मौलिक वर्ग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, '''मौलिक वर्ग''' एक समरूपता (गणित) वर्ग है [''M''] जो आयाम n के [[ जुड़ा हुआ स्थान ]][[ एडजस्टेबल |समायोज्य]] [[ कई गुना बंद |'''कई गुना बंद''']] से जुड़ा है, जो समरूपता समूह के जनित्र से मेल खाता है। <math>H_n(M,\partial M;\mathbf{Z})\cong\mathbf{Z}</math> . मौलिक वर्ग को कई गुना के उपयुक्त त्रिभुज के शीर्ष-आयामी [[संकेतन]] के अभिविन्यास के रूप में सोचा जा सकता है।
गणित में, '''मौलिक वर्ग''' एक समरूपता (गणित) वर्ग है [''M''] जो आयाम n के [[ जुड़ा हुआ स्थान ]][[ एडजस्टेबल |समायोज्य]] [[ कई गुना बंद |'''कई गुना सीमित''']] से जुड़ा है, जो समरूपता समूह के जनित्र से मिलता है। <math>H_n(M,\partial M;\mathbf{Z})\cong\mathbf{Z}</math> . मौलिक वर्ग को कई गुना के उपयुक्त त्रिभुज के शीर्ष-आयामी [[संकेतन]] के अभिविन्यास के रूप में सोचा जा सकता है।


==परिभाषा==
==परिभाषा==


===बंद, उन्मुख===
===सीमित, उन्मुख===
जब M आयाम n का जुड़ा हुआ स्थान उन्मुख '''बंद''' समायोज्य है, तो शीर्ष समरूपता समूह [[अनंत चक्रीय]] है: <math>H_n(M;\mathbf{Z}) \cong \mathbf{Z}</math>, और अभिविन्यास जनित्र का विकल्प है, समरूपता का विकल्प है <math>\mathbf{Z} \to H_n(M;\mathbf{Z})</math>. जनित्र को '''मौलिक वर्ग''' कहा जाता है।
जब M आयाम n का जुड़ा हुआ स्थान उन्मुख सीमित समायोज्य होता है, तो शीर्ष समरूपता समूह [[अनंत चक्रीय]] है: <math>H_n(M;\mathbf{Z}) \cong \mathbf{Z}</math>, और अभिविन्यास जनित्र का विकल्प है, समरूपता का विकल्प होता है <math>\mathbf{Z} \to H_n(M;\mathbf{Z})</math>. जनित्र को '''मौलिक वर्ग''' कहा जाता है।


यदि M वियोजित हो गया है (लेकिन अभी भी उन्मुख है), तो मौलिक वर्ग प्रत्येक जुड़े हुए घटक के लिए मौलिक वर्गों का प्रत्यक्ष योग होता है (प्रत्येक घटक के लिए एक अभिविन्यास के अनुरूप)।
यदि M वियोजित हो गया है (लेकिन अभी भी उन्मुख है), तो मौलिक वर्ग प्रत्येक जुड़े हुए घटक के लिए मौलिक वर्गों का प्रत्यक्ष योग होता है (प्रत्येक घटक के लिए एक अभिविन्यास के अनुरूप)।


[[डॉ कहलमज गर्भाशय]] के संबंध में यह M ''पर एकीकरण'' का प्रतिनिधित्व करता है; अर्थात् M के लिए सहज कई गुना, विभेदक रूप n-आकृति ω को मौलिक वर्ग के साथ जोड़ा जा सकता है
डी राम कोहोमोलॉजी के संबंध में यह M ''पर एकीकरण'' का प्रतिनिधित्व करता है; अर्थात् M के लिए सहज कई गुना, विभेदक रूप n-आकृति ω को मौलिक वर्ग के साथ जोड़ा जा सकता है


:<math>\langle\omega, [M]\rangle = \int_M \omega\ ,</math>
:<math>\langle\omega, [M]\rangle = \int_M \omega\ ,</math>
Line 14: Line 14:


=== स्टिफ़ेल-व्हिटनी वर्ग ===
=== स्टिफ़ेल-व्हिटनी वर्ग ===
यदि M उन्मुख नहीं है,  <math>H_n(M;\mathbf{Z}) \ncong \mathbf{Z}</math>, और इसलिए कोई पूर्णांक के अंदर रहने वाले मौलिक वर्ग M को परिभाषित नहीं कर सकता है। चूकि, प्रत्येक बंद कई गुना होता है <math>\mathbf{Z}_2</math>-उन्मुख, और
यदि M उन्मुख नहीं है,  <math>H_n(M;\mathbf{Z}) \ncong \mathbf{Z}</math>, इसलिए कोई पूर्णांक के अंदर रहने वाले मौलिक वर्ग M को परिभाषित नहीं कर सकता है। चूकि, प्रत्येक सीमित कई गुना होता है <math>\mathbf{Z}_2</math>-उन्मुख, और
  <math>H_n(M;\mathbf{Z}_2)=\mathbf{Z}_2</math> (<big>M</big> जुड़ा हुआ के लिए)। इस प्रकार प्रत्येक बंद कई गुना होता है <math>\mathbf{Z}_2</math>-उन्मुखी (सिर्फ उन्मुख नहीं: अभिविन्यास के चुनाव में कोई अस्पष्टता नहीं है), और एक है <math>\mathbf{Z}_2</math>-मौलिक वर्ग.
  <math>H_n(M;\mathbf{Z}_2)=\mathbf{Z}_2</math> (<big>M</big> जुड़ा हुआ के लिए)। इस प्रकार कई गुना सीमित होता है <math>\mathbf{Z}_2</math>-उन्मुखी (सिर्फ उन्मुख नहीं: अभिविन्यास के चुनाव में कोई अस्पष्टता नहीं है), और एक है <math>\mathbf{Z}_2</math>-मौलिक वर्ग.


