एक बहुपद की घात: Difference between revisions
(Created page with "{{short description|Mathematical concept}} {{Use dmy dates|date=July 2013}} गणित में, बहुपद की डिग्री गैर-शून्य...") |
No edit summary |
||
(11 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Mathematical concept}} | {{short description|Mathematical concept}} | ||
गणित में, एक [[ बहुपद |बहुपद]] की घात, शून्य गुणांकों वाले बहुपद मोनोमियल(अलग-अलग शब्दों) की उच्चतम घात होती है। एक शब्द की घात उस में दिखाई देने वाले [[ चर (गणित) |चर (गणित)]] के प्रतिपादकों का योग है, और इस प्रकार एक गैर नकारात्मक [[ पूर्णांक | पूर्णांक]] है। एक बहुपद के लिए, बहुपद की घात केवल बहुपद में उत्पन्न उच्चतम प्रतिपादक है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Polynomial Degree|url=https://mathworld.wolfram.com/PolynomialDegree.html|access-date=2020-08-31|website=mathworld.wolfram.com|language=en}}</ref><ref name=":0">{{Cite web|title=Degree (of an Expression)|url=https://www.mathsisfun.com/algebra/degree-expression.html|access-date=2020-08-31|website=www.mathsisfun.com}}</ref> शब्द क्रम का प्रयोग घात के पर्यायार्थ के रूप में किया गया है, लेकिन आजकल, यह अनेक अन्य अवधारणाओं के संदर्भ में(बहुपद) बहुविकल्पी व्यवस्था को दर्शाता है।) | |||
गणित में, [[ बहुपद ]] की | |||
उदाहरण के लिए, बहुपद <math>7x^2y^3 + 4x - 9,</math> | उदाहरण के लिए, बहुपद <math>7x^2y^3 + 4x - 9,</math> जो भी लिखा जा सकता है <math>7x^2y^3 + 4x^1y^0 - 9x^0y^0,</math> तीन शब्द है। पहले पद का घात 5 है([[ घातांक ]] 2 और 3 का योग), दूसरे पद का घात 1 है, और अंतिम पद का घात 0 है। इसलिए बहुपद की घात 5 है जो किसी भी पद की उच्चतम घात है। | ||
एक बहुपद की | एक बहुपद की घात निर्धारित करने के लिए जो मानक रूप में नहीं है, जैसे कि <math>(x+1)^2 - (x-1)^2</math>, कोई भी इसे उत्पादों ([[ वितरण |वितरण]] द्वारा) के विस्तार और समान शर्तों के संयोजन द्वारा मानक रूप में रख सकता है; उदाहरण के लिए, <math>(x+1)^2 - (x-1)^2 = 4x</math> की घात 1 है, चूंकि प्रत्येक शिखर की घात 2 है। चूंकि, यह तब आवश्यक नहीं है जब बहुपद को मानक रूप में एक उत्पाद के रूप में लिखा जाता है क्योंकि एक उत्पाद की घात कारकों की घात का योग है। | ||
== घात के अनुसार बहुपदों के नाम == | == घात के अनुसार बहुपदों के नाम== | ||
{{wiktionary| | {{wiktionary|परिशिष्ट: अंग्रेजी बहुपद डिग्री}} | ||
बहुपदों को उनकी | बहुपदों को उनकी घात के अनुसार निम्नलिखित नाम दिए गए हैं:<ref>{{cite web| url=http://mathforum.org/library/drmath/view/56413.html | title=Names of Polynomials | date=November 25, 1997| access-date=5 February 2012}}</ref><ref>Mac Lane and Birkhoff (1999) define "linear", "quadratic", "cubic", "quartic", and "quintic". (p. 107)</ref><ref>King (2009) defines "quadratic", "cubic", "quartic", "quintic", "sextic", "septic", and "octic".</ref><ref name=":0" /> | ||
* | *विशेष स्थिति - [[ शून्य बहुपद |शून्य बहुपद]](नीचे शून्य बहुपद की घात देखें) | ||
* | *घात 0 - गैर-शून्य [[ निरंतर कार्य | निरंतर]] <ref>Shafarevich (2003) says of a polynomial of degree zero, <math>f(x)=a_0</math>: "Such a polynomial is called a ''constant'' because if we substitute different values of ''x'' in it, we always obtain the same value <math>a_0</math>." (p. 23)</ref> | ||
* | *घात 1 - रैखिक | ||
* | *घात 2 - [[ द्विघात बहुपद | द्विघात]] | ||
* | *घात 3 - [[ घन समारोह | घन]] | ||
* | *घात 4 - क्वार्टिक (या, यदि सभी शर्तों में भी घात,[[ द्विघात फलन | द्विद्विघात]] है) | ||
* | *घात 5 - [[ क्विंटिक समीकरण | क्विंटिक]] | ||
* | *घात 6 - सेक्स्टिक (या, सामान्य रूप से कम, हेसिक) | ||
