एज़ोट्रोपिक आसवन: Difference between revisions
m (8 revisions imported from alpha:एज़ोट्रोपिक_आसवन) |
No edit summary |
||
Line 37: | Line 37: | ||
{{Distillation}} | {{Distillation}} | ||
{{DEFAULTSORT:Azeotropic Distillation}} | {{DEFAULTSORT:Azeotropic Distillation}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Azeotropic Distillation]] | |||
[[Category:Collapse templates|Azeotropic Distillation]] | |||
[[Category: | [[Category:Created On 25/05/2023|Azeotropic Distillation]] | ||
[[Category:Created On 25/05/2023]] | [[Category:Distillation|Azeotropic Distillation]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates|Azeotropic Distillation]] | ||
[[Category:Machine Translated Page|Azeotropic Distillation]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Azeotropic Distillation]] | |||
[[Category:Pages with script errors|Azeotropic Distillation]] | |||
[[Category:Short description with empty Wikidata description|Azeotropic Distillation]] | |||
[[Category:Sidebars with styles needing conversion|Azeotropic Distillation]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Azeotropic Distillation]] | |||
[[Category:Templates generating microformats|Azeotropic Distillation]] | |||
[[Category:Templates that add a tracking category|Azeotropic Distillation]] | |||
[[Category:Templates that are not mobile friendly|Azeotropic Distillation]] | |||
[[Category:Templates that generate short descriptions|Azeotropic Distillation]] | |||
[[Category:Templates using TemplateData|Azeotropic Distillation]] | |||
[[Category:Wikipedia metatemplates|Azeotropic Distillation]] | |||
[[Category:आसवन|Azeotropic Distillation]] |
Latest revision as of 10:47, 7 August 2023
रसायन विज्ञान में, एज़ोट्रोपिक आसवन[1], आसवन में एज़ियोट्रोप को तोड़ने के लिए उपयोग की जाने वाली तकनीकों में से एक है। रासायनिक अभियांत्रिकी में, एज़ोट्रोपिक आसवन समान्यता एक नया, कम-उबलने वाला एज़ियोट्रोप उत्पन्न करने के लिए एक अन्य घटक जोड़ने की विशिष्ट तकनीक को संदर्भित करता है जो विषम है (उदाहरण के लिए दो, अमिश्रणीय तरल चरणों का उत्पादन), जैसे कि जल और इथेनॉल में बेंजीन को जोड़ने के साथ नीचे दिया गया उदाहरण ।
एक एंट्रेनर(प्रशिक्षक) को जोड़ने की यह प्रथा जो एक अलग चरण बनाती है, (औद्योगिक) एज़ियोट्रोप आसवन विधियों या उसके संयोजन का एक विशिष्ट उप-समुच्चय है। कुछ अर्थों में, एक एंट्रेनर(प्रशिक्षक) जोड़ना निष्कर्षण आसवन के समान है।
सामग्री पृथक्करण अभिकर्ता
इथेनॉल/जल के मिश्रण में बेंजीन जैसे को सामग्री पृथक्करण अभिकर्ता जोड़ने से, आणविक अंतःक्रियाओं में परिवर्तन होता है और एज़ियोट्रोप समाप्त हो जाता है। तरल चरण में जोड़ा गया, नया घटक विभिन्न यौगिकों के गतिविधि गुणांक को अलग-अलग तरीकों से बदल सकता है, और इस प्रकार मिश्रण की सापेक्ष अस्थिरता को बदल सकता है। राउल्ट के नियम से अधिक विचलन से किसी अन्य घटक के साथ सापेक्ष अस्थिरता में महत्वपूर्ण परिवर्तन प्राप्त करना आसान बनाता है। एज़ोट्रोपिक आसवन में जोड़े गए घटक की अस्थिरता मिश्रण के समान होती है, और ध्रुवीयता में अंतर के आधार पर एक या अधिक घटकों के साथ एक नया एज़ियोट्रोप बनता है।[2] यदि फ़ीड में एक से अधिक घटकों के साथ एज़ोट्रोप्स बनाने के लिए सामग्री पृथक्करण अभिकर्ता का चयन किया जाता है, तो इसे एक प्रवेशक के रूप में संदर्भित किया जाता है। अतिरिक्त प्रवेशक को आसवन, निस्तारण, या अन्य पृथक्करण विधि द्वारा पुनर्प्राप्त किया जाना चाहिए और मूल स्तंभ के शीर्ष के पास लौटाया जाना चाहिए।[3]
इथेनॉल/जल का आसवन
