श्वार्ज़ियन व्युत्पन्न: Difference between revisions

From Vigyanwiki
Line 19: Line 19:


: <math>g(z) = \frac{az + b}{cz + d}</math>
: <math>g(z) = \frac{az + b}{cz + d}</math>
शून्य है. इसके विपरीत, मोबियस परिवर्तन इस संपत्ति के एकमात्र कार्य हैं। इस प्रकार, श्वार्ज़ियन व्युत्पन्न सटीक रूप से उस डिग्री को मापता है जिस तक कोई फ़ंक्शन मोबियस परिवर्तन होने में विफल रहता है।<ref name=":0">Thurston, William P. "Zippers and univalent functions." ''The Bieberbach conjecture (West Lafayette, Ind., 1985)'' 21 (1986): 185-197.</ref>
शून्य है। इसके विपरीत, मोबियस परिवर्तन इस गुण का एकमात्र फ़ंक्शन हैं। इस प्रकार, श्वार्ज़ियन व्युत्पन्न सटीक रूप से उस डिग्री को मापता है जिस तक कोई फ़ंक्शन मोबियस परिवर्तन होने में विफल रहता है।<ref name=":0">Thurston, William P. "Zippers and univalent functions." ''The Bieberbach conjecture (West Lafayette, Ind., 1985)'' 21 (1986): 185-197.</ref>
अगर {{math|''g''}} एक मोबियस परिवर्तन है, फिर रचना {{math|''g''&nbsp;<small>o</small>&nbsp;''f''}} में वही श्वार्ज़ियन व्युत्पन्न है {{math|''f''}}; और दूसरी ओर, श्वार्ज़ियन व्युत्पन्न {{math|''f''&nbsp;<small>o</small>&nbsp;''g''}}[[श्रृंखला नियम]] द्वारा दिया गया है
 
अगर {{math|''g''}} एक मोबियस परिवर्तन है, तो रचना {{math|''g''&nbsp;<small>o</small>&nbsp;''f''}} में {{math|''f''}} के समान श्वार्ज़ियन व्युत्पन्न है; और दूसरी ओर, {{math|''f''&nbsp;<small>o</small>&nbsp;''g''}} का श्वार्ज़ियन व्युत्पन्न [[श्रृंखला नियम]] द्वारा दिया गया है


: <math>(S(f \circ g))(z) = (Sf)(g(z)) \cdot g'(z)^2.</math>
: <math>(S(f \circ g))(z) = (Sf)(g(z)) \cdot g'(z)^2.</math>
<!--:{{bigmath|(S(<VAR >f</VAR > &#8728; <VAR >g</VAR >))(<VAR >z</VAR >) {{=}} (S<VAR >f</VAR >)(<VAR >g</VAR >(z)) &sdot; <VAR >g</VAR >&prime;(<VAR >z</VAR >)&sup2;}}-->
अधिक सामान्यतः, किसी भी पर्याप्त रूप से भिन्न फलन {{math|''f''}} और {{math|''g''}} के लिए
अधिक सामान्यतः, किसी भी पर्याप्त रूप से भिन्न कार्यों के लिए {{math|''f''}} और {{math|''g''}}
 
: <math>S(f \circ g) = \left( (Sf)\circ g\right ) \cdot(g')^2 + Sg.</math>
: <math>S(f \circ g) = \left( (Sf)\circ g\right ) \cdot(g')^2 + Sg.</math>
<!--:{{bigmath|(S(<VAR >f</VAR > &#8728; <VAR >g</VAR >))(<VAR >z</VAR >) {{=}} (S<VAR >f</VAR >)(<VAR >g</VAR >(z)) &sdot; <VAR >g</VAR >&prime;(<VAR >z</VAR >)&sup2; + S(<VAR >g</VAR >)}}-->
<!--:{{bigmath|(S(<VAR >f</VAR > &#8728; <VAR >g</VAR >))(<VAR >z</VAR >) {{=}} (S<VAR >f</VAR >)(<VAR >g</VAR >(z)) &sdot; <VAR >g</VAR >&prime;(<VAR >z</VAR >)&sup2; + S(<VAR >g</VAR >)}}-->
कब {{math|''f''}} और {{math|''g''}} सुचारू वास्तविक-मूल्य वाले फ़ंक्शन हैं, इसका तात्पर्य यह है कि नकारात्मक (या सकारात्मक) श्वार्ज़ियन वाले फ़ंक्शन के सभी पुनरावृत्ति नकारात्मक (सम्मान सकारात्मक) रहेंगे, एक-आयामी [[गतिशील प्रणाली]] के अध्ययन में उपयोग का एक तथ्य।<ref>[http://mathworld.wolfram.com/SchwarzianDerivative.html Weisstein, Eric W. "Schwarzian Derivative." From MathWorld—A Wolfram Web Resource.]</ref>
जब {{math|''f''}} और {{math|''g''}} सुचारू वास्तविक-मूल्य वाले फ़ंक्शन होते हैं, तो इसका मतलब है कि नकारात्मक (या सकारात्मक) श्वार्ज़ियन वाले फ़ंक्शन के सभी पुनरावृत्ति नकारात्मक (सम्मान सकारात्मक) रहेंगे, जो एक-आयामी [[गतिशील प्रणाली]] के अध्ययन में उपयोग का एक तथ्य है।<ref>[http://mathworld.wolfram.com/SchwarzianDerivative.html Weisstein, Eric W. "Schwarzian Derivative." From MathWorld—A Wolfram Web Resource.]</ref>
दो जटिल चरों के कार्य का परिचय<ref>{{harvnb|Schiffer|1966}}</ref>
 