*घात 7 - [[ सेप्टिक समीकरण | सेप्टिक]] (या, सामान्य रूप से कम, हेप्टिक) | |||
* | उच्चतर पद के लिए, कभी-कभी प्रस्ताव रखा जाता है,<ref>[[James Cockle]] proposed the names "sexic", "septic", "octic", "nonic", and "decic" in 1851. ([https://books.google.com/books?id=cxIFAAAAQAAJ&pg=PP1#v=onepage&q=sexic%20septic%20octic%20nonic%20decic&f=false ''Mechanics Magazine'', Vol. LV, p. 171])</ref> लेकिन वे शायद ही कभी उपयोग किया जाता है: | ||
* | *घात 8 - ओक्टिक | ||
* | *घात 9 - नॉनिक | ||
*घात 10 - डेसिक | |||
तीन से ऊपर की | तीन से ऊपर की घात के लिए नाम लैटिन क्रम संख्या पर आधारित होते हैं, और अंत-आईसी (ic) में होते हैं। यह चर की संख्या के लिए उपयोग किए जाने वाले नामों से अलग होना चाहिए, [[ एरिटी |एरिटी]], जो लैटिन में [[ वितरण संख्या |वितरण संख्या]] पर आधारित है, और -ary में समाप्त होता है। उदाहरण के लिए, एक घात दो बहुपद जैसे दो चर में दो बहुपद <math>x^2 + xy + y^2</math>, को "द्विआधारी द्विघात" कहा जाता है: द्विआधारी कारण दो चर, द्विघात घात दो के कारण होता है।{{efn|For simplicity, this is a [[homogeneous polynomial]], with equal degree in both variables separately.}} शब्दों की संख्या के लिए भी नाम हैं, जो भी लैटिन वितरक संख्याओं पर आधारित हैं, जो कि -नॉमियल में समाप्त होता है; आम एकपद, [[ द्विपद (बहुपद) |द्विपद]] और (कम सामान्यतः) त्रिपद होते हैं; इस प्रकार <math>x^2 + y^2</math> एक "द्विआधारी द्विपद" होता है। | ||
== उदाहरण == | ==उदाहरण== | ||
बहुपद <math>(y - 3)(2y + 6)(-4y - 21)</math> एक घन बहुपद | बहुपद <math>(y - 3)(2y + 6)(-4y - 21)</math> एक घन बहुपद हैः बाहर गुणा और एक ही घात के शब्दों का संग्रह के बाद, यह हो जाता है <math>- 8 y^3 - 42 y^2 + 72 y + 378</math>, उच्चतम घातांक 3 के साथ। | ||
बहुपद <math>(3 z^8 + z^5 - 4 z^2 + 6) + (-3 z^8 + 8 z^4 + 2 z^3 + 14 z)</math> एक क्विंटिक बहुपद है: समान पदों को मिलाने पर, घात 8 के दो पद रद्द हो जाते हैं, छोड़कर <math>z^5 + 8 z^4 + 2 z^3 - 4 z^2 + 14 z + 6</math>, | बहुपद <math>(3 z^8 + z^5 - 4 z^2 + 6) + (-3 z^8 + 8 z^4 + 2 z^3 + 14 z)</math> एक क्विंटिक बहुपद है: समान पदों को मिलाने पर, घात 8 के दो पद रद्द हो जाते हैं, छोड़कर <math>z^5 + 8 z^4 + 2 z^3 - 4 z^2 + 14 z + 6</math>, सर्वोच्च घातांक 5 के साथ। | ||
==बहुपद संचालन के तहत व्यवहार == | ==बहुपद संचालन के तहत व्यवहार== | ||
योग की | योग की घात, उत्पाद या दो बहुपदों का संयोजन निवेश बहुपदों की घात से दृढ़ता से संबंधित है।<ref>{{cite book|last1=Lang|first1=Serge|title=Algebra|date=2005|publisher=Springer|isbn=978-0-387-95385-4|pages=100|edition=3rd|ref=lang}}</ref> | ||
===जोड़=== | |||
दो बहुपदों के योग (या अंतर) की घात उनकी उपाधियों से कम या बराबर है;अर्थात्, | |||
=== जोड़ === | |||
दो बहुपदों के योग (या अंतर) की | |||
:<math>\deg(P + Q) \leq \max\{\deg(P),\deg(Q)\}</math> तथा <math>\deg(P - Q) \leq \max\{\deg(P),\deg(Q)\}</math>. | :<math>\deg(P + Q) \leq \max\{\deg(P),\deg(Q)\}</math> तथा <math>\deg(P - Q) \leq \max\{\deg(P),\deg(Q)\}</math>. | ||
उदाहरण के लिए, की | उदाहरण के लिए, की घात <math>(x^3+x)-(x^3+x^2)=-x^2+x</math> 2, और 2 ≤ अधिकतम{3, 3} है। | ||
समानता | बहुपदों के स्तरों के अलग-अलग होने पर हमेशा समानता कायम रहती है। उदाहरण के लिए, की घात <math>(x^3+x)+(x^2+1)=x^3+x^2+x+1</math> 3 है, और 3 = अधिकतम{3, 2} है। | ||
===गुणन=== | ===गुणन=== | ||
एक गैर | एक गैर शून्य [[ अदिश (गणित) |अदिश (गणित)]] द्वारा एक बहुपद के उत्पाद की घात बहुपद की घात के बराबर है;अर्थात्, | ||
:<math>\deg(cP)=\deg(P)</math> | :<math>\deg(cP)=\deg(P)</math> | ||
उदाहरण के लिए, की | उदाहरण के लिए, की घात <math>2(x^2+3x-2)=2x^2+6x-4</math> 2 है, जो की घात के बराबर है <math>x^2+3x-2</math>. | ||
