ψ
ψ.

इसलिए,

घटाना

दोनों तरफ से,

जहां θ चाप AB को अंतरित करने वाला केंद्रीय कोण है और ψ चाप AB को अंतरित करने वाला उत्कीर्ण कोण है।

उनके आंतरिक भाग में वृत्त के केंद्र के साथ उत्कीर्ण कोण

केस: केंद्र से आंतरिक कोण तक

एक वृत्त दिया गया है जिसका केंद्र बिंदु O है, वृत्त पर तीन बिंदु V, C और D चुनें। रेखाएँ VC और VD खींचिए: कोण DVC उत्कीर्ण कोण है। अब रेखा VO खींचें और इसे बिंदु O से आगे बढ़ाएं जिससे यह वृत्त को बिंदु E पर प्रतिच्छेद करे। कोण DVC वृत्त पर चाप DC को अंतरित करता है।

मान लीजिए कि इस चाप में बिंदु E सम्मिलित है। बिंदु E, बिंदु V के पुर्णतः विपरीत है। कोण DVE और EVC भी उत्कीर्ण कोण हैं, किन्तु इन दोनों कोणों की भुजा है जो वृत्त के केंद्र से होकर निकलती है, इसलिए उपरोक्त भाग 1 का प्रमेय उन पर प्रयुक्त किया जा सकता है।

इसलिए,

तो करने दें

जिससे

रेखाएँ OC और OD खींचिए। कोण DOC केंद्रीय कोण है, किन्तु कोण DOE और EOC भी हैं, और

मान लीजिए

जिससे

भाग एक से हम जानते हैं कि और वह इन परिणामों को समीकरण (2) के साथ संयोजित करने पर परिणाम प्राप्त होते हैं

इसलिए, समीकरण (1) द्वारा,

उनके बाहरी भाग में वृत्त के केंद्र के साथ उत्कीर्ण कोण

केस: कोण के बाहर मध्य भाग

पिछले स्थिति को उस स्थिति को कवर करने के लिए बढ़ाया जा सकता है जहां उत्कीर्ण कोण का माप दो उत्कीर्ण कोणों के बीच का अंतर है जैसा कि इस प्रमाण के पहले भाग में चर्चा की गई है।

एक वृत्त दिया गया है जिसका केंद्र बिंदु O है, वृत्त पर तीन बिंदु V, C और D चुनें। रेखाएँ VC और VD खींचिए: कोण DVC उत्कीर्ण कोण है। अब रेखा VO खींचें और इसे बिंदु O से आगे बढ़ाएं जिससे यह वृत्त को बिंदु E पर प्रतिच्छेद करे। कोण DVC वृत्त पर चाप DC को अंतरित करता है।

मान लीजिए कि इस चाप में बिंदु E सम्मिलित नहीं है। बिंदु E, बिंदु V के पुर्णतः विपरीत है। कोण EVD और EVC भी उत्कीर्ण कोण हैं, किन्तु इन दोनों कोणों की भुजा है जो वृत्त के केंद्र से होकर निकलती है, इसलिए उपरोक्त भाग 1 का प्रमेय उन पर प्रयुक्त किया जा सकता है।

इसलिए,

.

तो करने दें

जिससे

रेखाएँ OC और OD खींचिए। कोण DOC केंद्रीय कोण है, किन्तु कोण EOD और EOC भी हैं, और

मान लीजिए

जिससे

भाग से हम यह जानते हैं ओर वो . इन परिणामों को समीकरण (4) के साथ संयोजित करने पर परिणाम प्राप्त होते हैं

इसलिए, समीकरण (3) द्वारा,

उत्कीर्ण कोण प्रमेय के प्रमाण का एनिमेटेड GIF। वृत्त में उत्कीर्ण बड़ा त्रिभुज तीन छोटे त्रिभुजों में विभाजित हो जाता है, जिनमें से सभी समद्विबाहु हैं क्योंकि उनकी ऊपरी दो भुजाएँ वृत्त की त्रिज्याएँ हैं। प्रत्येक समद्विबाहु त्रिभुज के अंदर आधार कोणों की जोड़ी दूसरे के समान होती है, और वृत्त के केंद्र पर शीर्ष कोण को घटाकर 180° का आधा होता है। इन समद्विबाहु आधार कोणों को जोड़ने पर प्रमेय प्राप्त होता है, अर्थात उत्कीर्ण कोण, , केंद्रीय कोण का आधा भाग है, .

परिणाम

इसी तरह के तर्क से, जीवा (ज्यामिति) और उसके प्रतिच्छेदन बिंदु पर स्पर्शरेखा रेखा के बीच का कोण जीवा द्वारा अंतरित केंद्रीय कोण के आधे के समान होता है। वृत्तों की स्पर्शरेखा रेखाएँ भी देखें।

अनुप्रयोग

उत्कीर्ण कोण प्रमेय का उपयोग समतल के प्रारंभिक यूक्लिडियन ज्यामिति के कई प्रमाणों में किया जाता है। प्रमेय का विशेष स्थिति थेल्स प्रमेय है, जो बताता है कि व्यास द्वारा अंतरित कोण सदैव 90° होता है, अर्थात समकोण प्रमेय के परिणामस्वरूप, चक्रीय चतुर्भुज के विपरीत कोणों का योग 180° होता है; इसके विपरीत, कोई भी चतुर्भुज जिसके लिए यह सत्य है, उसे वृत्त में उत्कीर्ण किया जा सकता है। अन्य उदाहरण के रूप में, उत्कीर्ण कोण प्रमेय वृत्त के संबंध में चक्रीय चतुर्भुज से संबंधित कई प्रमेयों का आधार है। इसके अलावा, यह किसी को यह साबित करने की अनुमति देता है कि जब दो जीवाएं वृत्त में प्रतिच्छेद करती हैं, तो उनके भागो की लंबाई का गुणनफल समान होता है।

दीर्घवृत्त, अतिपरवलय और परवलय के लिए उत्कीर्ण कोण प्रमेय

दीर्घवृत्त, अतिपरवलय और परवलय के लिए भी उत्कीर्ण कोण प्रमेय उपस्थित हैं। आवश्यक अंतर कोण की माप हैं। (एक कोण को प्रतिच्छेदी रेखाओं का युग्म माना जाता है।)

  • दीर्घवृत्त या उत्कीर्ण कोण और तीन-बिंदु रूप
  • अतिपरवलय या अतिपरवलय के लिए उत्कीर्ण कोण y = a/(x − b) + c और 3-बिंदु-रूप
  • परवलय या उत्कीर्ण कोण और 3-बिंदु रूप

संदर्भ

  • Ogilvy, C. S. (1990). Excursions in Geometry. Dover. pp. 17–23. ISBN 0-486-26530-7.
  • Gellert W, Küstner H, Hellwich M, Kästner H (1977). The VNR Concise Encyclopedia of Mathematics. New York: Van Nostrand Reinhold. p. 172. ISBN 0-442-22646-2.
  • Moise, Edwin E. (1974). Elementary Geometry from an Advanced Standpoint (2nd ed.). Reading: Addison-Wesley. pp. 192–197. ISBN 0-201-04793-4.

बाहरी संबंध