स्थानीय अस्थिरता: Difference between revisions
(→निरूपण) |
|||
Line 69: | Line 69: | ||
== पैरामीट्रिक स्थानीय अस्थिरता मॉडल == | == पैरामीट्रिक स्थानीय अस्थिरता मॉडल == | ||
ड्यूपायर का दृष्टिकोण गैर-पैरामीट्रिक है। इसमें व्यापारित कीमतों की निरंतरता और प्रक्षेप के प्रकार का चयन प्राप्त करने के लिए डेटा को पूर्व-प्रक्षेपित करने की आवश्यकता होती है।<ref name=dupire /> वैकल्पिक रूप से, कोई पैरामीट्रिक स्थानीय अस्थिरता मॉडल तैयार कर सकता है। कुछ उदाहरण नीचे प्रस्तुत हैं. | |||
=== [[बैचलर मॉडल]] === | === [[बैचलर मॉडल|बैचलियर मॉडल]] === | ||
बैचलियर मॉडल 1900 में [[लुई बैचलियर]] के काम से प्रेरित है। यह मॉडल, कम से कम शून्य बहाव वाली संपत्तियों के लिए, उदाहरण के | बैचलियर मॉडल 1900 में [[लुई बैचलियर]] के काम से प्रेरित है। यह मॉडल, कम से कम शून्य बहाव वाली संपत्तियों के लिए, उदाहरण के लिए आगे की कीमतों या उनके आगे के माप के तहत आगे की ब्याज दरों को स्थानीय अस्थिरता मॉडल के रूप में देखा जा सकता है | ||
:<math> dF_t = v \,dW_t </math>. | :<math> dF_t = v \,dW_t </math>. | ||
बैचलियर मॉडल में प्रसार गुणांक एक स्थिरांक है <math>v</math>, तो हमारे पास <math>\sigma(F_t,t)F_t = v</math>, तात्पर्य <math>\sigma(F_t,t) = v/F_t</math>. जैसे ही कई अर्थव्यवस्थाओं में ब्याज दरें | बैचलियर मॉडल में प्रसार गुणांक एक स्थिरांक है <math>v</math>, तो हमारे पास <math>\sigma(F_t,t)F_t = v</math>, तात्पर्य <math>\sigma(F_t,t) = v/F_t</math>. जैसे ही कई अर्थव्यवस्थाओं में ब्याज दरें ऋणात्मक हो गईं,<ref name=Burro_et_al>जियाकोमो बुरो, पियर ग्यूसेप गिरिबोन, सिमोन लिगाटो, मार्टिना मुलास, और फ्रांसेस्का क्वेरसी (2017)। विकल्प मूल्य निर्धारण पर नकारात्मक ब्याज दरों का प्रभाव: मूल बातों पर वापस जाएँ? इंटरनेशनल जर्नल ऑफ फाइनेंशियल इंजीनियरिंग 4(2), https://doi.org/10.1142/S2424786317500347</ref> बैचलियर मॉडल लाभ का विषय बन गया, क्योंकि यह अपने गॉसियन वितरण के माध्यम से ऋणात्मक फॉरवर्ड दरों एफ को मॉडल कर सकता है। | ||
=== विस्थापित प्रसार मॉडल === | === विस्थापित प्रसार मॉडल === | ||
यह मॉडल [[मार्क रुबिनस्टीन]] द्वारा पेश किया गया था।<ref>Rubinstein, M. (1983). Displaced Diffusion Option Pricing. The Journal of Finance, 38(1), 213–217. https://doi.org/10.2307/2327648</ref> | यह मॉडल [[मार्क रुबिनस्टीन]] द्वारा पेश किया गया था।<ref>Rubinstein, M. (1983). Displaced Diffusion Option Pricing. The Journal of Finance, 38(1), 213–217. https://doi.org/10.2307/2327648</ref> स्टॉक मूल्य के लिए, यह गतिशीलता का अनुसरण करता है। | ||
स्टॉक मूल्य के लिए, यह गतिशीलता का अनुसरण करता | |||
:<math> dS_t = r S_t\,dt + \sigma (S_t-\beta e^{r t})\,dW_t </math> जहाँ सरलता के लिए हम शून्य लाभांश उपज मानते हैं। | :<math> dS_t = r S_t\,dt + \sigma (S_t-\beta e^{r t})\,dW_t </math> जहाँ सरलता के लिए हम शून्य लाभांश उपज मानते हैं। | ||
मॉडल को मानक ब्लैक-स्कोल्स मॉडल से चर के परिवर्तन के साथ निम्नानुसार प्राप्त किया जा सकता है। व्यवस्थित करके <math> Y_t = S_t - \beta e^{r t}</math> यह देखना तत्काल है कि Y एक मानक ब्लैक-स्कोल्स मॉडल का अनुसरण करता | मॉडल को मानक ब्लैक-स्कोल्स मॉडल से चर के परिवर्तन के साथ निम्नानुसार प्राप्त किया जा सकता है। व्यवस्थित करके <math> Y_t = S_t - \beta e^{r t}</math> यह देखना तत्काल है कि Y एक मानक ब्लैक-स्कोल्स मॉडल का अनुसरण करता है। | ||
