निलपोटेंट मैट्रिक्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 228: Line 228:


{{Matrix classes}}
{{Matrix classes}}
[[Category: मैट्रिसेस]]


 
[[Category:All articles with unsourced statements]]
 
[[Category:Articles with unsourced statements from November 2022]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 19/07/2023]]
[[Category:Created On 19/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:मैट्रिसेस]]

Latest revision as of 11:09, 7 August 2023

रैखिक बीजगणित में, एक निलपोटेंट आव्यूह एक वर्ग आव्यूह N होता है जैसे कि

कुछ सकारात्मक पूर्णांक. के लिए इसे 𝑘 का सबसे छोटा सूचकांक 𝑁कहा जाता है इसे कभी-कभी डिग्री में भी व्यक्त किया जा सकता है ,[1]

सामान्यतः, एक शून्य-शक्तिशाली परिवर्तन एक रैखिक परिवर्तन है एक सदिश समष्टि है कुछ सकारात्मक पूर्णांक के लिए इस प्रकार है कि (और इस तरह, सभी के लिए ). .[2][3][4] ये दोनों अवधारणाएँ निलपोटेंट की अधिक सामान्य अवधारणा के विशेष मामले हैं जो रिंग (बीजगणित) के तत्वों पर लागू होती हैं।

उदाहरण

उदाहरण 1

गणित का सवाल

चूँकि सूचकांक 2 के साथ शून्यशक्ति है अतः .

उदाहरण 2

सामान्यतः, कोई भी -मुख्य विकर्ण के साथ और शून्य के साथ आयामी त्रिकोणीय आव्यूह, सूचकांक के साथ शून्य है [citation needed]. उदाहरण के लिए, आव्यूह

निलपोटेंट है, साथ में

का सूचकांक 4 है.

उदाहरण 3

यद्यपि उपरोक्त उदाहरणों में बड़ी संख्या में शून्य प्रविष्टियाँ हैं, एक विशिष्ट निलपोटेंट आव्यूह में ऐसा नहीं होता है। उदाहरण के लिए,

यद्यपि आव्यूह में कोई शून्य प्रविष्टियाँ नहीं हैं।

उदाहरण 4

इसके अतिरिक्त, फॉर्म का कोई भी आव्यूह

जैसे कि

या

वर्ग से शून्य.हैं

उदाहरण 5

शायद निलपोटेंट आव्यूह के कुछ सबसे आकर्षक उदाहरण हैं प्रपत्र के वर्ग आव्यूह:

जिनमें से पहले कुछ हैं:

ये आव्यूह शून्यशक्तिशाली हैं लेकिन सूचकांक से कम की किसी भी घात में शून्य प्रविष्टियाँ नहीं हैं।[5]

उदाहरण 6

परिबद्ध घात वाले बहुपदों के रैखिक समष्टि पर विचार करें। व्युत्पन्न ऑपरेटर एक रेखीय मानचित्र है। हम जानते हैं कि व्युत्पन्न को एक बहुपद पर लागू करने से इसकी डिग्री एक से कम हो जाती है, इसलिए इसे पुनरावृत्त रूप से लागू करने पर, हम अंततः शून्य प्राप्त करेंगे। इसलिए, ऐसे स्थान पर, व्युत्पन्न को एक निलपोटेंट आव्यूह द्वारा दर्शाया जा सकता है।

विशेषता

एक वर्ग आव्यूह वास्तविक संख्या (या सम्मिश्र संख्या) प्रविष्टियों के साथ, निम्नलिखित प्रकार से समतुल्य हैं:

अंतिम प्रमेय विशेषता 0 या पर्याप्त बड़ी विशेषता वाले किसी भी क्षेत्र (गणित) पर आव्यूहों के लिए यह सत्य है। (cf. न्यूटन की पहचान)

इस प्रमेय के कई परिणाम हैं, जिनमें सम्मिलित हैं:

