सहायक आँकड़ा: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 48: | Line 48: | ||
{{reflist}} | {{reflist}} | ||
{{DEFAULTSORT:Ancillary Statistic}} | {{DEFAULTSORT:Ancillary Statistic}} [Category:Statistical theo | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | [[Category:Created On 07/07/2023|Ancillary Statistic]] | ||
[[Category:Created On 07/07/2023]] | [[Category:Machine Translated Page|Ancillary Statistic]] | ||
[[Category:Vigyan Ready]] | [[Category:Pages with script errors|Ancillary Statistic]] | ||
[[Category:Templates Vigyan Ready]] | |||
[[Category:सांख्यिकीय|Ancillary Statistic]] |
Latest revision as of 10:46, 7 August 2023
सहायक आँकड़ा एक नमूने का एक माप है जिसका वितरण (या जिसका पीएमएफ या पीडीएफ) मॉडल के मापदंडों पर निर्भर नहीं करता है।[1][2][3] सहायक आँकड़ा एक निर्णायक मात्रा है जो एक आँकड़ा भी है। पूर्वानुमान अंतराल के निर्माण के लिए सहायक सांख्यिकी का उपयोग किया जा सकता है। इनका उपयोग आंकड़ों के बीच स्वतंत्रता सिद्ध करने के लिए बसु के प्रमेय के संबंध में भी किया जाता है।[4]
यह अवधारणा पहली बार 1920 के दशक में रोनाल्ड फिशर द्वारा प्रस्तुत की गई थी,[5] लेकिन इसकी औपचारिक परिभाषा केवल 1964 में देबा बी एट अल. बस द्वारा प्रदान की गई थी।[6][7]
उदाहरण
मान लीजिए X1, ..., Xn स्वतंत्र समान रूप से वितरित यादृच्छिक चर हैं, और अज्ञात अपेक्षित मूल्य μ और ज्ञात भिन्नता 1 के साथ सामान्य वितरण हैं।
अंकगणित माध्य हो.
नमूने के प्रसार के निम्नलिखित सांख्यिकीय उपाय
- रेंज (सांख्यिकी): अधिकतम (X1, ..., Xn) - मिनट (X1, ..., Xn)
- अंतरचतुर्थक सीमा: Q3 − Q1
- नमूना विचरण:
सभी सहायक आँकड़े हैं, क्योंकि उनके नमूना वितरण μ परिवर्तन के रूप में नहीं बदलते हैं। कम्प्यूटेशनल रूप से, ऐसा इसलिए है क्योंकि, सूत्रों में, μ शब्द रद्द हो जाते हैं - एक वितरण (और सभी नमूनों) में एक निरंतर संख्या जोड़ने से इसका नमूना अधिकतम और न्यूनतम एक ही मात्रा में बदल जाता है, इसलिए यह उनके अंतर को नहीं बदलता है, और इसी तरह दूसरों के लिए भी: प्रसार के ये उपाय स्थान पर निर्भर नहीं करते हैं।
इसके विपरीत, आई.आई.डी. ज्ञात माध्य 1 और अज्ञात विचरण σ2 के साथ सामान्य चर, नमूना माध्य विचरण का सहायक आँकड़ा नहीं है, क्योंकि नमूना माध्य का नमूना वितरण N(1, σ2/n) है, जो σ2 - पर निर्भर करता है स्थान का यह माप (विशेष रूप से, इसकी मानक त्रुटि) विचरण पर निर्भर करता है।[8]
स्थान-स्तरीय फॅमिली में
एक स्थान फॅमिली में, एक सहायक आँकड़ा है.
एक स्केल फॅमिली में, एक सहायक आँकड़ा है.