:<math> dY_t = r Y_t\,dt + \sigma Y_t \,dW_t .</math> | :<math> dY_t = r Y_t\,dt + \sigma Y_t \,dW_t .</math> | ||
के लिए SDE के रूप में <math>Y</math> यह एक [[ज्यामितीय ब्राउनियन गति]] है, इसका एक [[लॉगनॉर्मल वितरण]] है, और यह दिया गया है <math> S_t = Y_t+\beta e^{r t}</math> | के लिए SDE के रूप में <math>Y</math> यह एक [[ज्यामितीय ब्राउनियन गति]] है, इसका एक [[लॉगनॉर्मल वितरण]] है, और यह दिया गया है <math> S_t = Y_t+\beta e^{r t}</math> S मॉडल को शिफ्टेड लॉगनॉर्मल मॉडल भी कहा जाता है, <math>\beta e^{r t}</math>समय पर बदलाव ''t'' होता है। | ||
S पर स्ट्राइक K के साथ कॉल ऑप्शन की कीमत तय करने के लिए बस भुगतान लिखना होता है | |||
<math>(S_T-K)^+ = (Y_T +\beta e^{r T} - K)^+ = (Y_T-H)^+</math> | <math>(S_T-K)^+ = (Y_T +\beta e^{r T} - K)^+ = (Y_T-H)^+</math> | ||
जहां H नई स्ट्राइक है <math>H=K-\beta e^{r T}</math>. चूँकि Y ब्लैक स्कोल्स मॉडल का अनुसरण करता है, विकल्प की कीमत संशोधित स्ट्राइक के साथ ब्लैक स्कोल्स कीमत बन जाती है और इसे प्राप्त करना आसान है। मॉडल एक मोनोटोनिक अस्थिरता मुस्कान वक्र उत्पन्न करता है, जिसका पैटर्न ऋणात्मक <math>\beta</math> के लिए घट रहा है<ref name="Brigo_Mercurio_Springer">{{cite book |last1= Brigo |first1= Damiano | last2=Mercurio | first2=Fabio |date= 2006 |title= ब्याज दर मॉडल: सिद्धांत और व्यवहार|location= Heidelberg |publisher=Springer-Verlag}}</ref> इसके अलावा, ऋणात्मक के लिए <math>\beta</math>, से <math> S_t = Y_t + \beta e^{r t}</math> इसका तात्पर्य यह है कि परिसंपत्ति S को धनात्मक संभावना के साथ ऋणात्मक मान लेने की अनुमति है। उदाहरण के लिए यह ब्याज दर मॉडलिंग में उपयोगी है, जहां ऋणात्मक दरें कई अर्थव्यवस्थाओं को प्रभावित कर रही हैं।<ref name="Burro_et_al" /> | |||
===सीईवी मॉडल === | ===सीईवी मॉडल === | ||
[[विचरण मॉडल की निरंतर लोच]] (सीईवी) एक स्थानीय अस्थिरता मॉडल है जहां स्टॉक की गतिशीलता जोखिम तटस्थ माप के तहत होती है और कोई लाभांश नहीं मानती है, | [[विचरण मॉडल की निरंतर लोच]] (सीईवी) एक स्थानीय अस्थिरता मॉडल है जहां स्टॉक की गतिशीलता जोखिम तटस्थ माप के तहत होती है और कोई लाभांश नहीं मानती है, | ||
:<math>\mathrm{d}S_t = r S_t \mathrm{d}t + \sigma S_t ^ \gamma \mathrm{d}W_t,</math> | :<math>\mathrm{d}S_t = r S_t \mathrm{d}t + \sigma S_t ^ \gamma \mathrm{d}W_t,</math> | ||
एक स्थिर ब्याज दर r के लिए, एक | एक स्थिर ब्याज दर r के लिए, एक धनात्मक स्थिरांक <math>\sigma >0</math> और एक प्रतिपादक <math>\gamma \geq 0,</math> ताकि इस मामले में | ||
:<math>\sigma(S_t, t)=\sigma S_t^{\gamma-1}.</math> | :<math>\sigma(S_t, t)=\sigma S_t^{\gamma-1}.</math> | ||
मॉडल को कभी-कभी स्टोकेस्टिक अस्थिरता के रूप में वर्गीकृत किया जाता है, हालांकि यहां दी गई परिभाषा के अनुसार, यह एक स्थानीय अस्थिरता मॉडल है, क्योंकि प्रसार गुणांक में कोई नई यादृच्छिकता नहीं है। यह मॉडल और संबंधित संदर्भ संबंधित कॉन्स्टेंट_इलास्टिकिटी_ऑफ_वेरिएंस_मॉडल में विस्तार से दिखाए गए हैं। | मॉडल को कभी-कभी स्टोकेस्टिक अस्थिरता के रूप में वर्गीकृत किया जाता है, हालांकि यहां दी गई परिभाषा के अनुसार, यह एक स्थानीय अस्थिरता मॉडल है, क्योंकि प्रसार गुणांक में कोई नई यादृच्छिकता नहीं है। यह मॉडल और संबंधित संदर्भ संबंधित कॉन्स्टेंट_इलास्टिकिटी_ऑफ_वेरिएंस_मॉडल में विस्तार से दिखाए गए हैं। | ||
