समुच्चय-सैद्धांतिक सीमा: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
गणित में, समुच्चयों के अनुक्रम की सीमा <math>A_1, A_2, \ldots</math> (एक सामान्य समुच्चय के उपसमुच्चय <math>X</math>) एक समुच्चय है जिसके तत्व अनुक्रम द्वारा दो समकक्ष तरीकों से निर्धारित होते हैं: (1) अनुक्रम पर ऊपरी और निचली सीमाओं द्वारा जो एक ही समुच्चय में नीरस रूप से परिवर्तित होते हैं (वास्तविक-मूल्यवान अनुक्रमों के अभिसरण के अनुरूप) और (2) संकेतक फलनों के अनुक्रम के अभिसरण द्वारा जो स्वयं वास्तविक-मूल्यवान हैं। जैसा कि अन्य वस्तुओं के अनुक्रमों के | गणित में, समुच्चयों के अनुक्रम की '''सीमा''' <math>A_1, A_2, \ldots</math> (एक सामान्य समुच्चय के उपसमुच्चय <math>X</math>) एक समुच्चय है जिसके तत्व अनुक्रम द्वारा दो समकक्ष तरीकों से निर्धारित होते हैं: (1) अनुक्रम पर ऊपरी और निचली सीमाओं द्वारा जो एक ही समुच्चय में नीरस रूप से परिवर्तित होते हैं (वास्तविक-मूल्यवान अनुक्रमों के अभिसरण के अनुरूप) और (2) संकेतक फलनों के अनुक्रम के अभिसरण द्वारा जो स्वयं वास्तविक-मूल्यवान हैं। जैसा कि अन्य वस्तुओं के अनुक्रमों के स्थिति में होता है, अभिसरण आवश्यक या सामान्य भी नहीं है। | ||
अधिक सामान्यतः फिर से वास्तविक-मूल्यवान अनुक्रमों के अनुरूप, एक समुच्चय अनुक्रम की कम प्रतिबंधात्मक सीमा न्यूनतम और सीमा सर्वोच्च सदैव उपस्थित होती है और इसका उपयोग अभिसरण निर्धारित करने के लिए किया जा सकता है: सीमा उपस्थित होती है यदि सीमा अनंत और सीमा सर्वोच्च समान होती है। (नीचे देखें)। [[माप (गणित)]] और संभाव्यता में ऐसी निर्धारित सीमाएँ आवश्यक हैं। | |||
यह एक आम ग़लतफ़हमी है कि यहां वर्णित अधिकतम और सर्वोच्च सीमाओं में संचय बिंदुओं के समुच्चय सम्मिलित हैं, अर्थात, के समुच्चय <math>x = \lim_{k \to \infty} x_k,</math> जहां प्रत्येक <math>x_k</math> कुछ में है <math>A_{n_k}.</math> यह केवल तभी सत्य है जब अभिसरण [[असतत मीट्रिक|असतत मापीय]] द्वारा निर्धारित किया जाता है (अर्थात्, <math>x_n \to x</math> यदि वहाँ होता <math>N</math> ऐसा है कि <math>x_n = x</math> सभी के लिए <math>n \geq N</math>). यह लेख उस स्थिति तक ही सीमित है क्योंकि यह माप सिद्धांत और संभाव्यता के लिए प्रासंगिक एकमात्र लेख है। नीचे दिए गए उदाहरण देखें. (दूसरी ओर, अधिक सामान्य सीमा श्रेष्ठ और सामान्य समुच्चय अभिसरण हैं जो विभिन्न मापीय (मीट्रिक गणित) या [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समष्टि]] के तहत संचय बिंदु सम्मिलित करते हैं।) | यह एक आम ग़लतफ़हमी है कि यहां वर्णित अधिकतम और सर्वोच्च सीमाओं में संचय बिंदुओं के समुच्चय सम्मिलित हैं, अर्थात, के समुच्चय <math>x = \lim_{k \to \infty} x_k,</math> जहां प्रत्येक <math>x_k</math> कुछ में है <math>A_{n_k}.</math> यह केवल तभी सत्य है जब अभिसरण [[असतत मीट्रिक|असतत मापीय]] द्वारा निर्धारित किया जाता है (अर्थात्, <math>x_n \to x</math> यदि वहाँ होता <math>N</math> ऐसा है कि <math>x_n = x</math> सभी के लिए <math>n \geq N</math>). यह लेख उस स्थिति तक ही सीमित है क्योंकि यह माप सिद्धांत और संभाव्यता के लिए प्रासंगिक एकमात्र लेख है। नीचे दिए गए उदाहरण देखें. (दूसरी ओर, अधिक सामान्य सीमा श्रेष्ठ और सामान्य समुच्चय अभिसरण हैं जो विभिन्न मापीय (मीट्रिक गणित) या [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समष्टि]] के तहत संचय बिंदु सम्मिलित करते हैं।) | ||