यह <math>\mathbf{Z}_2</math>-मौलिक वर्ग का उपयोग स्टिफ़ेल-व्हिटनी  वर्ग को परिभाषित करने में किया जाता है।
यह <math>\mathbf{Z}_2</math>-मौलिक वर्ग का उपयोग स्टिफ़ेल-व्हिटनी  वर्ग को परिभाषित करने में किया जाता है।
Line 27: Line 27:
किसी भी एबेलियन समूह के लिए <math>G</math> और गैर '''नकारात्मक''' पूर्णांक <math>q \ge 0</math> कोई समरूपता प्राप्त कर सकता है
किसी भी एबेलियन समूह के लिए <math>G</math> और गैर '''नकारात्मक''' पूर्णांक <math>q \ge 0</math> कोई समरूपता प्राप्त कर सकता है
:<math>[M]\frown~:H^q(M;G) \rightarrow H_{n-q}(M;G)</math> .
:<math>[M]\frown~:H^q(M;G) \rightarrow H_{n-q}(M;G)</math> .
मौलिक वर्ग और कैप उत्पाद का उपयोग करना <math>q</math> -को समरूपता समूह होता है। यह समरूपता पोंकारे को द्वंद्व देती है:
मौलिक वर्ग और टोपी उत्पाद का उपयोग करना <math>q</math> -को समरूपता समूह होता है। यह समरूपता पोंकारे को द्वंद्व देती है:
:<math>H^* (M; G) \cong H_{n-*}(M; G)</math> .
:<math>H^* (M; G) \cong H_{n-*}(M; G)</math> .
सीमा के साथ कई गुना  मौलिक वर्ग की धारणा का उपयोग करके, हम उस मामले में भी पोंकारे द्वैत का विस्तार कर सकते हैं (लेफ़्सचेत्ज़ द्वैत देखें)। वास्तव में, मौलिक वर्ग वाला कैप उत्पाद  '''मजबूत''' द्वैत परिणाम देता है, यह कहते हुए कि हमारे पास समरूपताएं हैं <math>H^q(M, A;R) \cong H_{n-q}(M, B;R)</math>, यह मानते हुए कि हमारे पास वह है <math>A, B</math> हैं <math>(n-1)</math>-आयामी कई गुना के साथ <math>\partial A=\partial B= A\cap B</math> और <math>\partial M=A\cup B</math>.<ref>{{Cite book|first=Allen|last=Hatcher|authorlink=Allen Hatcher|url=https://www.math.cornell.edu/~hatcher/AT/ATpage.html|title=बीजगणितीय टोपोलॉजी|date=2002|publisher=[[Cambridge University Press]]|isbn=9780521795401|edition= 1st|location=Cambridge|language=English|mr=1867354|page=254}}</ref>
सीमा के साथ कई गुना  मौलिक वर्ग की धारणा का उपयोग करके, हम उस मामले में भी पोंकारे द्वैत का विस्तार कर सकते हैं (लेफ़्सचेत्ज़ द्वैत देखें)। वास्तव में, मौलिक वर्ग वाला टोपी उत्पाद  '''मजबूत''' द्वैत परिणाम देता है, यह कहते हुए कि हमारे पास समरूपताएं हैं <math>H^q(M, A;R) \cong H_{n-q}(M, B;R)</math>, यह मानते हुए कि हमारे पास वह है <math>A, B</math> हैं <math>(n-1)</math>-आयामी कई गुना के साथ <math>\partial A=\partial B= A\cap B</math> और <math>\partial M=A\cup B</math>.<ref>{{Cite book|first=Allen|last=Hatcher|authorlink=Allen Hatcher|url=https://www.math.cornell.edu/~hatcher/AT/ATpage.html|title=बीजगणितीय टोपोलॉजी|date=2002|publisher=[[Cambridge University Press]]|isbn=9780521795401|edition= 1st|location=Cambridge|language=English|mr=1867354|page=254}}</ref>


