बहुभिन्नरूपी प्रक्षेप: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:बहुभिन्नरूपी_प्रक्षेप) |
(No difference)
|
Revision as of 06:43, 8 August 2023
संख्यात्मक विश्लेषण में, बहुभिन्नरूपी अंतर्वेशन एक से अधिक चर (बहुभिन्नरूपी कार्य) के फलनों पर अंतर्वेशन है; जब परिवर्तन स्थानिक निर्देशांक होते हैं, तो इसे स्थानिक अंतर्वेशन के रूप में भी जाना जाता है।
अंतर्वेशन किए जाने वाले फलन को दिए गए बिंदुओं पर जाना जाता है और अंतर्वेशन समस्या में इच्छानुसार बिंदुओं पर मान प्राप्त होते हैं।
भू-सांख्यिकी में बहुभिन्नरूपी अंतर्वेशन विशेष रूप से महत्वपूर्ण है, जहां इसका उपयोग पृथ्वी की सतह पर बिंदुओं के एक समुच्चय से डिजिटल ऊंचाई मॉडल बनाने के लिए किया जाता है (उदाहरण के लिए, स्थलाकृतिक सर्वेक्षणों में स्पॉट ऊंचाई या हाइड्रोग्राफिक सर्वेक्षणों में गहराई)।
नियमित ग्रिड
नियमित ग्रिड पर ज्ञात फलन मानों के लिए (पूर्व निर्धारित, आवश्यक नहीं कि एक समान, रिक्ति हो), निम्नलिखित विधियाँ उपलब्ध हैं।
कोई भी आयाम
- निकटतम-नेबर अंतर्वेशन
- n-रैखिक अंतर्वेशन (द्वि- और त्रिरेखीय अंतर्वेशन और बहुरेखीय बहुपद देखें)
- n-घन अंतर्वेशन (द्वि- और त्रिघन अंतर्वेशन देखें)
- क्रिंगिंग
- व्युत्क्रम दूरी भारांकन
- प्राकृतिक नेबर अंतर्वेशन
- स्प्लाइन अंतर्वेशन
- रेडियल आधार फलन अंतर्वेशन
2 आयाम
- बार्न्स अंतर्वेशन
- द्विरेखीय अंतर्वेशन
- बाइक्यूबिक अंतर्वेशन
- बेज़ियर सतह
- लैंज़ोस पुनः नमूनाकरण
- डेलाउने त्रिकोणासन
बिटमैप पुनः नमूनाकरण छवि प्रसंस्करण में 2डी बहुभिन्नरूपी अंतर्वेशन का अनुप्रयोग है।
काले बिंदुओं पर स्थित 25 मानों में से तीन विधियों को एक ही डेटासमुच्चय पर लागू किया गया था। रंग अंतर्वेशित मानों का प्रतिनिधित्व करते हैं।
दो चरों में बहुपद अंतर्वेशन के लिए पडुआ (Padua) बिंदु भी देखें।
3 आयाम
- त्रिरेखीय अंतर्वेशन
- ट्राइक्यूबिक अंतर्वेशन
पुनः नमूनाकरण (बिटमैप) भी देखें।
एन आयामों के लिए टेंसर उत्पाद स्प्लिंस
कैटमुल-रोम स्प्लिंस को किसी भी संख्या में आयामों में आसानी से सामान्यीकृत किया जा सकता है।
कैटमुल-रोम स्प्लिंस को किसी भी संख्या में आयामों के लिए आसानी से सामान्यीकृत किया जा सकता है। क्यूबिक हर्मिट स्पलाइन लेख आपको इसकी याद दिलाएगा कुछ 4-सदिश के लिए जो अकेले x का एक फलन है, जहां प्रक्षेपित किए जाने वाले फलन के पर मान है। इस सन्निकटन को इस प्रकार पुनः लिखें
इस सूत्र को सीधे N आयामों के लिए सामान्यीकृत किया जा सकता है:[1]
ध्यान दें कि इसी तरह के सामान्यीकरण अन्य प्रकार के स्पलाइन अंतर्वेशन के लिए किए जा सकते हैं, जिनमें हर्मिट स्प्लिन भी शामिल है। दक्षता के संबंध में, सामान्य सूत्र की गणना वास्तव में क्रमिक की संरचना के रूप में की जा सकती है -किसी भी प्रकार के टेंसर उत्पाद स्प्लिन के लिए प्रकार के संचालन, जैसा कि ट्राइक्यूबिक अंतर्वेशन लेख में बताया गया है।
हालाँकि, तथ्य यह है कि अगर वहाँ हैं 1-आयामी में शर्तें -जैसे योग, तब होगा में शर्तें -आयामी योग.
अनियमित ग्रिड (अव्यवस्थित डेटा)
अनियमित ग्रिड पर अव्यवस्थित डेटा के लिए परिभाषित योजनाएँ अधिक सामान्य हैं।
उन सभी को एक नियमित ग्रिड पर काम करना चाहिए, आम तौर पर किसी अन्य ज्ञात विधि को कम करना चाहिए।
- निकटतम-नेबर अंतर्वेशन
- त्रिकोणीय अनियमित नेटवर्क-आधारित प्राकृतिक नेबर
- त्रिकोणीय अनियमित नेटवर्क-आधारित रैखिक अंतर्वेशन (एक प्रकार का टुकड़ावार रैखिक कार्य)
- n-सिंप्लेक्स (जैसे टेट्राहेड्रोनरेखिक आंतरिक (बैरीसेंट्रिक समन्वय प्रणाली देखें)
- व्युत्क्रम दूरी भारांकन
- क्रिगिंग
- ग्रेडिएंट-एन्हांस्ड क्रिंगिंग (जीईके)
- पतली प्लेट स्प्लाइन
- पॉलीहार्मोनिक स्प्लाइन (पतली-प्लेट-स्प्लाइन पॉलीहार्मोनिक स्प्लाइन का एक विशेष मामला है)
- रेडियल आधार फलन (पॉलीहार्मोनिक स्प्लिन निम्न डिग्री बहुपद शर्तों के साथ रेडियल आधार फलन का एक विशेष मामला है)
- न्यूनतम-वर्ग स्प्लाइन (गणित)
- प्राकृतिक नेबर अंतर्वेशन
ग्रिडिंग अनियमित दूरी वाले डेटा को नियमित ग्रिड (ग्रिडयुक्त डेटा) में परिवर्तित करने की प्रक्रिया है।
यह भी देखें
- समरेखण (स्मूथिंग)
- सतह फिटिंग
टिप्पणियाँ