मौलिक वर्ग: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{More citations needed|date=April 2023}} | {{More citations needed|date=April 2023}} | ||
गणित में, मौलिक वर्ग एक समरूपता (गणित) वर्ग है [M] जो आयाम n के [[ जुड़ा हुआ स्थान ]][[ एडजस्टेबल | समायोज्य]] [[ कई गुना बंद |कई गुना बंद]] से जुड़ा है, जो समरूपता समूह के | गणित में, '''मौलिक वर्ग''' एक समरूपता (गणित) वर्ग है [M] जो आयाम n के [[ जुड़ा हुआ स्थान ]][[ एडजस्टेबल | समायोज्य]] [[ कई गुना बंद |कई गुना बंद]] से जुड़ा है, जो समरूपता समूह के जनित्र से मेल खाता है। <math>H_n(M,\partial M;\mathbf{Z})\cong\mathbf{Z}</math> . मौलिक वर्ग को कई गुना के उपयुक्त त्रिभुज के शीर्ष-आयामी [[संकेतन]] के अभिविन्यास के रूप में सोचा जा सकता है। | ||
==परिभाषा== | ==परिभाषा== | ||
===बंद, उन्मुख=== | ===बंद, उन्मुख=== | ||
जब M आयाम n का जुड़ा हुआ स्थान उन्मुख बंद समायोज्य है, तो शीर्ष समरूपता समूह [[अनंत चक्रीय]] है: <math>H_n(M;\mathbf{Z}) \cong \mathbf{Z}</math>, और अभिविन्यास | जब M आयाम n का जुड़ा हुआ स्थान उन्मुख बंद समायोज्य है, तो शीर्ष समरूपता समूह [[अनंत चक्रीय]] है: <math>H_n(M;\mathbf{Z}) \cong \mathbf{Z}</math>, और अभिविन्यास जनित्र का विकल्प है, समरूपता का विकल्प है <math>\mathbf{Z} \to H_n(M;\mathbf{Z})</math>. जनित्र को '''मौलिक वर्ग''' कहा जाता है। | ||
यदि M वियोजित हो गया है (लेकिन अभी भी उन्मुख है), तो मौलिक वर्ग प्रत्येक जुड़े हुए घटक के लिए मौलिक वर्गों का प्रत्यक्ष योग होता है (प्रत्येक घटक के लिए एक अभिविन्यास के अनुरूप)। | यदि M वियोजित हो गया है (लेकिन अभी भी उन्मुख है), तो मौलिक वर्ग प्रत्येक जुड़े हुए घटक के लिए मौलिक वर्गों का प्रत्यक्ष योग होता है (प्रत्येक घटक के लिए एक अभिविन्यास के अनुरूप)। | ||
[[डॉ कहलमज गर्भाशय]] के संबंध में यह M ''पर एकीकरण'' का प्रतिनिधित्व करता है; अर्थात् M के लिए सहज कई गुना, विभेदक रूप | [[डॉ कहलमज गर्भाशय]] के संबंध में यह M ''पर एकीकरण'' का प्रतिनिधित्व करता है; अर्थात् M के लिए सहज कई गुना, विभेदक रूप n-आकृति ω को मौलिक वर्ग के साथ जोड़ा जा सकता है | ||
:<math>\langle\omega, [M]\rangle = \int_M \omega\ ,</math> | :<math>\langle\omega, [M]\rangle = \int_M \omega\ ,</math> |
Revision as of 12:44, 13 July 2023
This article needs additional citations for verification. (April 2023) (Learn how and when to remove this template message) |
गणित में, मौलिक वर्ग एक समरूपता (गणित) वर्ग है [M] जो आयाम n के जुड़ा हुआ स्थान समायोज्य कई गुना बंद से जुड़ा है, जो समरूपता समूह के जनित्र से मेल खाता है। . मौलिक वर्ग को कई गुना के उपयुक्त त्रिभुज के शीर्ष-आयामी संकेतन के अभिविन्यास के रूप में सोचा जा सकता है।
परिभाषा
बंद, उन्मुख
