विवेकाधीन त्रुटि: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[संख्यात्मक विश्लेषण]], [[कम्प्यूटेशनल भौतिकी]] और [[सिमुलेशन]] में, '''विवेकाधीन त्रुटि''' इस तथ्य से उत्पन्न त्रुटि है कि [[सातत्य (सेट सिद्धांत)|सातत्य (समुच्चय सिद्धांत)]] चर के [[फ़ंक्शन (गणित)|फलन (गणित)]] को कंप्यूटर में मूल्यांकन की सीमित संख्या द्वारा दर्शाया जाता है, उदाहरण के लिए, [[जाली मॉडल (भौतिकी)|जालक मॉडल (भौतिकी)]] पर बढ़ी हुई [[कम्प्यूटेशनल जटिलता सिद्धांत]] के साथ, अधिक सूक्ष्म दूरी वाली जालक का उपयोग करके विवेकाधीन त्रुटि को सामान्यतः कम किया जा सकता है। | [[संख्यात्मक विश्लेषण]], [[कम्प्यूटेशनल भौतिकी]] और [[सिमुलेशन]] में, '''विवेकाधीन त्रुटि''' इस तथ्य से उत्पन्न त्रुटि है कि [[सातत्य (सेट सिद्धांत)|सातत्य (समुच्चय सिद्धांत)]] चर के [[फ़ंक्शन (गणित)|फलन (गणित)]] को कंप्यूटर में मूल्यांकन की सीमित संख्या द्वारा दर्शाया जाता है, उदाहरण के लिए, [[जाली मॉडल (भौतिकी)|जालक मॉडल (भौतिकी)]] पर बढ़ी हुई [[कम्प्यूटेशनल जटिलता सिद्धांत]] के साथ, अधिक सूक्ष्म दूरी वाली जालक का उपयोग करके विवेकाधीन त्रुटि को सामान्यतः कम किया जा सकता है। | ||
==उदाहरण== | ==उदाहरण == | ||
विवेकाधीन त्रुटि [[परिमित अंतर]] के विधियों और कम्प्यूटेशनल भौतिकी की छद्म-वर्णक्रमीय विधि में त्रुटि का प्रमुख स्रोत है। | विवेकाधीन त्रुटि [[परिमित अंतर]] के विधियों और कम्प्यूटेशनल भौतिकी की छद्म-वर्णक्रमीय विधि में त्रुटि का प्रमुख स्रोत है। | ||
जब हम <math>\,\!f(x)</math> के अवकलज को <math>f'(x) = \lim_{h\rightarrow0}{\frac{f(x+h)-f(x)}{h}}</math> या <math>f'(x)\approx\frac{f(x+h)-f(x)}{h}</math> के रूप में परिभाषित करते हैं, जहां <math>\,\!h</math> एक अत्यंत छोटी संख्या है, पहले सूत्र और इस सन्निकटन के बीच के अंतर को विवेकाधीन त्रुटि के रूप में जाना जाता है। | जब हम <math>\,\!f(x)</math> के अवकलज को <math>f'(x) = \lim_{h\rightarrow0}{\frac{f(x+h)-f(x)}{h}}</math> या <math>f'(x)\approx\frac{f(x+h)-f(x)}{h}</math> के रूप में परिभाषित करते हैं, जहां <math>\,\!h</math> एक अत्यंत छोटी संख्या है, पहले सूत्र और इस सन्निकटन के बीच के अंतर को विवेकाधीन त्रुटि के रूप में जाना जाता है। | ||
==संबंधित घटनाएं== | ==संबंधित घटनाएं == | ||
[[ संकेत आगे बढ़ाना |सिग्नल प्रोसेसिंग]] में, विवेकीकरण का एनालॉग [[ नमूनाकरण (सिग्नल प्रोसेसिंग) |सैम्पलिंग (सिग्नल प्रोसेसिंग)]] है, और यदि सैंपलिंग प्रमेय की नियम संतुष्ट हैं तो कोई हानि नहीं होता है, अन्यथा परिणामी त्रुटि को [[अलियासिंग]] कहा जाता है। | [[ संकेत आगे बढ़ाना |सिग्नल प्रोसेसिंग]] में, विवेकीकरण का एनालॉग [[ नमूनाकरण (सिग्नल प्रोसेसिंग) |सैम्पलिंग (सिग्नल प्रोसेसिंग)]] है, और यदि सैंपलिंग प्रमेय की नियम संतुष्ट हैं तो कोई हानि नहीं होता है, अन्यथा परिणामी त्रुटि को [[अलियासिंग]] कहा जाता है। | ||