एज़ोट्रोपिक आसवन का एक सामान्य ऐतिहासिक उदाहरण इथेनॉल और जल (अणु) के मिश्रण को निर्जलीकरण करने में इसका उपयोग होता है। इसके लिए, लगभग एज़ोट्रोपिक मिश्रण को अंतिम स्तंभ में भेजा जाता है जहाँ एज़ोट्रोपिक आसवन होता है। इस विशिष्ट प्रक्रिया के लिए कई प्रवेशकों का उपयोग किया जा सकता है: मिश्रण के रूप में बेंजीन, पेंटेन, साइक्लोहेक्सेन, हेक्सेन, हेपटैन, आइसोक्टेन, एसीटोन और डायइथाइल ईथर सभी विकल्प हैं।[2] इनमें से बेंजीन और साइक्लोहेक्सेन का सबसे अधिक व्यापक रूप से उपयोग किया गया है। यद्यपि, चूँकि बेंजीन को एक कैंसरकारी यौगिक के रूप में खोजा गया है, इसलिए इसके उपयोग में गिरावट आई है। जबकि यह विधि अतीत में इथेनॉल को निर्जलित करने के लिए मानक थी, लेकिन इससे जुड़ी उच्च पूंजी और ऊर्जा लागत के कारण इसने लोकप्रियता खो दी है। इथेनॉल-जल प्रणाली के एज़ियोट्रोप को तोड़ने के लिए बेंजीन का उपयोग करने की तुलना में एक और अनुकूल तरीका और कम विषाक्त इसके सिवाय टोल्यूनि का उपयोग करना है।
दबाव-स्विंग आसवन
एक अन्य विधि दबाव-स्विंग आसवन, इस तथ्य पर निर्भर करता है कि एज़ियोट्रोप दबाव पर निर्भर है। एज़ियोट्रोप सांद्रता की एक श्रेणी नहीं है जिसे आसुत नहीं किया जा सकता है, लेकिन वह बिंदु जिस पर आसवन के गतिविधि गुणांक एक दूसरे को पार कर रहे हैं। यदि एजोट्रोप को उछाला जा सकता है, तो आसवन जारी रह सकता है, यद्यपि क्योंकि गतिविधि गुणांक पार हो गए हैं, जल शेष इथेनॉल से उबल जाएगा, न कि कम सांद्रता में इथेनॉल जल से बाहर निकलेगा ।
एज़ियोट्रोप को "छलांग" लगाने के लिए, दबाव को बदलकर एज़ियोट्रोप को स्थानांतरित किया जा सकता है। समान्यता, दबाव इस तरह सेट किया जाएगा कि एज़ियोट्रोप परिवेश के दबाव पर एज़ियोट्रोप से किसी भी दिशा में कुछ प्रतिशत से भिन्न होगा। एथेनॉल-जल के मिश्रण के लिए परिवेशी दबाव पर 95.3% के सिवाय, जो 20बार अधिक दबाव के लिए 93.9% पर हो सकता है। फिर आसवन तब विपरीत दिशा में काम करता है, जिसमें तली में इथेनॉल और आसवन में जल निकलता है। जबकि कम दबाव स्तंभ में, इथेनॉल स्तंभ के शीर्ष छोर के रास्ते में समृद्ध होता है, उच्च दबाव स्तंभ नीचे के अंत में इथेनॉल को समृद्ध करता है, क्योंकि इथेनॉल अब उच्चवाष्पित्र है। शीर्ष उत्पाद (आसवन के रूप में जल) को फिर से कम दबाव वाले स्तंभ में डाला जाता है, जहां सामान्य आसवन किया जाता है। निम्न दबाव स्तंभ के निचले उत्पाद में मुख्य रूप से जल होता है, जबकि उच्च दबाव स्तंभ की निचली धारा 99% या उससे अधिक की सांद्रता पर लगभग शुद्ध इथेनॉल होती है। दबाव स्विंग आसवन अनिवार्य रूप से K-मानों को उलट देता है और बाद में मानक निम्न दबाव आसवन की तुलना में स्तंभ के अंत में प्रत्येक घटक बाहर आता है।
कुल मिलाकर दबाव-स्विंग आसवन बहु घटक आसवन या झिल्ली प्रक्रियाओं की तुलना में एक बहुत मजबूत और इतनी उच्च परिष्कृत विधि नहीं है, लेकिन ऊर्जा की मांग सामान्य रूप से अधिक है। इसके अलावा,वाहिकाओं के अंदर दबाव के कारण आसवन स्तंभों की निवेश लागत भी अधिक होती है।
आणविक छलनी
कम उबलने वाले एज़ोट्रोप्स आसवन के लिए घटकों को पूरी तरह से अलग करने की अनुमति नहीं हो सकती है, और पृथक्करण विधियों का उपयोग करना चाहिए जो आसवन पर निर्भर नहीं होते हैं। एक सामान्य दृष्टिकोण में आणविक छलनी का उपयोग सम्मलित है। आणविक छलनी के साथ 96% इथेनॉल का उपचार निर्जल अल्कोहल देता है, छलनी मिश्रण से जल सोख लिया जाता है। बाद में निर्वात ओवन का उपयोग करके निर्जलीकरण द्वारा छलनी को पुनर्जीवित किया जा सकता है।
निर्जलीकरण अभिक्रियाएँ
कार्बनिक रसायन शास्त्र में, कुछ निर्जलीकरण अभिक्रियाएँ प्रतिकूल लेकिन तेज़ संतुलन के अधीन होती हैं। एक उदाहरण एल्डिहाइड से डाइऑक्सोलेन का निर्माण है:[4]
- RCHO + (CH2OH)2 RCH(OCH2)2 + H2O
इस तरह की प्रतिकूल अभिक्रियाएँ तब होती हैं जब एज़ोट्रोपिक आसवन द्वारा जल को हटा दिया जाता है।
यह भी देखें
- एज़ियोट्रोप तालिकाएँ
- अवशेष वक्र
- सैद्धांतिक प्लेट
- निर्वात आसवन
संदर्भ
- ↑ Kister, Henry Z. (1992). Distillation Design (1st ed.). McGraw-Hill. ISBN 0-07-034909-6.
- ↑ 2.0 2.1 Kumar, Santosh; et al. (2010), "Anhydrous ethanol: A renewable source of energy.", Renewable and Sustainable Energy Reviews, doi:10.1016/j.rser.2010.03.015
- ↑ Treybal (1980). मास-ट्रांसफर ऑपरेशंस (3rd ed.). McGraw-Hill.
- ↑ Wiberg, Kenneth B. (1960). कार्बनिक रसायन विज्ञान में प्रयोगशाला तकनीक. McGraw-Hill series in advanced chemistry. New York: McGraw Hill. ASIN B0007ENAMY.