Line 119: | Line 119: | ||
इससे पता चलता है कि <math>\sigma_{mix}^2(t,y)</math> का एक ``भारित औसत है <math>\sigma_i^2</math>वजन के साथ है | इससे पता चलता है कि <math>\sigma_{mix}^2(t,y)</math> का एक ``भारित औसत है <math>\sigma_i^2</math>वजन के साथ है | ||
:<math> \Lambda_i(t,y) = \frac{\lambda_i \ p_{i,t}(y)}{\sum_j \lambda_j \ p_{j,t}(y)}.</math> | :<math> \Lambda_i(t,y) = \frac{\lambda_i \ p_{i,t}(y)}{\sum_j \lambda_j \ p_{j,t}(y)}.</math> | ||
इस मॉडल में एक विकल्प मूल्य की गणना करना बहुत सरल है। अगर <math>\mathbb{E}^Q</math> जोखिम तटस्थ अपेक्षा को दर्शाता है, मार्टिंगेल मूल्य निर्धारण प्रमेय द्वारा स्ट्राइक के और परिपक्वता टी के साथ | इस मॉडल में एक विकल्प मूल्य की गणना करना बहुत सरल है। अगर <math>\mathbb{E}^Q</math> जोखिम तटस्थ अपेक्षा को दर्शाता है, मार्टिंगेल मूल्य निर्धारण प्रमेय द्वारा स्ट्राइक के और परिपक्वता टी के साथ S पर कॉल विकल्प मूल्य दिया जाता है | ||
<math>V^{Call}_{mix}(K,T)= e^{-r T}\mathbb{E}^Q\left\{(S_T-K)^+ \right\}</math> | <math>V^{Call}_{mix}(K,T)= e^{-r T}\mathbb{E}^Q\left\{(S_T-K)^+ \right\}</math> | ||
<math>= e^{-r T}\int_0^{+\infty}(y-K)^+ p_{S_T}(y) dy = e^{-r T}\int_0^{+\infty}(y-K)^+\sum_{i=1}^N\lambda_i p_{i,T}(y)dy</math> | <math>= e^{-r T}\int_0^{+\infty}(y-K)^+ p_{S_T}(y) dy = e^{-r T}\int_0^{+\infty}(y-K)^+\sum_{i=1}^N\lambda_i p_{i,T}(y)dy</math> |
Revision as of 05:35, 31 July 2023
गणितीय वित्त और वित्तीय इंजीनियरिंग में एक स्थानीय अस्थिरता मॉडल, एक विकल्प मूल्य निर्धारण मॉडल है जो अस्थिरता को वर्तमान परिसंपत्ति स्तर और समय दोनों के एक फ़ंक्शन के रूप में मानता है। इस प्रकार, यह ब्लैक-स्कोल्स मॉडल का एक सामान्यीकरण है, जहां अस्थिरता एक स्थिरांक है (अर्थात और का एक ट्रिविअल फंक्शन)।
निरूपण
गणितीय वित्त में, परिसंपत्ति जो वित्तीय व्युत्पन्न को रेखांकित करती है, आमतौर पर फॉर्म के स्टोकेस्टिक अंतर समीकरण का पालन करने के लिए माना जाता है
- ,
जोखिम तटस्थ माप के तहत, जहां तात्कालिक रिस्क फ्री दर है, जो गतिशीलता को एक औसत स्थानीय दिशा देता है, और एक वीनर प्रक्रिया है, जो गतिशीलता में यादृच्छिकता के प्रवाह का प्रतिनिधित्व करती है। इस यादृच्छिकता के आयाम को तात्कालिक अस्थिरता द्वारा मापा जाता है। सबसे सरल मॉडल यानी ब्लैक-स्कोल्स मॉडल में, को स्थिर माना जाता है, या अधिकतम समय का एक नियतात्मक फ़ंक्शन; वास्तव में, किसी अंतर्निहित की वास्तविक अस्थिरता वास्तव में समय के साथ और स्वयं अंतर्निहित के साथ बदलती रहती है।
जब ऐसी अस्थिरता की अपनी एक यादृच्छिकता होती है - जिसे अक्सर एक अलग W द्वारा संचालित एक अलग समीकरण द्वारा वर्णित किया जाता है - तो ऊपर दिए गए मॉडल को स्टोकेस्टिक अस्थिरता मॉडल कहा जाता है। और जब ऐसी अस्थिरता मौजूदा अंतर्निहित परिसंपत्ति स्तर और समय का एक फ़ंक्शन मात्र है, तो हमारे पास एक स्थानीय अस्थिरता मॉडल है। स्थानीय अस्थिरता मॉडल स्टोचैस्टिक अस्थिरता मॉडल का एक उपयोगी सरलीकरण है।