दो जटिल चरों के फ़ंक्शन का परिचय<ref>{{harvnb|Schiffer|1966}}</ref>
:<math>F(z,w)= \log \left ( \frac{f(z)-f(w)}{z-w} \right ),</math>
:<math>F(z,w)= \log \left ( \frac{f(z)-f(w)}{z-w} \right ),</math>
इसका दूसरा मिश्रित आंशिक अवकलज किसके द्वारा दिया गया है?
इसका दूसरा मिश्रित आंशिक अवकलज किसके द्वारा दिया गया है?

Revision as of 18:38, 25 July 2023

गणित में, श्वार्ज़ियन व्युत्पन्न व्युत्पन्न के समान एक ऑपरेटर है जो मोबियस परिवर्तनों के तहत अपरिवर्तनीय है। इस प्रकार, यह जटिल प्रक्षेप्य रेखा के सिद्धांत में और विशेष रूप से, मॉड्यूलर रूपों और हाइपरज्यामितीय फ़लनो के सिद्धांत में होता है। यह एकसमान फ़लनो, अनुरूप मानचित्रण और टीचमुलर रिक्त स्थान के सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है। इसका नाम जर्मन गणितज्ञ हरमन श्वार्ज़ के नाम पर रखा गया है।

परिभाषा

जटिल चर z के होलोमोर्फिक फ़ंक्शन f के श्वार्ज़ियन व्युत्पन्न को परिभाषित किया गया है

वही सूत्र एक वास्तविक चर के C3 फ़ंक्शन के श्वार्ज़ियन व्युत्पन्न को भी परिभाषित करता है। वैकल्पिक संकेतन

अक्सर प्रयोग किया जाता है।

गुण

किसी भी मोबियस परिवर्तन का श्वार्ज़ियन व्युत्पन्न

शून्य है। इसके विपरीत, मोबियस परिवर्तन इस गुण का एकमात्र फ़ंक्शन हैं। इस प्रकार, श्वार्ज़ियन व्युत्पन्न सटीक रूप से उस डिग्री को मापता है जिस तक कोई फ़ंक्शन मोबियस परिवर्तन होने में विफल रहता है।[1]

अगर g एक मोबियस परिवर्तन है, तो रचना g o f में f के समान श्वार्ज़ियन व्युत्पन्न है; और दूसरी ओर, f o g का श्वार्ज़ियन व्युत्पन्न श्रृंखला नियम द्वारा दिया गया है

अधिक सामान्यतः, किसी भी पर्याप्त रूप से भिन्न फलन f और g के लिए

जब f और g सुचारू वास्तविक-मूल्य वाले फ़ंक्शन होते हैं, तो इसका मतलब है कि नकारात्मक (या सकारात्मक) श्वार्ज़ियन वाले फ़ंक्शन के सभी पुनरावृत्ति नकारात्मक (सम्मान सकारात्मक) रहेंगे, जो एक-आयामी गतिशील प्रणाली के अध्ययन में उपयोग का एक तथ्य है।[2]

दो जटिल चरों के फ़ंक्शन का परिचय[3]

इसका दूसरा मिश्रित आंशिक अवकलज किसके द्वारा दिया गया है?

और श्वार्ज़ियन व्युत्पन्न सूत्र द्वारा दिया गया है:

श्वार्ज़ियन व्युत्पन्न में एक सरल व्युत्क्रम सूत्र है, जो आश्रित और स्वतंत्र चर का आदान-प्रदान करता है। किसी के पास

या अधिक स्पष्ट रूप से, . यह उपरोक्त श्रृंखला नियम का अनुसरण करता है।

ज्यामितीय व्याख्या

विलियम थर्स्टन ने श्वार्ज़ियन व्युत्पन्न की व्याख्या इस माप के रूप में की है कि एक अनुरूप मानचित्र मोबियस परिवर्तन से कितना विचलित होता है।[1]होने देना के पड़ोस में एक अनुरूप मानचित्रण हो . फिर एक अनोखा मोबियस परिवर्तन मौजूद है ऐसा है कि पर समान 0, 1, 2-वें क्रम के डेरिवेटिव हैं .