ट्विस्टेड पोंकारे द्वंद्व भी देखें
विकृत पोंकारे द्वंद्व भी देखें


==अनुप्रयोग==
==अनुप्रयोग==
'''असत्य समूह''' के ध्वज प्रकार के [[ब्रुहट अपघटन]] में, मूल वर्ग शीर्ष-आयाम [[शूबर्ट कोशिका]] से मेल खाता है, या समकक्ष [[कॉक्सेटर समूह का सबसे लंबा तत्व]] होता है।
'''असत्य समूह''' के ध्वज प्रकार के समाघात अपघटन में, मूल वर्ग शीर्ष-आयाम [[शूबर्ट कोशिका]] से मिलता है, या समकक्ष परावर्तन [[कॉक्सेटर समूह का सबसे लंबा तत्व|समूह का सबसे लंबा तत्व]] होता है।


==यह भी देखें==
==यह भी देखें==
*कॉक्सेटर समूह का सबसे लंबा तत्व
*परावर्तन समूह का सबसे लंबा तत्व
*पोंकारे द्वैत
*पोंकारे द्वैत



Revision as of 18:20, 13 July 2023

गणित में, मौलिक वर्ग एक समरूपता (गणित) वर्ग है [M] जो आयाम n के जुड़ा हुआ स्थान समायोज्य कई गुना सीमित से जुड़ा है, जो समरूपता समूह के जनित्र से मिलता है। . मौलिक वर्ग को कई गुना के उपयुक्त त्रिभुज के शीर्ष-आयामी संकेतन के अभिविन्यास के रूप में सोचा जा सकता है।

परिभाषा

सीमित, उन्मुख

जब M आयाम n का जुड़ा हुआ स्थान उन्मुख सीमित समायोज्य होता है, तो शीर्ष समरूपता समूह अनंत चक्रीय है: , और अभिविन्यास जनित्र का विकल्प है, समरूपता का विकल्प होता है . जनित्र को मौलिक वर्ग कहा जाता है।

यदि M वियोजित हो गया है (लेकिन अभी भी उन्मुख है), तो मौलिक वर्ग प्रत्येक जुड़े हुए घटक के लिए मौलिक वर्गों का प्रत्यक्ष योग होता है (प्रत्येक घटक के लिए एक अभिविन्यास के अनुरूप)।

डी राम कोहोमोलॉजी के संबंध में यह M पर एकीकरण का प्रतिनिधित्व करता है; अर्थात् M के लिए सहज कई गुना, विभेदक रूप n-आकृति ω को मौलिक वर्ग के साथ जोड़ा जा सकता है

जो M पर ω का अभिन्न अंग है, और ω के सह-समरूपता वर्ग पर निर्भर करता है।

स्टिफ़ेल-व्हिटनी वर्ग

यदि M उन्मुख नहीं है, , इसलिए कोई पूर्णांक के अंदर रहने वाले मौलिक वर्ग M को परिभाषित नहीं कर सकता है। चूकि, प्रत्येक सीमित कई गुना होता है -उन्मुख, और

 (M जुड़ा हुआ के लिए)। इस प्रकार कई गुना सीमित होता है -उन्मुखी (सिर्फ उन्मुख नहीं: अभिविन्यास के चुनाव में कोई अस्पष्टता नहीं है), और एक है -मौलिक वर्ग.

यह -मौलिक वर्ग का उपयोग स्टिफ़ेल-व्हिटनी वर्ग को परिभाषित करने में किया जाता है।

सीमा के साथ

यदि M सीमा के साथ एक संक्षिप्त उन्मुख कई गुना होता है, तो शीर्ष सापेक्ष समरूपता समूह फिर से अनंत चक्रीय होता है , और इसलिए मौलिक वर्ग की धारणा को सीमा मामले के साथ कई गुना तक बढ़ाया जा सकता है।

पोंकारे द्वंद्व

किसी भी एबेलियन समूह के लिए और गैर नकारात्मक पूर्णांक कोई समरूपता प्राप्त कर सकता है

.

मौलिक वर्ग और टोपी उत्पाद का उपयोग करना -को समरूपता समूह होता है। यह समरूपता पोंकारे को द्वंद्व देती है:

.

सीमा के साथ कई गुना मौलिक वर्ग की धारणा का उपयोग करके, हम उस मामले में भी पोंकारे द्वैत का विस्तार कर सकते हैं (लेफ़्सचेत्ज़ द्वैत देखें)। वास्तव में, मौलिक वर्ग वाला टोपी उत्पाद मजबूत द्वैत परिणाम देता है, यह कहते हुए कि हमारे पास समरूपताएं हैं , यह मानते हुए कि हमारे पास वह है हैं -आयामी कई गुना के साथ और .[1]

विकृत पोंकारे द्वंद्व भी देखें

अनुप्रयोग

असत्य समूह के ध्वज प्रकार के समाघात अपघटन में, मूल वर्ग शीर्ष-आयाम शूबर्ट कोशिका से मिलता है, या समकक्ष परावर्तन समूह का सबसे लंबा तत्व होता है।

यह भी देखें

  • परावर्तन समूह का सबसे लंबा तत्व
  • पोंकारे द्वैत

संदर्भ

  1. Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी (in English) (1st ed.). Cambridge: Cambridge University Press. p. 254. ISBN 9780521795401. MR 1867354.

स्रोत

बाहरी संबंध