विवेकाधीन त्रुटि, जो डोमेन में परिमित रिज़ॉल्यूशन से उत्पन्न होती है, जिसको [[परिमाणीकरण त्रुटि]] के साथ भ्रमित नहीं किया जाना चाहिए, जो सीमा (मानों) में सीमित रिज़ॉल्यूशन है, न ही फ्लोटिंग-पॉइंट अंकगणित से उत्पन्न होने वाली राउंड-ऑफ त्रुटि में विवेकाधीन त्रुटि तब भी घटित होगी जब मानों को स्पष्ट रूप से प्रस्तुत करना और स्पष्ट अंकगणित का उपयोग करना संभव हो यह किसी फलन को बिंदुओं के अलग-अलग समुच्चय पर उसके मानों द्वारा प्रस्तुत करने में हुई त्रुटि है, इन मानों में कोई त्रुटि नहीं है।<ref>{{cite book | first = Nicholas | last=Higham | title=संख्यात्मक एल्गोरिदम की सटीकता और स्थिरता|edition = 2 | doi = 10.1137/1.9780898718027 | publisher = SIAM | year=2002 | pages=5 | isbn = 978-0-89871-521-7 | series = Other Titles in Applied Mathematics }}</ref> | विवेकाधीन त्रुटि, जो डोमेन में परिमित रिज़ॉल्यूशन से उत्पन्न होती है, जिसको [[परिमाणीकरण त्रुटि]] के साथ भ्रमित नहीं किया जाना चाहिए, जो सीमा (मानों) में सीमित रिज़ॉल्यूशन है, न ही फ्लोटिंग-पॉइंट अंकगणित से उत्पन्न होने वाली राउंड-ऑफ त्रुटि में विवेकाधीन त्रुटि तब भी घटित होगी जब मानों को स्पष्ट रूप से प्रस्तुत करना और स्पष्ट अंकगणित का उपयोग करना संभव हो यह किसी फलन को बिंदुओं के अलग-अलग समुच्चय पर उसके मानों द्वारा प्रस्तुत करने में हुई त्रुटि है, इन मानों में कोई त्रुटि नहीं है।<ref>{{cite book | first = Nicholas | last=Higham | title=संख्यात्मक एल्गोरिदम की सटीकता और स्थिरता|edition = 2 | doi = 10.1137/1.9780898718027 | publisher = SIAM | year=2002 | pages=5 | isbn = 978-0-89871-521-7 | series = Other Titles in Applied Mathematics }}</ref> | ||
==संदर्भ == | ==संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
==यह भी देखें == | ==यह भी देखें == | ||
* [[विवेक|विवेका]]धिकार | * [[विवेक|विवेका]]धिकार |
Revision as of 12:20, 24 July 2023
संख्यात्मक विश्लेषण, कम्प्यूटेशनल भौतिकी और सिमुलेशन में, विवेकाधीन त्रुटि इस तथ्य से उत्पन्न त्रुटि है कि सातत्य (समुच्चय सिद्धांत) चर के फलन (गणित) को कंप्यूटर में मूल्यांकन की सीमित संख्या द्वारा दर्शाया जाता है, उदाहरण के लिए, जालक मॉडल (भौतिकी) पर बढ़ी हुई कम्प्यूटेशनल जटिलता सिद्धांत के साथ, अधिक सूक्ष्म दूरी वाली जालक का उपयोग करके विवेकाधीन त्रुटि को सामान्यतः कम किया जा सकता है।
उदाहरण
विवेकाधीन त्रुटि परिमित अंतर के विधियों और कम्प्यूटेशनल भौतिकी की छद्म-वर्णक्रमीय विधि में त्रुटि का प्रमुख स्रोत है।
जब हम के अवकलज को या के रूप में परिभाषित करते हैं, जहां एक अत्यंत छोटी संख्या है, पहले सूत्र और इस सन्निकटन के बीच के अंतर को विवेकाधीन त्रुटि के रूप में जाना जाता है।
संबंधित घटनाएं
सिग्नल प्रोसेसिंग में, विवेकीकरण का एनालॉग सैम्पलिंग (सिग्नल प्रोसेसिंग) है, और यदि सैंपलिंग प्रमेय की नियम संतुष्ट हैं तो कोई हानि नहीं होता है, अन्यथा परिणामी त्रुटि को अलियासिंग कहा जाता है।
विवेकाधीन त्रुटि, जो डोमेन में परिमित रिज़ॉल्यूशन से उत्पन्न होती है, जिसको परिमाणीकरण त्रुटि के साथ भ्रमित नहीं किया जाना चाहिए, जो सीमा (मानों) में सीमित रिज़ॉल्यूशन है, न ही फ्लोटिंग-पॉइंट अंकगणित से उत्पन्न होने वाली राउंड-ऑफ त्रुटि में विवेकाधीन त्रुटि तब भी घटित होगी जब मानों को स्पष्ट रूप से प्रस्तुत करना और स्पष्ट अंकगणित का उपयोग करना संभव हो यह किसी फलन को बिंदुओं के अलग-अलग समुच्चय पर उसके मानों द्वारा प्रस्तुत करने में हुई त्रुटि है, इन मानों में कोई त्रुटि नहीं है।[1]
संदर्भ
- ↑ Higham, Nicholas (2002). संख्यात्मक एल्गोरिदम की सटीकता और स्थिरता. Other Titles in Applied Mathematics (2 ed.). SIAM. p. 5. doi:10.1137/1.9780898718027. ISBN 978-0-89871-521-7.
यह भी देखें
- विवेकाधिकार
- रैखिक मल्टीस्टेप विधि
- परिमाणीकरण त्रुटि