  • एकn का सूचकांक निलपोटेंट आव्यूह हमेशा से कम या बराबर होता है उदाहरण के लिए, प्रत्येक निलपोटेंट आव्यूह वर्ग शून्य पर।
  • एक निलपोटेंट आव्यूह का निर्धारक और ट्रेस (रैखिक बीजगणित) हमेशा शून्य होता है। नतीजतन, एक निलपोटेंट आव्यूह व्युत्क्रमणीय आव्यूह नहीं हो सकता है।
  • एकमात्र निलपोटेंट विकर्णीय आव्यूह शून्य आव्यूह है।

वर्गीकरण

इस पर विचार करें (ऊपरी) आव्यूह:

इस आव्यूह में अतिविकर्ण के साथ 1s और बाकी सभी जगह 0s है। एक रैखिक परिवर्तन के रूप में, शिफ्ट आव्यूह सदिश के घटकों को एक स्थिति से बाईं ओर स्थानांतरित करता है, अंतिम स्थिति में शून्य दिखाई देता है:

[6]

यह आव्यूह डिग्री n के साथ शून्य-शक्तिशाली है ,और कानूनी फॉर्म निलपोटेंट आव्यूह है।

विशेष रूप से, यदि तो क्या यह कोई शून्य-शक्तिशाली आव्यूह है? फॉर्म के ब्लॉक विकर्ण आव्यूह के लिए आव्यूह समानता है

जहां प्रत्येक ब्लॉक एक शिफ्ट आव्यूह है (संभवतः विभिन्न आकारों का)। यह फॉर्म आव्यूह के लिए जॉर्डन विहित रूप का एक विशेष मामला है।[7]उदाहरण के लिए, कोई भी गैरशून्य 2×2 निलपोटेंट आव्यूह आव्यूह के समान है

अर्थात यदि यदि कोई शून्येतर 2 × 2 निलपोटेंट आव्यूह है, तो एक आधार B1, B2 ऐसे है कि N'b'1= 0 और N'b'2= B1.

यह वर्गीकरण प्रमेय किसी भी क्षेत्र (गणित) पर आव्यूह के लिए लागू होता है। (फ़ील्ड को बीजगणितीय रूप से बंद करना आवश्यक नहीं है।)

उपस्थानों का ध्वज

एक निरर्थक परिवर्तन पर स्वाभाविक रूप से उप-स्थानों का एक ध्वज (रैखिक बीजगणित) निर्धारित करता है

और एक हस्ताक्षर

यह हस्ताक्षर की विशेषता एक व्युत्क्रमणीय रैखिक परिवर्तन तक है। इसके अतिरिक्त यह असमानताओं को भी संतुष्ट करता है

इसके विपरीत, इन असमानताओं को संतुष्ट करने वाली प्राकृतिक संख्याओं का कोई भी क्रम एक निरर्थक परिवर्तन का हस्ताक्षर है।

अतिरिक्त गुण

सामान्यीकरण

एक रैखिक संचालिका के लिए यदि प्रत्येक सदिश के लिए T स्थानीय रूप से शून्यप्रभावी है

vवहाँ एक उपस्थिति को दर्शाता है ऐसा है कि

परिमित-आयामी सदिश स्थान पर ऑपरेटरों के लिए, स्थानीय निलपोटें, निलपोटें के बराबर है।

टिप्पणियाँ

  1. Herstein (1975, p. 294)
  2. Beauregard & Fraleigh (1973, p. 312)
  3. Herstein (1975, p. 268)
  4. Nering (1970, p. 274)
  5. Mercer, Idris D. (31 October 2005). "Finding "nonobvious" nilpotent matrices" (PDF). idmercer.com. self-published; personal credentials: PhD Mathematics, Simon Fraser University. Retrieved 5 April 2023.
  6. Beauregard & Fraleigh (1973, p. 312)
  7. Beauregard & Fraleigh (1973, pp. 312, 313)


संदर्भ


बाहरी संबंध