Line 16: | Line 15: | ||
परिभाषाओं की तुल्यता देखने के लिए, अधिकतम सीमा पर विचार करें। नीचे डी मॉर्गन के नियम का उपयोग बताता है कि यह सीमा सर्वोच्च के लिए पर्याप्त क्यों है। चूँकि संकेतक फलन केवल मान लेते हैं <math>0</math> और <math>1,</math> <math>\liminf_{n \to \infty} \mathbb{1}_{A_n}(x) = 1</math> यदि और केवल यदि <math>\mathbb{1}_{A_n}(x)</math> मूल्य लेता है <math>0</math> केवल बहुत बार समान रूप से, <math display="inline">x \in \bigcup_{n \geq 1} \bigcap_{j \geq n} A_j</math> यदि और केवल यदि अस्तित्व है <math>n</math> जैसे कि तत्व अंदर है <math>A_m</math> हरएक के लिए <math>m \geq n,</math> जिसका अर्थ है यदि और केवल यदि <math>x \not\in A_n</math> केवल बहुत से लोगों के लिए <math>n.</math> इसलिए, <math>x</math> में है <math>\liminf_{n \to \infty} A_n</math> यदि और केवल यदि <math>x</math> सभी में है परन्तु सीमित रूप से अनेक है <math>A_n.</math> इस कारण से, अधिकतम सीमा के लिए एक संक्षिप्त वाक्यांश है "<math>x</math>, <math>A_n</math> में है परन्तु सीमित रूप से प्रायः", सामान्यतः " <math>A_n</math> a.b.f.o.<nowiki>''</nowiki> लिखकर व्यक्त किया जाता है। | परिभाषाओं की तुल्यता देखने के लिए, अधिकतम सीमा पर विचार करें। नीचे डी मॉर्गन के नियम का उपयोग बताता है कि यह सीमा सर्वोच्च के लिए पर्याप्त क्यों है। चूँकि संकेतक फलन केवल मान लेते हैं <math>0</math> और <math>1,</math> <math>\liminf_{n \to \infty} \mathbb{1}_{A_n}(x) = 1</math> यदि और केवल यदि <math>\mathbb{1}_{A_n}(x)</math> मूल्य लेता है <math>0</math> केवल बहुत बार समान रूप से, <math display="inline">x \in \bigcup_{n \geq 1} \bigcap_{j \geq n} A_j</math> यदि और केवल यदि अस्तित्व है <math>n</math> जैसे कि तत्व अंदर है <math>A_m</math> हरएक के लिए <math>m \geq n,</math> जिसका अर्थ है यदि और केवल यदि <math>x \not\in A_n</math> केवल बहुत से लोगों के लिए <math>n.</math> इसलिए, <math>x</math> में है <math>\liminf_{n \to \infty} A_n</math> यदि और केवल यदि <math>x</math> सभी में है परन्तु सीमित रूप से अनेक है <math>A_n.</math> इस कारण से, अधिकतम सीमा के लिए एक संक्षिप्त वाक्यांश है "<math>x</math>, <math>A_n</math> में है परन्तु सीमित रूप से प्रायः", सामान्यतः " <math>A_n</math> a.b.f.o.<nowiki>''</nowiki> लिखकर व्यक्त किया जाता है। | ||
Line 40: | Line 40: | ||
===मोनोटोन अनुक्रम=== | ===मोनोटोन अनुक्रम=== | ||