इस प्रकार, बहुपदों का | इस प्रकार, बहुपदों का सेट (दिए गए क्षेत्र एफ से गुणांक सहित) जिसकी घात दी गई संख्या N से छोटा या उसके बराबर है, एक सदिश स्थान बनाता है;अधिक जानकारी के लिए सदिश रिक्त स्थान के उदाहरण देखें.आम तौर पर दो बहुपदों के उत्पाद की घात एक क्षेत्र या एक अभिन्न डोमेन पर उनकी घात का योग होता है: | ||
:<math>\deg(PQ) = \deg(P) + \deg(Q)</math>. | :<math>\deg(PQ) = \deg(P) + \deg(Q)</math>. | ||
उदाहरण के लिए, की | उदाहरण के लिए, की घात <math>(x^3+x)(x^2+1)=x^5+2x^3+x</math> 5 = 3 + 2 है। | ||
एक | बहुपदों के लिए एक मनमाने वलय पर, ऊपर के नियम मान्य नहीं हो सकते, क्योंकि रद्दीकरण के कारण जो दो गैर शून्य स्थिरांक के गुणा करने पर हो सकता है। उदाहरण के लिए, वलय में <math>\mathbf{Z}/4\mathbf{Z}</math> पूर्णांक मॉडुलो 4, एक है कि <math>\deg(2x) = \deg(1+2x) = 1</math>, लेकिन <math>\deg(2x(1+2x)) = \deg(2x) = 1</math>, जो कारकों की घात के योग के बराबर नहीं है। | ||
=== रचना === | ===रचना=== | ||
दो गैर | दो गैर निरंतर बहुपदों <math>P</math> और <math>Q</math> एक क्षेत्र या अभिन्न डोमेन पर उनके संयोजन की घात उनकी घात का उत्पाद है: | ||
:<math>\deg(P \circ Q) = \deg(P)\deg(Q)</math>. | :<math>\deg(P \circ Q) = \deg(P)\deg(Q)</math>. | ||
उदाहरण के लिए: | उदाहरण के लिए: | ||
*यदि <math>P = (x^3+x)</math>, <math>Q = (x^2+1)</math>, फिर <math>P \circ Q = P \circ (x^2+1) = (x^2+1)^3+(x^2+1) = x^6+3x^4+4x^2+2</math>, जिसकी | * यदि <math>P = (x^3+x)</math>, <math>Q = (x^2+1)</math>, फिर <math>P \circ Q = P \circ (x^2+1) = (x^2+1)^3+(x^2+1) = x^6+3x^4+4x^2+2</math>, जिसकी घात 6 है। | ||
यह जरूरी नहीं है कि बहुपदों के लिए एक मनमाने वलय पर यह सही नहीं है। उदाहरण के लिए, में <math>\mathbf{Z}/4\mathbf{Z}</math>, <math>\deg(2x) \deg(1+2x) = 1\cdot 1 = 1</math>, लेकिन <math>\deg(2x\circ(1+2x)) = \deg(2+4x)=\deg(2) = 0</math>. | |||
==शून्य बहुपद की | ==शून्य बहुपद की घात== | ||
शून्य बहुपद की घात | शून्य बहुपद की घात या तो अपरिभाषित छोड़ दिया है, या नकारात्मक होने के लिए परिभाषित किया गया है (आमतौर पर -1 या <math>-\infty</math>)<ref> | ||
Shafarevich (2003) says of the zero polynomial: "In this case, we consider that the degree of the polynomial is undefined." (p. 27)<br /> | Shafarevich (2003) says of the zero polynomial: "In this case, we consider that the degree of the polynomial is undefined." (p. 27)<br /> | ||
Childs (1995) uses −1. (p. 233)<br /> | Childs (1995) uses −1. (p. 233)<br /> | ||
Line 76: | Line 72: | ||
Grillet (2007) says: "The degree of the zero polynomial 0 is sometimes left undefined or is variously defined as −1 ∈ <math>\mathbb{Z}</math> or as <math>-\infty</math>, as long as deg 0 < deg ''A'' for all ''A'' ≠ 0." (''A'' is a polynomial.) However, he excludes zero polynomials in his Proposition 5.3. (p. 121) | Grillet (2007) says: "The degree of the zero polynomial 0 is sometimes left undefined or is variously defined as −1 ∈ <math>\mathbb{Z}</math> or as <math>-\infty</math>, as long as deg 0 < deg ''A'' for all ''A'' ≠ 0." (''A'' is a polynomial.) However, he excludes zero polynomials in his Proposition 5.3. (p. 121) | ||
</ref> | </ref> | ||
किसी भी | |||
किसी भी निरंतर मूल्य की तरह, मान 0 एक (निरंतर) बहुपद के रूप में माना जा सकता है, शून्य बहुपद कहा जाता है। इसमें कोई शून्येतर शब्द नहीं हैं, और इसलिए पूरी तरह से कहा जा सकता है, इसकी कोई घात भी नहीं है। जैसे, इसकी घात आमतौर पर अपरिभाषित है। उपरोक्त खंड में बहुपदों की मात्रा और उत्पादों के स्तर के लिए प्रस्ताव लागू नहीं होता है अगर इसमें शामिल बहुपदों में से कोई भी शून्य बहुपद है।<ref>{{MathWorld|author=Barile, Margherita|id=ZeroPolynomial|title=Zero Polynomial}}</ref> | |||
