मौलिक वर्ग: Difference between revisions

From Vigyanwiki
No edit summary
Line 55: Line 55:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 11:37, 7 August 2023

गणित में, मौलिक वर्ग (फंडामेंटल क्लास) समरूपता (गणित) वर्ग है [M] जो आयाम n के जुड़ा हुआ स्थान समायोज्य कई गुना सीमित से जुड़ा है, जो समरूपता समूह के जनरेटर से मिलता है। . मौलिक वर्ग को कई गुना के उपयुक्त त्रिभुज के शीर्ष-आयामी संकेतन के अभिविन्यास के रूप में सोचा जा सकता है।

परिभाषा

सीमित, उन्मुख

जब M आयाम n का जुड़ा हुआ स्थान उन्मुख सीमित समायोज्य होता है, तो शीर्ष समरूपता समूह अनंत चक्रीय है: , और अभिविन्यास जनरेटर का विकल्प है, समरूपता का विकल्प होता है . जनित्र को मौलिक वर्ग कहा जाता है।

यदि M वियोजित हो गया था (लेकिन अभी भी उन्मुख है), तो मौलिक वर्ग प्रत्येक जुड़े हुए घटक के लिए मौलिक वर्गों का प्रत्यक्ष योग होता है (प्रत्येक घटक के लिए एक अभिविन्यास के अनुरूप)।

डी रहम कोहोमोलॉजी के संबंध में यह M पर एकीकरण का प्रतिनिधित्व करता है; अर्थात् M के लिए सहज कई गुना, विभेदक रूप n-आकृति ω को मौलिक वर्ग के साथ जोड़ा जा सकता है

जो M पर ω का अभिन्न अंग है, और ω के सह-समरूपता वर्ग पर निर्भर करता है।

स्टिफ़ेल-व्हिटनी वर्ग

यदि M उन्मुख नहीं है, , इसलिए कोई पूर्णांक के अंदर रहने वाले मौलिक वर्ग M को परिभाषित नहीं कर सकता है। चूकि, प्रत्येक सीमित कई गुना होता है -उन्मुख, और

 (M जुड़ा हुआ के लिए)। इस प्रकार कई गुना सीमित होता है -उन्मुखी (सिर्फ उन्मुख नहीं: अभिविन्यास के चुनाव में कोई अस्पष्टता नहीं है), और एक है -मौलिक वर्ग.

यह -मौलिक वर्ग का उपयोग स्टिफ़ेल-व्हिटनी वर्ग को परिभाषित करने में किया जाता है।

सीमा के साथ

यदि M सीमा के साथ संक्षिप्त उन्मुख कई गुना होता है, तो शीर्ष सापेक्ष समरूपता समूह फिर से अनंत चक्रीय होता है , और इसलिए मौलिक वर्ग की धारणा को सीमा मामले के साथ कई गुना तक बढ़ाया जा सकता है।

पोंकारे द्वंद्व

किसी भी एबेलियन समूह के लिए और गैर ऋणात्मक पूर्णांक कोई समरूपता प्राप्त कर सकता है

.

मौलिक वर्ग और टोपी उत्पाद का उपयोग करना -को समरूपता समूह होता है। यह समरूपता पोंकारे को द्वंद्व देती है:

.

सीमा के साथ कई गुना मौलिक वर्ग की धारणा का उपयोग करके, हम उस मामले में भी पोंकारे द्वैत का विस्तार कर सकते हैं (लेफ़्सचेत्ज़ द्वैत देखें)। वास्तव में, मौलिक वर्ग वाला टोपी उत्पाद सशक्त द्वैत परिणाम देता है, यह कहते हुए कि हमारे पास समरूपताएं हैं , यह मानते हुए कि हमारे पास वह है हैं -आयामी कई गुना के साथ और . होता है [1]

विकृत पोंकारे द्वंद्व भी देखें

अनुप्रयोग

लाई समूह के ध्वज प्रकार के समाघात अपघटन में,मूल वर्ग शीर्ष-आयाम शूबर्ट कोशिका से मिलता है,या समकक्ष परावर्तन समूह का सबसे लंबा तत्व होता है।

यह भी देखें

  • परावर्तन समूह का सबसे लंबा तत्व
  • पोंकारे द्वैत

संदर्भ

  1. Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी (in English) (1st ed.). Cambridge: Cambridge University Press. p. 254. ISBN 9780521795401. MR 1867354.

स्रोत

बाहरी संबंध