क्रम <math>\left(A_n\right)</math> यदि ऐसा कहा जाता है कि इसमें वृद्धि नहीं हो रही है <math>A_{n+1} \subseteq A_n</math> प्रत्येक के लिए <math>n,</math> और यदि न घटे <math>A_n \subseteq A_{n+1}</math> प्रत्येक के लिए <math>n.</math> इनमें से प्रत्येक | क्रम <math>\left(A_n\right)</math> यदि ऐसा कहा जाता है कि इसमें वृद्धि नहीं हो रही है <math>A_{n+1} \subseteq A_n</math> प्रत्येक के लिए <math>n,</math> और यदि न घटे <math>A_n \subseteq A_{n+1}</math> प्रत्येक के लिए <math>n.</math> इनमें से प्रत्येक स्थिति में निर्धारित सीमा उपस्थित है। उदाहरण के लिए, एक गैर-बढ़ते अनुक्रम पर विचार करें <math>\left(A_n\right).</math> तब | ||
<math display=block>\bigcap_{j \geq n} A_j = \bigcap_{j \geq 1} A_j \text{ and } \bigcup_{j \geq n} A_j = A_n.</math> | <math display=block>\bigcap_{j \geq n} A_j = \bigcap_{j \geq 1} A_j \text{ and } \bigcup_{j \geq n} A_j = A_n.</math> | ||
इनसे यह निष्कर्ष निकलता है | इनसे यह निष्कर्ष निकलता है | ||
Line 67: | Line 67: | ||
= \bigcup_n \left(\frac{1}{2n}, 1 - \frac{1}{2n}\right] = (0, 1)</math> और <math display=block>\limsup_{n \to \infty} A_n = \bigcap_n \bigcup_{j \geq n} \left(\frac{(-1)^j}{j}, 1 - \frac{(-1)^j}{j}\right] | = \bigcup_n \left(\frac{1}{2n}, 1 - \frac{1}{2n}\right] = (0, 1)</math> और <math display=block>\limsup_{n \to \infty} A_n = \bigcap_n \bigcup_{j \geq n} \left(\frac{(-1)^j}{j}, 1 - \frac{(-1)^j}{j}\right] | ||
= \bigcap_n \left(-\frac{1}{2n-1}, 1 + \frac{1}{2n-1}\right] = [0, 1].</math> इसलिए <math>\lim_{n \to \infty} A_n</math> अस्तित्व में नहीं है, इस तथ्य के बावजूद कि [[अंतराल (गणित)]] के बाएँ और दाएँ समापन बिंदु क्रमशः 0 और 1 पर मिलते हैं। | = \bigcap_n \left(-\frac{1}{2n-1}, 1 + \frac{1}{2n-1}\right] = [0, 1].</math> इसलिए <math>\lim_{n \to \infty} A_n</math> अस्तित्व में नहीं है, इस तथ्य के बावजूद कि [[अंतराल (गणित)]] के बाएँ और दाएँ समापन बिंदु क्रमशः 0 और 1 पर मिलते हैं। | ||
* होने देना <math>A_n = \left\{ 0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n - 1}{n}, 1\right\}.</math> तब <math display=block>\bigcup_{j \geq n} A_j = \Q\cap[0,1]</math> (जो 0 और 1 के बीच की सभी परिमेय संख्याएँ हैं, सम्मिलित) चूँकि सम के लिए <math>j < n</math> और <math>0 \leq k \leq j,</math> <math>\frac{k}{j} = \frac{nk}{nj}</math> उपरोक्त का एक तत्व है. इसलिए, <math display=block>\limsup_{n \to \infty} A_n = \Q \cap [0, 1].</math> वहीं दूसरी ओर, <math display=block>\bigcap_{j \geq n} A_j = \{0, 1\},</math> जो ये दर्शाता हे <math display=block>\liminf_{n \to \infty} A_n = \{0,1\}.</math>इस | * होने देना <math>A_n = \left\{ 0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n - 1}{n}, 1\right\}.