तथापि, यह शून्य बहुपद की घात को ऋणात्मक अनंतता परिभाषित करने के लिए सुविधाजनक है, <math>-\infty,</math> और अंकगणित नियमों को लागू करने के लिए।<ref>Axler (1997) gives these rules and says: "The 0 polynomial is declared to have degree <math>-\infty</math> so that exceptions are not needed for various reasonable results." (p. 64)</ref> | |||
:<math>\max(a,-\infty) = a,</math> | :<math>\max(a,-\infty) = a,</math> | ||
तथा | तथा | ||
:<math>a + (-\infty) = -\infty.</math> | :<math>a + (-\infty) = -\infty.</math> | ||
इन उदाहरणों से स्पष्ट किया गया है कि यह विस्तार उपर्युक्त व्यवहार नियमों को कैसे संतुष्ट करता है: | |||
*योग की | *योग की घात <math>(x^3+x)+(0)=x^3+x</math> 3. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है <math>3 \le \max(3, -\infty)</math>. | ||
*अंतर की | *अंतर की घात <math>(x)-(x) = 0</math> है <math>-\infty</math>. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है <math>-\infty \le \max(1,1)</math>. | ||
*उत्पाद की | *उत्पाद की घात <math>(0)(x^2+1)=0</math> है <math>-\infty</math>. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है <math>-\infty = -\infty + 2</math>. | ||
== | ==फलन मान से गणना== | ||
कई सूत्र मौजूद हैं जो बहुपद फलन f की | कई सूत्र मौजूद हैं जो एक बहुपद फलन f की घात का मूल्यांकन करेगा। जो की [[ स्पर्शोन्मुख विश्लेषण |स्पर्शोन्मुख विश्लेषण]] पर आधारित है | ||
:<math>\deg f = \lim_{x\rarr\infty}\frac{\log |f(x)|}{\log x}</math>; | :<math>\deg f = \lim_{x\rarr\infty}\frac{\log |f(x)|}{\log x}</math>; | ||
यह लॉग-लॉग प्लॉट | यह लॉग-लॉग प्लॉट के ढलान के अनुमान की विधि का सटीक प्रतिरूप है। | ||
यह सूत्र | यह सूत्र कुछ ऐसे कार्यों में घात की अवधारणा को सामान्यीकृत करता है जो बहुपद नहीं हैं उदाहरण के लिए: | ||
उदाहरण के लिए: | *[[ गुणात्मक प्रतिलोम | गुणात्मक प्रतिलोम]] की घात, <math>\ 1/x</math>, -1 है। | ||
*[[ गुणात्मक प्रतिलोम ]] की | *[[ वर्गमूल | वर्गमूल]] की घात, <math>\sqrt x </math>, 1/2 है। | ||
*[[ वर्गमूल ]] की | *लघुगणक की घात, <math>\ \log x</math>, 0 है। | ||
* लघुगणक की | *घातीय फलन की घात, <math>\exp x</math>, है <math>\infty.</math> | ||
* घातीय | सूत्र भी ऐसे कार्यों के कई संयोजनों के लिए समझदार परिणाम देता है, जैसे, की घात <math>\frac{1 + \sqrt{x}}{x}</math> है <math>-1/2</math>. | ||
सूत्र भी ऐसे कार्यों के कई संयोजनों के लिए समझदार परिणाम देता है, | |||
f के उसके मूल्यों से घात की गणना करने के लिए एक और सूत्र है। | |||
:<math>\deg f = \lim_{x\to\infty}\frac{x f'(x)}{f(x)}</math>; | :<math>\deg f = \lim_{x\to\infty}\frac{x f'(x)}{f(x)}</math>; | ||
यह दूसरा सूत्र L' | यह दूसरा सूत्र L'Hopital के नियम को पहले सूत्र में लागू करने के बाद आता है। अंतः बोध से यह अधिक होता है कि घात D को व्युत्पन्न में एक अतिरिक्त स्थिर कारक के रूप में प्रदर्शित किया जाता है <math>d x^{d-1}</math> का <math>x^d</math>. | ||
एक | एक फलन के एसिम्प्टोटिक्स का एक और अधिक बारीक (एक साधारण संख्यात्मक घात से) विवरण [[ बिग ओ नोटेशन | बिग ओ नोटेशन]] का उपयोग करके किया जा सकता है। एल्गोरिदम के विश्लेषण में, उदाहरण के लिए, यह विकास दर के बीच अंतर करने के लिए अक्सर प्रासंगिक है <math> x </math> तथा <math> x \log x </math>, जो दोनों के रूप में ऊपर सूत्र के अनुसार एक ही घात होने के रूप में बाहर आ जाएगा। | ||
==दो या दो से अधिक चरों वाले बहुपदों का विस्तार == | ==दो या दो से अधिक चरों वाले बहुपदों का विस्तार == | ||