इस प्रकार "स्थानीय अस्थिरता" एक शब्द है जिसका उपयोग मात्रात्मक वित्त में प्रसार गुणांक, के सेट को दर्शाने के लिए किया जाता है, जो किसी दिए गए अंतर्निहित पर सभी विकल्पों के लिए बाजार कीमतों के अनुरूप होते हैं, इस प्रकार का परिसंपत्ति मूल्य मॉडल तैयार करना
इस मॉडल का उपयोग विदेशी विकल्प मूल्यांकन की गणना करने के लिए किया जाता है जो वेनिला विकल्पों की देखी गई कीमतों के अनुरूप होता है।
विकास
विकल्प बाजारों के साथ पूरी तरह से संगत स्थानीय अस्थिरता की अवधारणा तब विकसित हुई जब ब्रूनो डुपाइरे[1] और इमानुएल डर्मन और इराज कानी[2] ने नोट किया कि यूरोपीय विकल्पों के बाजार मूल्यों से प्राप्त जोखिम तटस्थ घनत्व के अनुरूप एक अनूठी प्रसार प्रक्रिया है। .
डर्मन और कानी ने तात्कालिक अस्थिरता को मॉडल करने के लिए एक स्थानीय अस्थिरता फ़ंक्शन का वर्णन और कार्यान्वयन किया। उन्होंने द्विपद विकल्प मूल्य निर्धारण मॉडल में प्रत्येक नोड पर इस फ़ंक्शन का उपयोग किया। ट्री ने स्ट्राइक और एक्सपायरी के दौरान सभी बाजार कीमतों के अनुरूप विकल्प मूल्यांकन सफलतापूर्वक तैयार किया।[2] डर्मन-कानी मॉडल इस प्रकार असतत समय और स्टॉक-मूल्य चरणों के साथ तैयार किया गया था। (डर्मन और कानी ने "अंतर्निहित द्विपद वृक्ष" का उत्पादन किया; नील क्रिस के साथ उन्होंने इसे एक निहित त्रिपद वृक्ष तक बढ़ाया। निहित द्विपद वृक्ष फिटिंग प्रक्रिया संख्यात्मक रूप से अस्थिर थी।)
स्थानीय अस्थिरता मॉडल में उपयोग किए जाने वाले प्रमुख निरंतर-समय समीकरणों को 1994 में ब्रूनो डुपाइरे[1]द्वारा विकसित किया गया था। डुपाइरे का समीकरण बताता है
आंशिक व्युत्पन्न की गणना करने के लिए, हेस्टन मॉडल के आधार पर निहित अस्थिरता सतह के कुछ ज्ञात पैरामीटर मौजूद हैं: शॉनबुचर, SVI और gSVI। अन्य तकनीकों में लॉगनॉर्मल डिस्ट्रीब्यूशन और स्टोकेस्टिक कोलोकेशन का मिश्रण शामिल है।[3]
व्युत्पत्ति
जोखिम तटस्थ SDE द्वारा प्रबंधित संपत्ति की कीमत को देखते हुए
संक्रमण की संभावना करने के लिए सशर्त फॉरवर्ड कोलमोगोरोव समीकरण को संतुष्ट करता है (जिसे फोककर-प्लैंक समीकरण के रूप में भी जाना जाता है)
- जहां, संक्षिप्तता के लिए, अंकन के संबंध में फ़ंक्शन f के आंशिक व्युत्पन्न को दर्शाता है और जहां अंकन के संबंध में फ़ंक्शन f के दूसरे क्रम के आंशिक व्युत्पन्न को दर्शाता है। इस प्रकार t के संबंध में घनत्व का आंशिक व्युत्पन्न है और उदाहरण के लिए का दूसरा व्युत्पन्न है के संबंध में। p और अभिन्न को निरूपित करेगा। मार्टिंगेल मूल्य निर्धारण प्रमेय के कारण, परिपक्वता और स्ट्राइक वाले कॉल विकल्प की कीमत है
के संबंध में कॉल ऑप्शन की कीमत में अंतर
और कॉल विकल्प की कीमत के लिए सूत्र में प्रतिस्थापन और शर्तों को पुनर्व्यवस्थित करना
के संबंध में कॉल ऑप्शन की कीमत में अंतर करना दो बार
के संबंध में कॉल ऑप्शन की कीमत में अंतर गुणनफल
फॉरवर्ड कोलमोगोरोव समीकरण का उपयोग करना
भागों द्वारा पहले अभिन्न को एक बार और दूसरे अभिन्न को दो बार एकीकृत करना
व्युत्पन्न सूत्रों का उपयोग करके कॉल विकल्प के मूल्य में अंतर करना
पैरामीट्रिक स्थानीय अस्थिरता मॉडल
ड्यूपायर का दृष्टिकोण गैर-पैरामीट्रिक है। इसमें व्यापारित कीमतों की निरंतरता और प्रक्षेप के प्रकार का चयन प्राप्त करने के लिए डेटा को पूर्व-प्रक्षेपित करने की आवश्यकता होती है।[1] वैकल्पिक रूप से, कोई पैरामीट्रिक स्थानीय अस्थिरता मॉडल तैयार कर सकता है। कुछ उदाहरण नीचे प्रस्तुत हैं.