</math> तब <math display=block>\bigcup_{j \geq n} A_j = \Q\cap[0,1]</math> (जो 0 और 1 के बीच की सभी परिमेय संख्याएँ हैं, सम्मिलित) चूँकि सम के लिए <math>j < n</math> और <math>0 \leq k \leq j,</math> <math>\frac{k}{j} = \frac{nk}{nj}</math> उपरोक्त का एक तत्व है. इसलिए, <math display=block>\limsup_{n \to \infty} A_n = \Q \cap [0, 1].</math> वहीं दूसरी ओर, <math display=block>\bigcap_{j \geq n} A_j = \{0, 1\},</math> जो ये दर्शाता हे <math display=block>\liminf_{n \to \infty} A_n = \{0,1\}.</math>इस स्थिति में, अनुक्रम <math>A_1, A_2, \ldots</math> कोई सीमा नहीं है. ध्यान दें कि <math>\lim_{n \to \infty} A_n</math> संचय बिंदुओं का समुच्चय नहीं है, जो संपूर्ण अंतराल होगा <math>[0, 1]</math> (सामान्य [[यूक्लिडियन दूरी]] के अनुसार)। | ||
==संभावना का उपयोग== | ==संभावना का उपयोग== | ||
Line 106: | Line 106: | ||
{{reflist}} | {{reflist}} | ||
[[Category: समुच्चय सिद्धान्त]] [[Category: सिद्धांत संभावना]] [[Category: माप सिद्धांत| माप सिद्धांत]] | [[Category: समुच्चय सिद्धान्त]] [[Category: सिद्धांत संभावना]] [[Category: माप सिद्धांत| माप सिद्धांत]] | ||
Revision as of 13:18, 4 August 2023
गणित में, समुच्चयों के अनुक्रम की सीमा (एक सामान्य समुच्चय के उपसमुच्चय ) एक समुच्चय है जिसके तत्व अनुक्रम द्वारा दो समकक्ष तरीकों से निर्धारित होते हैं: (1) अनुक्रम पर ऊपरी और निचली सीमाओं द्वारा जो एक ही समुच्चय में नीरस रूप से परिवर्तित होते हैं (वास्तविक-मूल्यवान अनुक्रमों के अभिसरण के अनुरूप) और (2) संकेतक फलनों के अनुक्रम के अभिसरण द्वारा जो स्वयं वास्तविक-मूल्यवान हैं। जैसा कि अन्य वस्तुओं के अनुक्रमों के स्थिति में होता है, अभिसरण आवश्यक या सामान्य भी नहीं है।
अधिक सामान्यतः फिर से वास्तविक-मूल्यवान अनुक्रमों के अनुरूप, एक समुच्चय अनुक्रम की कम प्रतिबंधात्मक सीमा न्यूनतम और सीमा सर्वोच्च सदैव उपस्थित होती है और इसका उपयोग अभिसरण निर्धारित करने के लिए किया जा सकता है: सीमा उपस्थित होती है यदि सीमा अनंत और सीमा सर्वोच्च समान होती है। (नीचे देखें)। माप (गणित) और संभाव्यता में ऐसी निर्धारित सीमाएँ आवश्यक हैं।
यह एक आम ग़लतफ़हमी है कि यहां वर्णित अधिकतम और सर्वोच्च सीमाओं में संचय बिंदुओं के समुच्चय सम्मिलित हैं, अर्थात, के समुच्चय जहां प्रत्येक कुछ में है यह केवल तभी सत्य है जब अभिसरण असतत मापीय द्वारा निर्धारित किया जाता है (अर्थात्, यदि वहाँ होता ऐसा है कि सभी के लिए ). यह लेख उस स्थिति तक ही सीमित है क्योंकि यह माप सिद्धांत और संभाव्यता के लिए प्रासंगिक एकमात्र लेख है। नीचे दिए गए उदाहरण देखें. (दूसरी ओर, अधिक सामान्य सीमा श्रेष्ठ और सामान्य समुच्चय अभिसरण हैं जो विभिन्न मापीय (मीट्रिक गणित) या टोपोलॉजिकल समष्टि के तहत संचय बिंदु सम्मिलित करते हैं।)
परिभाषाएँ
दो परिभाषाएँ
मान लीजिये समुच्चयों का एक क्रम है. दो समकक्ष परिभाषाएँ इस प्रकार हैं।