जब M आयाम n का जुड़ा हुआ स्थान उन्मुख बंद समायोज्य है, तो शीर्ष समरूपता समूह अनंत चक्रीय है: , और अभिविन्यास जनित्र का विकल्प है, समरूपता का विकल्प है . जनित्र को मौलिक वर्ग कहा जाता है।
यदि M वियोजित हो गया है (लेकिन अभी भी उन्मुख है), तो मौलिक वर्ग प्रत्येक जुड़े हुए घटक के लिए मौलिक वर्गों का प्रत्यक्ष योग होता है (प्रत्येक घटक के लिए एक अभिविन्यास के अनुरूप)।
डॉ कहलमज गर्भाशय के संबंध में यह M पर एकीकरण का प्रतिनिधित्व करता है; अर्थात् M के लिए सहज कई गुना, विभेदक रूप n-आकृति ω को मौलिक वर्ग के साथ जोड़ा जा सकता है
जो M पर ω का अभिन्न अंग है, और ω के सह-समरूपता वर्ग पर निर्भर करता है।
स्टिफ़ेल-व्हिटनी वर्ग
यदि M उन्मुख नहीं है, , और इसलिए कोई पूर्णांक के अंदर रहने वाले मौलिक वर्ग M को परिभाषित नहीं कर सकता है। चूकि, प्रत्येक बंद कई गुना होता है -उन्मुख, और
(M जुड़ा हुआ के लिए)। इस प्रकार प्रत्येक बंद कई गुना होता है -उन्मुखी (सिर्फ उन्मुख नहीं: अभिविन्यास के चुनाव में कोई अस्पष्टता नहीं है), और एक है -मौलिक वर्ग.
यह -मौलिक वर्ग का उपयोग स्टिफ़ेल-व्हिटनी वर्ग को परिभाषित करने में किया जाता है।
सीमा के साथ
यदि M सीमा के साथ एक संक्षिप्त उन्मुख कई गुना होता है, तो शीर्ष सापेक्ष समरूपता समूह फिर से अनंत चक्रीय होता है , और इसलिए मौलिक वर्ग की धारणा को सीमा मामले के साथ कई गुना तक बढ़ाया जा सकता है।
पोंकारे द्वंद्व
This section needs expansion. You can help by adding to it. (December 2008) |
किसी भी एबेलियन समूह के लिए और गैर नकारात्मक पूर्णांक कोई समरूपता प्राप्त कर सकता है
- .
मौलिक वर्ग और कैप उत्पाद का उपयोग करना -को समरूपता समूह होता है। यह समरूपता पोंकारे को द्वंद्व देती है:
- .
सीमा के साथ कई गुना मौलिक वर्ग की धारणा का उपयोग करके, हम उस मामले में भी पोंकारे द्वैत का विस्तार कर सकते हैं (लेफ़्सचेत्ज़ द्वैत देखें)। वास्तव में, मौलिक वर्ग वाला कैप उत्पाद मजबूत द्वैत परिणाम देता है, यह कहते हुए कि हमारे पास समरूपताएं हैं , यह मानते हुए कि हमारे पास वह है हैं -आयामी कई गुना के साथ और .[1]
ट्विस्टेड पोंकारे द्वंद्व भी देखें
अनुप्रयोग
This section needs expansion. You can help by adding to it. (December 2008) |
असत्य समूह के ध्वज प्रकार के ब्रुहट अपघटन में, मूल वर्ग शीर्ष-आयाम शूबर्ट कोशिका से मेल खाता है, या समकक्ष कॉक्सेटर समूह का सबसे लंबा तत्व होता है।
यह भी देखें
- कॉक्सेटर समूह का सबसे लंबा तत्व
- पोंकारे द्वैत
संदर्भ
- ↑ Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी (in English) (1st ed.). Cambridge: Cambridge University Press. p. 254. ISBN 9780521795401. MR 1867354.
स्रोत
- Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी (in English) (1st ed.). Cambridge: Cambridge University Press. ISBN 9780521795401. MR 1867354.
बाहरी संबंध
- Fundamental class at the Manifold Atlas.
- The Encyclopedia of Mathematics article on the fundamental class.