बैचलियर मॉडल
बैचलियर मॉडल 1900 में लुई बैचलियर के काम से प्रेरित है। यह मॉडल, कम से कम शून्य बहाव वाली संपत्तियों के लिए, उदाहरण के लिए आगे की कीमतों या उनके आगे के माप के तहत आगे की ब्याज दरों को स्थानीय अस्थिरता मॉडल के रूप में देखा जा सकता है
- .
बैचलियर मॉडल में प्रसार गुणांक एक स्थिरांक है , तो हमारे पास , तात्पर्य . जैसे ही कई अर्थव्यवस्थाओं में ब्याज दरें ऋणात्मक हो गईं,[4] बैचलियर मॉडल लाभ का विषय बन गया, क्योंकि यह अपने गॉसियन वितरण के माध्यम से ऋणात्मक फॉरवर्ड दरों एफ को मॉडल कर सकता है।
विस्थापित प्रसार मॉडल
यह मॉडल मार्क रुबिनस्टीन द्वारा पेश किया गया था।[5] स्टॉक मूल्य के लिए, यह गतिशीलता का अनुसरण करता है।
- जहाँ सरलता के लिए हम शून्य लाभांश उपज मानते हैं।
मॉडल को मानक ब्लैक-स्कोल्स मॉडल से चर के परिवर्तन के साथ निम्नानुसार प्राप्त किया जा सकता है। व्यवस्थित करके यह देखना तत्काल है कि Y एक मानक ब्लैक-स्कोल्स मॉडल का अनुसरण करता है।
के लिए SDE के रूप में यह एक ज्यामितीय ब्राउनियन गति है, इसका एक लॉगनॉर्मल वितरण है, और यह दिया गया है S मॉडल को शिफ्टेड लॉगनॉर्मल मॉडल भी कहा जाता है, समय पर बदलाव t होता है।
S पर स्ट्राइक K के साथ कॉल ऑप्शन की कीमत तय करने के लिए बस भुगतान लिखना होता है
जहां H नई स्ट्राइक है . चूँकि Y ब्लैक स्कोल्स मॉडल का अनुसरण करता है, विकल्प की कीमत संशोधित स्ट्राइक के साथ ब्लैक स्कोल्स कीमत बन जाती है और इसे प्राप्त करना आसान है। मॉडल एक मोनोटोनिक अस्थिरता मुस्कान वक्र उत्पन्न करता है, जिसका पैटर्न ऋणात्मक के लिए घट रहा है[6] इसके अलावा, ऋणात्मक के लिए , से इसका तात्पर्य यह है कि परिसंपत्ति S को धनात्मक संभावना के साथ ऋणात्मक मान लेने की अनुमति है। उदाहरण के लिए यह ब्याज दर मॉडलिंग में उपयोगी है, जहां ऋणात्मक दरें कई अर्थव्यवस्थाओं को प्रभावित कर रही हैं।[4]
सीईवी मॉडल
विचरण मॉडल की निरंतर लोच (सीईवी) एक स्थानीय अस्थिरता मॉडल है जहां स्टॉक की गतिशीलता जोखिम तटस्थ माप के तहत होती है और कोई लाभांश नहीं मानती है,
एक स्थिर ब्याज दर r के लिए, एक धनात्मक स्थिरांक और एक प्रतिपादक ताकि इस मामले में
मॉडल को कभी-कभी स्टोकेस्टिक अस्थिरता के रूप में वर्गीकृत किया जाता है, हालांकि यहां दी गई परिभाषा के अनुसार, यह एक स्थानीय अस्थिरता मॉडल है, क्योंकि प्रसार गुणांक में कोई नई यादृच्छिकता नहीं है। यह मॉडल और संबंधित संदर्भ संबंधित कॉन्स्टेंट_इलास्टिकिटी_ऑफ_वेरिएंस_मॉडल में विस्तार से दिखाए गए हैं।
लॉगनॉर्मल मिश्रण गतिशीलता मॉडल
इस मॉडल को 1998 से 2021 तक डेमियानो ब्रिगो, फैबियो मर्करी और सह-लेखकों द्वारा कई संस्करणों में विकसित किया गया है। कैरोल अलेक्जेंडर ने लघु और दीर्घकालिक मुस्कान प्रभावों का अध्ययन किया।