स्थान-पैमाने पर वितरण के फॅमिली स्थान-पैमाने पर फॅमिली में, , जहाँ नमूना विचरण है, एक सहायक आँकड़ा है।[3][9]
सूचना की पुनर्प्राप्ति में
यह पता चला है कि, यदि एक गैर-पर्याप्त आँकड़ा है और सहायक है, कोई भी कभी-कभी रिपोर्टिंग द्वारा संपूर्ण डेटा में निहित अज्ञात पैरामीटर के बारे में सारी सूचना पुनर्प्राप्त कर सकता है के प्रेक्षित मूल्य पर अनुकूलन करते समय . इसे सशर्त अनुमान के रूप में जाना जाता है।[3]
उदाहरण के लिए, मान लीजिये का पीछा करो वितरण कहां अज्ञात है। हालाँकि, ध्यान दें के लिए पर्याप्त नहीं है (चूंकि इसकी फिशर सूचना 1 है, जबकि फिशर सूचना पूर्ण आँकड़ा है 2 है), अतिरिक्त रूप से सहायक आँकड़ा रिपोर्ट करके , कोई फिशर सूचना 2 के साथ एक सम्मिलित वितरण प्राप्त करता है।[3]
सहायक पूरक
एक आँकड़ा T दिया गया है जो पर्याप्तता (सांख्यिकी) नहीं है, एक 'सहायक पूरक' एक आँकड़ा U है जो सहायक है और ऐसा है कि (T, U) पर्याप्त है।[2] सहज रूप से, एक सहायक पूरक T हुई (बिना किसी नकल के) सूचना को जोड़ता है ।
यह आँकड़ा विशेष रूप से उपयोगी है यदि कोई T को अधिकतम संभावना अनुमानक मानता है, जो सामान्य तौर पर पर्याप्त नहीं होगा; तो कोई सहायक पूरक मांग सकता है। इस मामले में, फिशर का तर्क है कि किसी को सूचना सामग्री निर्धारित करने के लिए एक सहायक पूरक पर शर्त लगानी चाहिए: किसी को T की फिशर सूचना सामग्री को T का सीमांत नहीं मानना चाहिए, बल्कि T का सशर्त वितरण, दिया गया U सूचना है जिसे T जोड़ें? यह सामान्य रूप से संभव नहीं है, क्योंकि किसी सहायक पूरक की आवश्यकता उपस्थित नहीं है, और यदि कोई उपस्थित है, तो उसे अद्वितीय होने की आवश्यकता नहीं है, न ही अधिकतम सहायक पूरक उपस्थित है।
उदाहरण
बेसबॉल में, मान लीजिए कि एक स्काउट N एट-बैट (N at-bats) में एक बल्लेबाज को देखता है। मान लीजिए (अवास्तविक रूप से) कि नंबर N को कुछ यादृच्छिक प्रक्रिया द्वारा चुना जाता है जो बल्लेबाज की क्षमता की सांख्यिकीय स्वतंत्रता है - मान लें कि प्रत्येक बल्लेबाजी के बाद एक सिक्का उछाला जाता है और परिणाम यह निर्धारित करता है कि स्काउट बल्लेबाज की अगली बल्लेबाजी को देखने के लिए रुकेगा या नहीं . अंतिम डेटा एट-बैट की संख्या N और हिट की संख्या एक्स है: डेटा (X/N एक पर्याप्त आँकड़ा है। देखा गया बल्लेबाजी औसत (बेसबॉल) चैंपियन, केवल पांच एट-बैट पर आधारित 100 एट-बैट पर आधारित 0.400 औसत की तुलना में खिलाड़ी की क्षमता में कहीं भी उतना आत्मविश्वास उत्पन्न नहीं करता है)। एट-बैट की संख्या N एक सहायक आँकड़ा है क्योंकि
- यह अवलोकन योग्य डेटा का एक हिस्सा है (यह एक आँकड़ा है), और
- इसका संभाव्यता वितरण बल्लेबाज की क्षमता पर निर्भर नहीं करता है, क्योंकि इसे बल्लेबाज की क्षमता से स्वतंत्र एक यादृच्छिक प्रक्रिया द्वारा चुना गया था।
यह सहायक आँकड़ा प्रेक्षित बल्लेबाजी औसत X/N के लिए एक 'सहायक पूरक' है, अर्थात, बल्लेबाजी औसत N के साथ मिलकर यह पर्याप्त हो जाता है।
यह भी देखें
- बसु का प्रमेय
- भविष्यवाणी अंतराल
- समूह फॅमिली
- सशर्तता सिद्धांत
टिप्पणियाँ
- ↑ Lehmann, E. L.; Scholz, F. W. (1992). "सहायकता". Lecture Notes-Monograph Series. 17: 32–51. ISSN 0749-2170.
- ↑ 2.0 2.1 Ghosh, M.; Reid, N.; Fraser, D. A. S. (2010). "Ancillary statistics: A review". Statistica Sinica. 20 (4): 1309–1332. ISSN 1017-0405.
- ↑ 3.0 3.1 3.2 3.3 Mukhopadhyay, Nitis (2000). संभाव्यता और सांख्यिकीय अनुमान. United States of America: Marcel Dekker, Inc. pp. 309–318. ISBN 0-8247-0379-0.
- ↑ Dawid, Philip (2011), DasGupta, Anirban (ed.), "Basu on Ancillarity", Selected Works of Debabrata Basu (in English), New York, NY: Springer, pp. 5–8, doi:10.1007/978-1-4419-5825-9_2, ISBN 978-1-4419-5825-9, retrieved 2023-04-25
- ↑ Fisher, R. A. (1925). "सांख्यिकीय अनुमान का सिद्धांत". Mathematical Proceedings of the Cambridge Philosophical Society (in English). 22 (5): 700–725. doi:10.1017/S0305004100009580. ISSN 0305-0041.
- ↑ Basu, D. (1964). "सहायक सूचना की पुनर्प्राप्ति". Sankhyā: The Indian Journal of Statistics, Series A (1961-2002). 26 (1): 3–16. ISSN 0581-572X.
- ↑ Stigler, Stephen M. (2001), "Ancillary history", Institute of Mathematical Statistics Lecture Notes - Monograph Series (in English), Beachwood, OH: Institute of Mathematical Statistics, pp. 555–567, doi:10.1214/lnms/1215090089, ISBN 978-0-940600-50-8, retrieved 2023-04-24
- ↑ Buehler, Robert J. (1982). "कुछ सहायक आँकड़े और उनके गुण". Journal of the American Statistical Association. 77 (379): 581–589. doi:10.1080/01621459.1982.10477850. ISSN 0162-1459.
- ↑ "सहायक आँकड़े" (PDF).
[Category:Statistical theo