दो या दो से अधिक | दो या दो से अधिक चर में बहुपदों के लिए शब्द की घात इस पद में चर के घातांकों का योग है; घात जिसे (कभी-कभी बहुपद की कुल घात कहा जाता है), बहुपद के सभी पदों की अधिकतम घात होती है। उदाहरण के लिए, बहुपद ''x''<sup>2</sup>''y''<sup>2</sup> + 3''x''<sup>3</sup> + 4''y घात 4, शब्द के रूप में एक ही घात है x<sup>2</sup>y<sup>2</sup> .'' | ||
चूंकि, चर में एक बहुपद x और y, x में बहुपद जो y में बहुपद हैं के साथ एक बहुपद है, और भी गुणक के साथ y में एक बहुपद जो x में बहुपद हैं। बहुपद <math>x^2y^2 + 3x^3 + 4y = (3)x^3 + (y^2)x^2 + (4y) = (x^2)y^2 + (4)y + (3x^3)</math> की घात 3 में एक्स और घात 2 में y है। | |||
==अमूर्त बीजगणित में घात फलन== | |||
एक वलय (गणित) R, [[ बहुपद वलय |बहुपद वलय]] R[x], x में सभी बहुपदों का सेट है जो कि आर में गुणांक है विशेष स्थिति में कि R भी एक क्षेत्र बहुपद वलय है, R[x] एक [[ प्रमुख आदर्श डोमेन | प्रमुख आदर्श डोमेन]] है और अधिक महत्वपूर्ण बात यहाँ [[ यूक्लिडियन डोमेन |यूक्लिडियन डोमेन]] हमारी चर्चा के लिए है। | |||
यह प्रदर्शित किया जा सकता है कि एक क्षेत्र के ऊपर एक बहुपद की घात यूक्लिडियन डोमेन में मानक प्रकार्य की सभी आवश्यकताओं को संतुष्ट करती है। अर्थात्, दो बहुपद f(x) और g(x) उत्पाद की घात f(x)g(x) व्यक्तिगत रूप से f और g दोनों घात से बड़ी होनी चाहिए।वास्तव में कुछ मजबूत धारण: | |||
:<math>\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))</math> | |||
एक उदाहरण के लिए कि क्यों घात फलन एक वलय पर विफल हो सकता है जो एक क्षेत्र नहीं है निम्नलिखित उदाहरण ले। चलो R = <math>\mathbb{Z}/4\mathbb{Z}</math> पूर्णांकों का वलय [[ मॉड्यूलर अंकगणित | मॉड्यूलर अंकगणित]] 4, यह वलय एक क्षेत्र नहीं है और अभिन्न डोमेन भी नहीं है क्योंकि 2 × 2 = 4 ≡ 0 (मॉड 4)। इसलिए, मान लीजिए f(x) = g(x) = 2x + 1, फिर, f(x)g(x) = 4x<sup>2</sup> + 4x + 1 = 1. इस प्रकार deg(f⋅g) = 0 जो f और g की घात से अधिक नहीं है (जिनमें से प्रत्येक की घात 1 थी)। | |||
चूंकि मानक फलन वलय के शून्य तत्व के लिए परिभाषित नहीं है, हम बहुपद f(x) = 0 की घात को भी अपरिभाषित करने के लिए विचार करते हैं ताकि यह यूक्लिडियन डोमेन में मानक के नियमों का पालन करे। | |||
==यह भी देखें== | |||
*हाबिल-रफिनी प्रमेय | |||
*बीजगणित की मौलिक प्रमेय | |||
* हाबिल-रफिनी प्रमेय | |||
* बीजगणित की मौलिक प्रमेय | |||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 140: | Line 134: | ||
*{{Citation |last=Shafarevich |first=Igor R. |author-link=Igor Shafarevich |year=2003 |title=Discourses on Algebra |publisher=Springer Science & Business Media |url=https://books.google.com/books?id=hpkkJgU8rwcC&q=%22the+degree+of+the+polynomial+is+undefined%22&pg=PA27 }} | *{{Citation |last=Shafarevich |first=Igor R. |author-link=Igor Shafarevich |year=2003 |title=Discourses on Algebra |publisher=Springer Science & Business Media |url=https://books.google.com/books?id=hpkkJgU8rwcC&q=%22the+degree+of+the+polynomial+is+undefined%22&pg=PA27 }} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [http://mathworld.wolfram.com/PolynomialOrder.html Polynomial Order]; Wolfram MathWorld | *[http://mathworld.wolfram.com/PolynomialOrder.html Polynomial Order]; Wolfram MathWorld | ||
{{Polynomials}} | {{Polynomials}} | ||
{{DEFAULTSORT:Degree of a Polynomial}}[[Category: | {{DEFAULTSORT:Degree of a Polynomial}} | ||
[[Category:Machine Translated Page]] | |||
[[Category: | [[Category:Articles with short description|Degree of a Polynomial]] | ||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Collapse templates|Degree of a Polynomial]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Degree of a Polynomial]] | |||
[[Category:Pages with script errors|Degree of a Polynomial]] | |||
[[Category:Short description with empty Wikidata description|Degree of a Polynomial]] | |||