- संघ (समुच्चय सिद्धांत) और प्रतिच्छेदन (समुच्चय सिद्धांत) का उपयोग करना: परिभाषित करें[1][2] औरयदि ये दोनों समुच्चय बराबर हैं, तो अनुक्रम की समुच्चय-सैद्धांतिक सीमा उपस्थित है और उस सामान्य समुच्चय के बराबर है। ऊपर वर्णित किसी भी समुच्चय का उपयोग सीमा प्राप्त करने के लिए किया जा सकता है, और सीमा प्राप्त करने के अन्य साधन भी हो सकते हैं।
- सूचक फलनोंों का उपयोग करना: मान लीजिये बराबर यदि और अन्यथा। परिभाषित करें[1] औरजहां दाईं ओर कोष्ठक के अंदर के भाव क्रमशः, वास्तविक-मूल्यवान अनुक्रम की अधिकतम सीमा और अधिकतम सीमा हैं। पुनः, यदि ये दोनों समुच्चय बराबर हैं, तो अनुक्रम की समुच्चय-सैद्धांतिक सीमा उपस्थित है और उस सामान्य समुच्चय के बराबर है, और ऊपर वर्णित अनुसार किसी भी समुच्चय का उपयोग सीमा प्राप्त करने के लिए किया जा सकता है।
परिभाषाओं की तुल्यता देखने के लिए, अधिकतम सीमा पर विचार करें। नीचे डी मॉर्गन के नियम का उपयोग बताता है कि यह सीमा सर्वोच्च के लिए पर्याप्त क्यों है। चूँकि संकेतक फलन केवल मान लेते हैं और यदि और केवल यदि मूल्य लेता है केवल बहुत बार समान रूप से, यदि और केवल यदि अस्तित्व है जैसे कि तत्व अंदर है हरएक के लिए जिसका अर्थ है यदि और केवल यदि केवल बहुत से लोगों के लिए इसलिए, में है यदि और केवल यदि सभी में है परन्तु सीमित रूप से अनेक है इस कारण से, अधिकतम सीमा के लिए एक संक्षिप्त वाक्यांश है ", में है परन्तु सीमित रूप से प्रायः", सामान्यतः " a.b.f.o.'' लिखकर व्यक्त किया जाता है।
इसी प्रकार, एक तत्व सीमा सर्वोच्च में है, चाहे कितना भी बड़ा क्यों न हो है, वहाँ उपस्थित है जैसे कि तत्व अंदर है वह है, सीमा सर्वोच्च में है यदि और केवल यदि अपरिमित रूप से अनेक में है इस कारण से, सीमा सर्वोच्च के लिए एक संक्षिप्त वाक्यांश है ", में अनंत बार होता है", सामान्यतः " i.o." लिखकर व्यक्त किया जाता है।
इसे दूसरे तरीके से कहें तो, अधिकतम सीमा में ऐसे तत्व सम्मिलित होते हैं जो अंततः सदैव के लिए रहते हैं (अंदर हैं)। प्रत्येक बाद समुच्चय करें कुछ ), जबकि सीमा सर्वोच्च में ऐसे तत्व सम्मिलित होते हैं जो कभी भी सदैव के लिए नहीं जाते (अंदर हैं)। कुछ बाद समुच्चय करें प्रत्येक ). या अधिक औपचारिक रूप से:
for every there is a with for all and for every there is a with for all .
मोनोटोन अनुक्रम
क्रम यदि ऐसा कहा जाता है कि इसमें वृद्धि नहीं हो रही है प्रत्येक के लिए और यदि न घटे प्रत्येक के लिए इनमें से प्रत्येक स्थिति में निर्धारित सीमा उपस्थित है। उदाहरण के लिए, एक गैर-बढ़ते अनुक्रम पर विचार करें तब
कैंटर समुच्चय को इस प्रकार परिभाषित किया गया है।
गुण
- यदि की सीमा जैसा अनंत तक जाता है, सब के लिए विद्यमान है तब अन्यथा, के लिए सीमा उपस्थित नहीं होना है।
- यह दिखाया जा सकता है कि अधिकतम सीमा सर्वोच्च सीमा में निहित है: उदाहरण के लिए, बस उसका अवलोकन करके सभी परन्तु निश्चित रूप से प्रायः इसका तात्पर्य होता है अनंत बार.
- समुच्चय-सैद्धांतिक मोनोटोन अनुक्रमों का उपयोग करना और का
- समुच्चय पूरक के साथ, डी मॉर्गन के नियम का दो बार उपयोग करके वह है, परन्तु अंततः सभी प्रायः एक जैसे ही होते हैं बहुत बार.