[7] प्रारंभिक बिंदु मूल ब्लैक स्कोल्स फॉर्मूला है, जो जोखिम तटस्थ गतिशीलता से आता है निरंतर नियतिवादी अस्थिरता के साथ और लॉगनॉर्मल संभाव्यता घनत्व फ़ंक्शन द्वारा निरूपित किया गया . ब्लैक स्कोल्स मॉडल में एक यूरोपीय गैर-पथ-निर्भर विकल्प की कीमत परिपक्वता पर इस लॉगनॉर्मल घनत्व के खिलाफ विकल्प भुगतान के एकीकरण द्वारा प्राप्त की जाती है। लॉगनॉर्मल मिश्रण डायनेमिक्स मॉडल का मूल विचार[8] ब्लैक स्कोल्स मॉडल की तरह, लॉगनॉर्मल घनत्व पर विचार करना है, लेकिन एक संख्या के लिए संभावित निरंतर नियतात्मक अस्थिरता की , जहां हम कॉल करते हैं , अस्थिरता के साथ ब्लैक स्कोल्स मॉडल का लॉगनॉर्मल घनत्व . स्टॉक मूल्य की मॉडलिंग करते समय, ब्रिगो और मर्कुरियो[9] एक स्थानीय अस्थिरता मॉडल बनाएं
- कहाँ इसे इस तरह से परिभाषित किया गया है कि जोखिम का तटस्थ वितरण हो सके लॉगनॉर्मल घनत्व का आवश्यक मिश्रण , ताकि परिणामी स्टॉक मूल्य का घनत्व हो
कहाँ और . यह विभिन्न घनत्वों का भार है मिश्रण में शामिल है. तात्कालिक अस्थिरता को इस प्रकार परिभाषित किया गया है
- या अधिक विस्तार से
के लिए ; के लिए मूल मॉडल में एक छोटे प्रारंभिक समय अंतराल में प्रसार गुणांक का नियमितीकरण होता है .[9] इस समायोजन के साथ, SDE के साथ जिसका एक अनोखा मजबूत समाधान है सीमांत घनत्व वांछित मिश्रण है कोई आगे भी लिख सकता है कहाँ और . इससे पता चलता है कि का एक ``भारित औसत है वजन के साथ है
इस मॉडल में एक विकल्प मूल्य की गणना करना बहुत सरल है। अगर जोखिम तटस्थ अपेक्षा को दर्शाता है, मार्टिंगेल मूल्य निर्धारण प्रमेय द्वारा स्ट्राइक के और परिपक्वता टी के साथ S पर कॉल विकल्प मूल्य दिया जाता है कहाँ ब्लैक स्कोल्स मॉडल में अस्थिरता के साथ संबंधित कॉल मूल्य है . विकल्प की कीमत एक बंद फॉर्म सूत्र द्वारा दी गई है और यह अस्थिरता के साथ कॉल विकल्पों के ब्लैक स्कोल्स कीमतों का एक रैखिक उत्तल संयोजन है द्वारा भारित . यही बात पुट ऑप्शन और अन्य सभी साधारण आकस्मिक दावों पर भी लागू होती है। वही उत्तल संयोजन कई विकल्पों पर भी लागू होता है यूनानी_(वित्त) डेल्टा, गामा, रो और थीटा को पसंद करते हैं। मिश्रण की गतिशीलता एक लचीला मॉडल है, क्योंकि कोई भी घटकों की संख्या का चयन कर सकता है मुस्कान की जटिलता के अनुसार. मापदंडों का अनुकूलन और , और एक संभावित बदलाव पैरामीटर, किसी को अधिकांश बाज़ार मुस्कुराहट को पुन: उत्पन्न करने की अनुमति देता है। मॉडल का इक्विटी में सफलतापूर्वक उपयोग किया गया है,[10] एफएक्स,[11] और ब्याज दर बाजार।[6][12] मिश्रण गतिशीलता मॉडल में, कोई यह दिखा सकता है कि परिणामी अस्थिरता मुस्कुराहट वक्र में K के लिए न्यूनतम-मनी-फॉरवर्ड कीमत के बराबर होगा . इससे बचा जा सकता है, और मिश्रण गतिशीलता और विस्थापित प्रसार विचारों को जोड़कर मुस्कुराहट को और अधिक सामान्य बनाने की अनुमति दी जाती है, जिससे स्थानांतरित लॉगनॉर्मल मिश्रण गतिशीलता हो जाती है।[8]