[[Category:Sidebars with styles needing conversion|Degree of a Polynomial]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats|Degree of a Polynomial]] | |||
[[Category:Templates that are not mobile friendly|Degree of a Polynomial]] | |||
[[Category:Templates using TemplateData|Degree of a Polynomial]] | |||
[[Category:Wikipedia metatemplates|Degree of a Polynomial]] |
Latest revision as of 09:06, 15 November 2022
गणित में, एक बहुपद की घात, शून्य गुणांकों वाले बहुपद मोनोमियल(अलग-अलग शब्दों) की उच्चतम घात होती है। एक शब्द की घात उस में दिखाई देने वाले चर (गणित) के प्रतिपादकों का योग है, और इस प्रकार एक गैर नकारात्मक पूर्णांक है। एक बहुपद के लिए, बहुपद की घात केवल बहुपद में उत्पन्न उच्चतम प्रतिपादक है।[1][2] शब्द क्रम का प्रयोग घात के पर्यायार्थ के रूप में किया गया है, लेकिन आजकल, यह अनेक अन्य अवधारणाओं के संदर्भ में(बहुपद) बहुविकल्पी व्यवस्था को दर्शाता है।)
उदाहरण के लिए, बहुपद जो भी लिखा जा सकता है तीन शब्द है। पहले पद का घात 5 है(घातांक 2 और 3 का योग), दूसरे पद का घात 1 है, और अंतिम पद का घात 0 है। इसलिए बहुपद की घात 5 है जो किसी भी पद की उच्चतम घात है।
एक बहुपद की घात निर्धारित करने के लिए जो मानक रूप में नहीं है, जैसे कि , कोई भी इसे उत्पादों (वितरण द्वारा) के विस्तार और समान शर्तों के संयोजन द्वारा मानक रूप में रख सकता है; उदाहरण के लिए, की घात 1 है, चूंकि प्रत्येक शिखर की घात 2 है। चूंकि, यह तब आवश्यक नहीं है जब बहुपद को मानक रूप में एक उत्पाद के रूप में लिखा जाता है क्योंकि एक उत्पाद की घात कारकों की घात का योग है।
घात के अनुसार बहुपदों के नाम
बहुपदों को उनकी घात के अनुसार निम्नलिखित नाम दिए गए हैं:[3][4][5][2]
- विशेष स्थिति - शून्य बहुपद(नीचे शून्य बहुपद की घात देखें)
- घात 0 - गैर-शून्य निरंतर [6]
- घात 1 - रैखिक
- घात 2 - द्विघात
- घात 3 - घन
- घात 4 - क्वार्टिक (या, यदि सभी शर्तों में भी घात, द्विद्विघात है)
- घात 5 - क्विंटिक
- घात 6 - सेक्स्टिक (या, सामान्य रूप से कम, हेसिक)
- घात 7 - सेप्टिक (या, सामान्य रूप से कम, हेप्टिक)
उच्चतर पद के लिए, कभी-कभी प्रस्ताव रखा जाता है,[7] लेकिन वे शायद ही कभी उपयोग किया जाता है:
- घात 8 - ओक्टिक
- घात 9 - नॉनिक
- घात 10 - डेसिक
तीन से ऊपर की घात के लिए नाम लैटिन क्रम संख्या पर आधारित होते हैं, और अंत-आईसी (ic) में होते हैं। यह चर की संख्या के लिए उपयोग किए जाने वाले नामों से अलग होना चाहिए, एरिटी, जो लैटिन में वितरण संख्या पर आधारित है, और -ary में समाप्त होता है। उदाहरण के लिए, एक घात दो बहुपद जैसे दो चर में दो बहुपद , को "द्विआधारी द्विघात" कहा जाता है: द्विआधारी कारण दो चर, द्विघात घात दो के कारण होता है।[lower-alpha 1] शब्दों की संख्या के लिए भी नाम हैं, जो भी लैटिन वितरक संख्याओं पर आधारित हैं, जो कि -नॉमियल में समाप्त होता है; आम एकपद, द्विपद और (कम सामान्यतः) त्रिपद होते हैं; इस प्रकार एक "द्विआधारी द्विपद" होता है।
उदाहरण
बहुपद एक घन बहुपद हैः बाहर गुणा और एक ही घात के शब्दों का संग्रह के बाद, यह हो जाता है , उच्चतम घातांक 3 के साथ।
बहुपद एक क्विंटिक बहुपद है: समान पदों को मिलाने पर, घात 8 के दो पद रद्द हो जाते हैं, छोड़कर , सर्वोच्च घातांक 5 के साथ।
बहुपद संचालन के तहत व्यवहार
योग की घात, उत्पाद या दो बहुपदों का संयोजन निवेश बहुपदों की घात से दृढ़ता से संबंधित है।[8]
जोड़
दो बहुपदों के योग (या अंतर) की घात उनकी उपाधियों से कम या बराबर है;अर्थात्,
- तथा .
उदाहरण के लिए, की घात 2, और 2 ≤ अधिकतम{3, 3} है।
बहुपदों के स्तरों के अलग-अलग होने पर हमेशा समानता कायम रहती है। उदाहरण के लिए, की घात 3 है, और 3 = अधिकतम{3, 2} है।
गुणन
एक गैर शून्य अदिश (गणित) द्वारा एक बहुपद के उत्पाद की घात बहुपद की घात के बराबर है;अर्थात्,
उदाहरण के लिए, की घात 2 है, जो की घात के बराबर है .