- उपरोक्त दूसरी परिभाषा से और वास्तविक-मूल्य वाले अनुक्रम की अधिकतम सीमा और अधिकतम सीमा की परिभाषाओं से, और
- कल्पना करना एक सिग्मा बीजगणित है। 𝜎-उपसमुच्चय का बीजगणित वह है, खाली समुच्चय है और पूरक के तहत और अनगिनत समुच्चयों के यूनियनों और चौराहों के तहत बंद है। फिर, उपरोक्त पहली परिभाषा के अनुसार, यदि प्रत्येक फिर दोनों और के तत्व हैं।
उदाहरण
- होने देना तब औरइसलिए उपस्थित है।
- पिछले उदाहरण को इसमें बदलें तब औरइसलिए अस्तित्व में नहीं है, इस तथ्य के बावजूद कि अंतराल (गणित) के बाएँ और दाएँ समापन बिंदु क्रमशः 0 और 1 पर मिलते हैं।
- होने देना तब (जो 0 और 1 के बीच की सभी परिमेय संख्याएँ हैं, सम्मिलित) चूँकि सम के लिए और उपरोक्त का एक तत्व है. इसलिए,वहीं दूसरी ओर,जो ये दर्शाता हेइस स्थिति में, अनुक्रम कोई सीमा नहीं है. ध्यान दें कि संचय बिंदुओं का समुच्चय नहीं है, जो संपूर्ण अंतराल होगा (सामान्य यूक्लिडियन दूरी के अनुसार)।
संभावना का उपयोग
निर्धारित सीमाएँ, विशेष रूप से अधिकतम सीमा और सर्वोच्च सीमा, संभाव्यता और माप (गणित) के लिए आवश्यक हैं। ऐसी सीमाओं का उपयोग अन्य, अधिक उद्देश्यपूर्ण, समुच्चयों की संभावनाओं और मापों की गणना (या साबित) करने के लिए किया जाता है। निम्नलिखित के लिए, एक संभाव्यता समष्टि है, जिसका अर्थ है कि , के उपसमुच्चय का एक σ-बीजगणित है और उस σ-बीजगणित पर परिभाषित एक संभाव्यता माप है। σ-बीजगणित में, समुच्चयों को घटनाओं के रूप में जाना जाता है। σ-बीजगणित में समुच्चय को इवेंट (संभावना सिद्धांत) के रूप में जाना जाता है।
यदि घटनाओं की एक समुच्चय-सैद्धांतिक सीमा#मोनोटोन_अनुक्रम है तब उपस्थित है और
बोरेल-कैंटेली लेमास
संभाव्यता में, दो बोरेल-कैंटेली लेम्मा यह दिखाने के लिए उपयोगी हो सकते हैं कि घटनाओं के अनुक्रम की लिमअप की संभावना 1 या 0 के बराबर है। पहले (मूल) बोरेल-कैंटेली लेम्मा का कथन है
First Borel–Cantelli lemma — If
दूसरा बोरेल-कैंटेली लेम्मा एक आंशिक उलटा है:
Second Borel–Cantelli lemma — If
लगभग निश्चित अभिसरण
संभाव्यता के सबसे महत्वपूर्ण अनुप्रयोगों में से एक यादृच्छिक चर के अनुक्रम के लगभग निश्चित अभिसरण को प्रदर्शित करना है। वह घटना जो यादृच्छिक चर का एक क्रम है दूसरे यादृच्छिक चर में परिवर्तित हो जाता है औपचारिक रूप से व्यक्त किया गया है हालाँकि, इसे केवल घटनाओं के संक्षिप्त विवरण के रूप में लिखना एक गलती होगी। वह यह है is not समारोह ! इसके बजाय, पूरक घटना का है
यह भी देखें
- निर्धारित पहचान और संबंधों की सूची – Equalities for combinations of sets
- समुच्चय सिद्धान्त – Branch of mathematics that studies sets
संदर्भ
- ↑ 1.0 1.1 Resnick, Sidney I. (1998). एक संभाव्यता पथ. Boston: Birkhäuser. ISBN 3-7643-4055-X.
- ↑ Gut, Allan (2013). Probability: A Graduate Course: A Graduate Course. Springer Texts in Statistics (in English). Vol. 75. New York, NY: Springer New York. doi:10.1007/978-1-4614-4708-5. ISBN 978-1-4614-4707-8.