मॉडल को अस्थिरता के साथ भी लागू किया गया है मिश्रण घटकों में जो समय पर निर्भर हैं, ताकि मुस्कान अवधि संरचना को जांचा जा सके।[10]मॉडल के एक विस्तार का अध्ययन किया गया है जहां विभिन्न मिश्रण घनत्वों के अलग-अलग साधन हैं,[12]गतिशीलता में अंतिम नो आर्बिट्रेज बहाव को संरक्षित करते हुए। एक और विस्तार बहुभिन्नरूपी मामले के लिए अनुप्रयोग रहा है, जहां एक बहुभिन्नरूपी मॉडल तैयार किया गया है जो बहुभिन्नरूपी लॉगनॉर्मल घनत्वों के मिश्रण के अनुरूप है, संभवतः बदलाव के साथ, और जहां एकल संपत्तियों को मिश्रण के रूप में भी वितरित किया जाता है, [13] इन परिसंपत्तियों के सूचकांक पर मुस्कान के साथ एकल परिसंपत्तियों की मुस्कुराहट का मिलान मॉडलिंग। बहुभिन्नरूपी संस्करण का दूसरा अनुप्रयोग एफएक्स अस्थिरता मुस्कुराहट का त्रिकोणीकरण है।[11]अंत में, मॉडल एक अनिश्चित अस्थिरता मॉडल से जुड़ा हुआ है, जहां मोटे तौर पर कहें तो अस्थिरता एक यादृच्छिक चर है जो मान लेता है संभावनाओं के साथ . तकनीकी रूप से, यह दिखाया जा सकता है कि स्थानीय अस्थिरता लॉगनॉर्मल मिश्रण गतिशीलता अनिश्चित अस्थिरता मॉडल का मार्कोवियन प्रक्षेपण है।[14]
उपयोग
स्थानीय अस्थिरता मॉडल किसी भी विकल्प बाजार में उपयोगी होते हैं जिसमें अंतर्निहित अस्थिरता मुख्य रूप से अंतर्निहित, उदाहरण के लिए ब्याज-दर डेरिवेटिव के स्तर का एक फ़ंक्शन है। समय-अपरिवर्तनीय स्थानीय अस्थिरताएं इक्विटी सूचकांक निहित अस्थिरता सतह की गतिशीलता के साथ असंगत मानी जाती हैं,[15] लेकिन क्रेपी (2004) देखें,[16] जो दावा करते हैं कि ऐसे मॉडल इक्विटी इंडेक्स विकल्पों के लिए सर्वोत्तम औसत हेज प्रदान करते हैं, और ध्यान दें कि मिश्रण गतिशीलता जैसे मॉडल समय पर निर्भर स्थानीय अस्थिरता की अनुमति देते हैं, साथ ही मुस्कान की शब्द संरचना को भी कैलिब्रेट करते हैं। स्थानीय अस्थिरता मॉडल स्टोकेस्टिक अस्थिरता मॉडल के निर्माण में भी उपयोगी होते हैं।[17] स्थानीय अस्थिरता मॉडल में कई आकर्षक विशेषताएं हैं।[18] क्योंकि यादृच्छिकता का एकमात्र स्रोत स्टॉक मूल्य है, स्थानीय अस्थिरता मॉडल को जांचना आसान है। मैककेन-व्लासोव प्रक्रियाओं से निपटने के लिए कई अंशांकन विधियां विकसित की गई हैं जिनमें सबसे अधिक उपयोग किया जाने वाला कण और बिन दृष्टिकोण शामिल है।[19] इसके अलावा, वे संपूर्ण बाज़ारों की ओर ले जाते हैं जहां हेजिंग केवल अंतर्निहित परिसंपत्ति पर आधारित हो सकती है। जैसा कि ऊपर संकेत दिया गया है, डुपायर द्वारा सामान्य गैर-पैरामीट्रिक दृष्टिकोण समस्याग्रस्त है, क्योंकि विधि को लागू करने से पहले किसी को मनमाने ढंग से इनपुट निहित अस्थिरता सतह को पूर्व-प्रक्षेपित करने की आवश्यकता होती है। उपरोक्त ट्रैक्टेबल मिश्रण गतिशील स्थानीय अस्थिरता मॉडल के रूप में, एक समृद्ध और ध्वनि पैरामीट्रिजेशन के साथ वैकल्पिक पैरामीट्रिक दृष्टिकोण एक विकल्प हो सकता है। चूंकि स्थानीय अस्थिरता मॉडल में अस्थिरता यादृच्छिक स्टॉक मूल्य का एक निर्धारक फ़ंक्शन है, स्थानीय अस्थिरता मॉडल क्लिक विकल्पों आगे शुरू करने का विकल्प विकल्पों की कीमत के लिए बहुत अच्छी तरह से उपयोग नहीं किए जाते हैं, जिनके मूल्य विशेष रूप से अस्थिरता की यादृच्छिक प्रकृति पर निर्भर करते हैं। ऐसे मामलों में, स्टोकेस्टिक अस्थिरता को प्राथमिकता दी जाती है।
संदर्भ
- ↑ 1.0 1.1 1.2 Bruno Dupire (1994). "मुस्कान के साथ मूल्य निर्धारण". Risk.