इस प्रकार, बहुपदों का सेट (दिए गए क्षेत्र एफ से गुणांक सहित) जिसकी घात दी गई संख्या N से छोटा या उसके बराबर है, एक सदिश स्थान बनाता है;अधिक जानकारी के लिए सदिश रिक्त स्थान के उदाहरण देखें.आम तौर पर दो बहुपदों के उत्पाद की घात एक क्षेत्र या एक अभिन्न डोमेन पर उनकी घात का योग होता है:
- .
उदाहरण के लिए, की घात 5 = 3 + 2 है।
बहुपदों के लिए एक मनमाने वलय पर, ऊपर के नियम मान्य नहीं हो सकते, क्योंकि रद्दीकरण के कारण जो दो गैर शून्य स्थिरांक के गुणा करने पर हो सकता है। उदाहरण के लिए, वलय में पूर्णांक मॉडुलो 4, एक है कि , लेकिन , जो कारकों की घात के योग के बराबर नहीं है।
रचना
दो गैर निरंतर बहुपदों और एक क्षेत्र या अभिन्न डोमेन पर उनके संयोजन की घात उनकी घात का उत्पाद है:
- .
उदाहरण के लिए:
- यदि , , फिर , जिसकी घात 6 है।
यह जरूरी नहीं है कि बहुपदों के लिए एक मनमाने वलय पर यह सही नहीं है। उदाहरण के लिए, में , , लेकिन .
शून्य बहुपद की घात
शून्य बहुपद की घात या तो अपरिभाषित छोड़ दिया है, या नकारात्मक होने के लिए परिभाषित किया गया है (आमतौर पर -1 या )[9]
किसी भी निरंतर मूल्य की तरह, मान 0 एक (निरंतर) बहुपद के रूप में माना जा सकता है, शून्य बहुपद कहा जाता है। इसमें कोई शून्येतर शब्द नहीं हैं, और इसलिए पूरी तरह से कहा जा सकता है, इसकी कोई घात भी नहीं है। जैसे, इसकी घात आमतौर पर अपरिभाषित है। उपरोक्त खंड में बहुपदों की मात्रा और उत्पादों के स्तर के लिए प्रस्ताव लागू नहीं होता है अगर इसमें शामिल बहुपदों में से कोई भी शून्य बहुपद है।[10]
तथापि, यह शून्य बहुपद की घात को ऋणात्मक अनंतता परिभाषित करने के लिए सुविधाजनक है, और अंकगणित नियमों को लागू करने के लिए।[11]
तथा
इन उदाहरणों से स्पष्ट किया गया है कि यह विस्तार उपर्युक्त व्यवहार नियमों को कैसे संतुष्ट करता है:
- योग की घात 3. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .
- अंतर की घात है . यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .
- उत्पाद की घात है . यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .
फलन मान से गणना
कई सूत्र मौजूद हैं जो एक बहुपद फलन f की घात का मूल्यांकन करेगा। जो की स्पर्शोन्मुख विश्लेषण पर आधारित है
- ;
यह लॉग-लॉग प्लॉट के ढलान के अनुमान की विधि का सटीक प्रतिरूप है।
यह सूत्र कुछ ऐसे कार्यों में घात की अवधारणा को सामान्यीकृत करता है जो बहुपद नहीं हैं उदाहरण के लिए:
- गुणात्मक प्रतिलोम की घात, , -1 है।
- वर्गमूल की घात, , 1/2 है।
- लघुगणक की घात, , 0 है।
- घातीय फलन की घात, , है
सूत्र भी ऐसे कार्यों के कई संयोजनों के लिए समझदार परिणाम देता है, जैसे, की घात है .
f के उसके मूल्यों से घात की गणना करने के लिए एक और सूत्र है।
- ;
यह दूसरा सूत्र L'Hopital के नियम को पहले सूत्र में लागू करने के बाद आता है। अंतः बोध से यह अधिक होता है कि घात D को व्युत्पन्न में एक अतिरिक्त स्थिर कारक के रूप में प्रदर्शित किया जाता है का .
एक फलन के एसिम्प्टोटिक्स का एक और अधिक बारीक (एक साधारण संख्यात्मक घात से) विवरण बिग ओ नोटेशन का उपयोग करके किया जा सकता है। एल्गोरिदम के विश्लेषण में, उदाहरण के लिए, यह विकास दर के बीच अंतर करने के लिए अक्सर प्रासंगिक है तथा , जो दोनों के रूप में ऊपर सूत्र के अनुसार एक ही घात होने के रूप में बाहर आ जाएगा।
दो या दो से अधिक चरों वाले बहुपदों का विस्तार
दो या दो से अधिक चर में बहुपदों के लिए शब्द की घात इस पद में चर के घातांकों का योग है; घात जिसे (कभी-कभी बहुपद की कुल घात कहा जाता है), बहुपद के सभी पदों की अधिकतम घात होती है। उदाहरण के लिए, बहुपद x2y2 + 3x3 + 4y घात 4, शब्द के रूप में एक ही घात है x2y2 .