{{cite journal}}
: Cite journal requires|journal=
(help)"डाउनलोड मीडिया अक्षम" (PDF). Archived from the original (PDF) on 2012-09-07. Retrieved 2013-06-14. - ↑ 2.0 2.1 Derman, E., Iraj Kani (1994). ""Riding on a Smile." RISK, 7(2) Feb.1994, pp. 139-145, pp. 32-39" (PDF). Risk. Archived from the original (PDF) on 2011-07-10. Retrieved 2007-06-01.
{{cite journal}}
: Cite journal requires|journal=
(help)CS1 maint: multiple names: authors list (link) - ↑ LeFloch, Fabien (2019). "Model-free stochastic collocation for an arbitrage-free implied volatility: Part I". Decisions in Economics and Finance. 42 (2): 679–714. doi:10.1007/s10203-019-00238-x. S2CID 126837576.
- ↑ 4.0 4.1 जियाकोमो बुरो, पियर ग्यूसेप गिरिबोन, सिमोन लिगाटो, मार्टिना मुलास, और फ्रांसेस्का क्वेरसी (2017)। विकल्प मूल्य निर्धारण पर नकारात्मक ब्याज दरों का प्रभाव: मूल बातों पर वापस जाएँ? इंटरनेशनल जर्नल ऑफ फाइनेंशियल इंजीनियरिंग 4(2), https://doi.org/10.1142/S2424786317500347
- ↑ Rubinstein, M. (1983). Displaced Diffusion Option Pricing. The Journal of Finance, 38(1), 213–217. https://doi.org/10.2307/2327648
- ↑ 6.0 6.1 Brigo, Damiano; Mercurio, Fabio (2006). ब्याज दर मॉडल: सिद्धांत और व्यवहार. Heidelberg: Springer-Verlag.
- ↑ Carol Alexander (2004). "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects". Journal of Banking & Finance. 28 (12).
- ↑ 8.0 8.1 Damiano Brigo & Fabio Mercurio (2001). "विश्लेषणात्मक रूप से ट्रैक्टेबल स्माइल मॉडल के लिए विस्थापित और मिश्रण प्रसार". Mathematical Finance - Bachelier Congress 2000. Proceedings. Springer Verlag.
- ↑ 9.0 9.1 Damiano Brigo & Fabio Mercurio (2002). "लॉगनॉर्मल-मिश्रण गतिशीलता और बाजार की अस्थिरता मुस्कुराहट के लिए अंशांकन". International Journal of Theoretical and Applied Finance. 5 (4). doi:10.1142/S0219024902001511.
- ↑ 10.0 10.1 Brigo, D., Mercurio, F. (2000). A mixed up smile. Risk Magazine, September 2000, pages 123-126
- ↑ 11.0 11.1 ब्रिगो, डी., पिसानी, सी. और रैपिसार्डा, एफ. (2021)। बहुभिन्नरूपी मिश्रण गतिशीलता मॉडल: स्थानांतरित गतिशीलता और सहसंबंध तिरछा। एन ऑपरेशन रेस 299, 1411-1435। https://doi.org/10.1007/s10479-019-03239-6 .
- ↑ 12.0 12.1 Brigo, D, Mercurio, F, Sartorelli, G, Alternative asset-price dynamics and volatility smile, QUANT FINANC, 2003, Vol: 3, Pages: 173 - 183
- ↑ Brigo, D., Rapisarda, F., and Sridi, A. (2018). The multivariate mixture dynamics: Consistent no-arbitrage single-asset and index volatility smiles. IISE TRANSACTIONS, 50(1), 27-44. doi:10.1080/24725854.2017.1374581
- ↑ Brigo, D., Mercurio, F., and Rapisarda, F. (2004). Smile at the uncertainty. Risk Magazine, 5, pages 97– 101
- ↑ Dumas, B., J. Fleming, R. E. Whaley (1998). "Implied volatility functions: Empirical tests" (PDF). The Journal of Finance. 53 (6): 2059–2106. doi:10.1111/0022-1082.00083.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Crepey, S (2004). "डेल्टा-हेजिंग वेगा जोखिम". Quantitative Finance. 4 (5): 559–579. doi:10.1080/14697680400000038.
- ↑ Gatheral, J. (2006). The Volatility Surface: A Practitioners's Guide. Wiley Finance. ISBN 978-0-471-79251-2.
- ↑ Derman, E. I Kani & J. Z. Zou (1996). "The Local Volatility Surface: Unlocking the Information in Index Options Prices". Financial Analysts Journal. (July-Aug 1996).
- ↑ van der Weijst, Roel (2017). "स्टोकेस्टिक स्थानीय अस्थिरता मॉडल के लिए संख्यात्मक समाधान" (in English).
{{cite journal}}
: Cite journal requires|journal=
(help)