चूंकि, चर में एक बहुपद x और y, x में बहुपद जो y में बहुपद हैं के साथ एक बहुपद है, और भी गुणक के साथ y में एक बहुपद जो x में बहुपद हैं। बहुपद की घात 3 में एक्स और घात 2 में y है।
अमूर्त बीजगणित में घात फलन
एक वलय (गणित) R, बहुपद वलय R[x], x में सभी बहुपदों का सेट है जो कि आर में गुणांक है विशेष स्थिति में कि R भी एक क्षेत्र बहुपद वलय है, R[x] एक प्रमुख आदर्श डोमेन है और अधिक महत्वपूर्ण बात यहाँ यूक्लिडियन डोमेन हमारी चर्चा के लिए है।
यह प्रदर्शित किया जा सकता है कि एक क्षेत्र के ऊपर एक बहुपद की घात यूक्लिडियन डोमेन में मानक प्रकार्य की सभी आवश्यकताओं को संतुष्ट करती है। अर्थात्, दो बहुपद f(x) और g(x) उत्पाद की घात f(x)g(x) व्यक्तिगत रूप से f और g दोनों घात से बड़ी होनी चाहिए।वास्तव में कुछ मजबूत धारण:
एक उदाहरण के लिए कि क्यों घात फलन एक वलय पर विफल हो सकता है जो एक क्षेत्र नहीं है निम्नलिखित उदाहरण ले। चलो R = पूर्णांकों का वलय मॉड्यूलर अंकगणित 4, यह वलय एक क्षेत्र नहीं है और अभिन्न डोमेन भी नहीं है क्योंकि 2 × 2 = 4 ≡ 0 (मॉड 4)। इसलिए, मान लीजिए f(x) = g(x) = 2x + 1, फिर, f(x)g(x) = 4x2 + 4x + 1 = 1. इस प्रकार deg(f⋅g) = 0 जो f और g की घात से अधिक नहीं है (जिनमें से प्रत्येक की घात 1 थी)।
चूंकि मानक फलन वलय के शून्य तत्व के लिए परिभाषित नहीं है, हम बहुपद f(x) = 0 की घात को भी अपरिभाषित करने के लिए विचार करते हैं ताकि यह यूक्लिडियन डोमेन में मानक के नियमों का पालन करे।
यह भी देखें
- हाबिल-रफिनी प्रमेय
- बीजगणित की मौलिक प्रमेय
टिप्पणियाँ
- ↑ For simplicity, this is a homogeneous polynomial, with equal degree in both variables separately.
- ↑ Weisstein, Eric W. "Polynomial Degree". mathworld.wolfram.com (in English). Retrieved 2020-08-31.
- ↑ 2.0 2.1 "Degree (of an Expression)". www.mathsisfun.com. Retrieved 2020-08-31.
- ↑ "Names of Polynomials". November 25, 1997. Retrieved 5 February 2012.
- ↑ Mac Lane and Birkhoff (1999) define "linear", "quadratic", "cubic", "quartic", and "quintic". (p. 107)
- ↑ King (2009) defines "quadratic", "cubic", "quartic", "quintic", "sextic", "septic", and "octic".
- ↑ Shafarevich (2003) says of a polynomial of degree zero, : "Such a polynomial is called a constant because if we substitute different values of x in it, we always obtain the same value ." (p. 23)
- ↑ James Cockle proposed the names "sexic", "septic", "octic", "nonic", and "decic" in 1851. (Mechanics Magazine, Vol. LV, p. 171)
- ↑ Lang, Serge (2005). Algebra (3rd ed.). Springer. p. 100. ISBN 978-0-387-95385-4.
- ↑
Shafarevich (2003) says of the zero polynomial: "In this case, we consider that the degree of the polynomial is undefined." (p. 27)
Childs (1995) uses −1. (p. 233)
Childs (2009) uses −∞ (p. 287), however he excludes zero polynomials in his Proposition 1 (p. 288) and then explains that the proposition holds for zero polynomials "with the reasonable assumption that + m = for m any integer or m = ".
Axler (1997) uses −∞. (p. 64)
Grillet (2007) says: "The degree of the zero polynomial 0 is sometimes left undefined or is variously defined as −1 ∈ or as , as long as deg 0 < deg A for all A ≠ 0." (A is a polynomial.) However, he excludes zero polynomials in his Proposition 5.3. (p. 121) - ↑ Barile, Margherita. "Zero Polynomial". MathWorld.
- ↑ Axler (1997) gives these rules and says: "The 0 polynomial is declared to have degree so that exceptions are not needed for various reasonable results." (p. 64)
संदर्भ
- Axler, Sheldon (1997), Linear Algebra Done Right (2nd ed.), Springer Science & Business Media
- Childs, Lindsay N. (1995), A Concrete Introduction to Higher Algebra (2nd ed.), Springer Science & Business Media
- Childs, Lindsay N. (2009), A Concrete Introduction to Higher Algebra (3rd ed.), Springer Science & Business Media
- Grillet, Pierre Antoine (2007), Abstract Algebra (2nd ed.), Springer Science & Business Media
- King, R. Bruce (2009), Beyond the Quartic Equation, Springer Science & Business Media
- Mac Lane, Saunders; Birkhoff, Garrett (1999), Algebra (3rd ed.), American Mathematical Society
- Shafarevich, Igor R. (2003), Discourses on Algebra, Springer Science & Business Media
बाहरी संबंध
- Polynomial Order; Wolfram MathWorld