अब . स्पष्ट रूप से हल करने के लिए , यह मामले को सुलझाने के लिए पर्याप्त है . होने देना , और के लिए हल करें इससे पहले तीन गुणांक बनेंगे 0, 1, 0 के बराबर। इसे चौथे गुणांक में जोड़ने पर, हमें मिलता है .

जटिल तल के अनुवाद, घूर्णन और स्केलिंग के बाद, हमारे पास है शून्य के पड़ोस में. फिर, तीसरे क्रम तक, यह फ़ंक्शन त्रिज्या के वृत्त को मैप करता है द्वारा परिभाषित वक्र के लिए , कहाँ . यह वक्र, चौथे क्रम तक, अर्धअक्षों वाला एक दीर्घवृत्त है :

चूंकि मोबियस परिवर्तन हमेशा वृत्तों को वृत्तों या रेखाओं में मैप करता है, अण्डाकार-नेस की मात्रा विचलन को मापती है मोबियस परिवर्तन से।

विभेदक समीकरण

श्वार्ज़ियन व्युत्पन्न का जटिल तल में दूसरे क्रम के रैखिक साधारण अंतर समीकरण के साथ एक मौलिक संबंध है।[4] होने देना और के दो रोन्स्कियन होलोमोर्फिक फ़ंक्शन समाधान बनें

फिर अनुपात संतुष्ट

जिस डोमेन पर और परिभाषित हैं, और इसका विपरीत भी सत्य है: यदि ऐसा है g मौजूद है, और यह एक सरल रूप से जुड़े डोमेन पर होलोमोर्फिक है, फिर दो समाधान हैं और पाया जा सकता है, और इसके अलावा, ये एक सामान्य पैमाने के कारक तक अद्वितीय हैं।

जब एक रैखिक दूसरे क्रम के साधारण अंतर समीकरण को उपरोक्त रूप में लाया जा सकता है, तो परिणाम प्राप्त होता है Q को कभी-कभी समीकरण का Q-मान कहा जाता है।

ध्यान दें कि गॉसियन हाइपरज्यामितीय विभेदक समीकरण को उपरोक्त फॉर्म में लाया जा सकता है, और इस प्रकार हाइपरजियोमेट्रिक समीकरण के समाधान के जोड़े इस तरह से संबंधित हैं।

असमानता के लिए शर्तें

अगर f यूनिट डिस्क पर एक होलोमोर्फिक फ़ंक्शन है, D, फिर डब्ल्यू क्रॉस (1932) और ज़ीव नेहारी (1949) ने साबित किया कि इसके लिए एक आवश्यक शर्त है fअसंयोजक फलन होना है[5]

इसके विपरीत यदि f(z) एक होलोमोर्फिक फ़ंक्शन है D संतुष्टि देने वाला

थें नेहरि प्रोवेद ठाट f एकसमान है.[6] विशेष रूप से एकरूपता के लिए पर्याप्त शर्त है[7]


वृत्ताकार चाप बहुभुजों का अनुरूप मानचित्रण

श्वार्ज़ियन व्युत्पन्न और संबंधित दूसरे क्रम के साधारण अंतर समीकरण का उपयोग ऊपरी आधे-तल या यूनिट सर्कल और जटिल विमान में किसी भी घिरे बहुभुज के बीच रीमैन मैपिंग को निर्धारित करने के लिए किया जा सकता है, जिसके किनारे गोलाकार चाप या सीधी रेखाएं हैं। सीधे किनारों वाले बहुभुजों के लिए, यह श्वार्ज़-क्रिस्टोफेल मैपिंग को कम कर देता है, जिसे श्वार्ज़ियन व्युत्पन्न का उपयोग किए बिना सीधे प्राप्त किया जा सकता है। एकीकरण के स्थिरांक के रूप में उत्पन्न होने वाले सहायक पैरामीटर दूसरे क्रम के अंतर समीकरण के साधारण अंतर समीकरणों के वर्णक्रमीय सिद्धांत से संबंधित हैं। पहले से ही 1890 में फ़ेलिक्स क्लेन ने लैमे फ़ंक्शन|लैमे अंतर समीकरण के संदर्भ में चतुर्भुजों के मामले का अध्ययन किया था।[8][9][10] होने देना Δकोणों वाला एक वृत्ताकार चाप बहुभुज हो πα1, ..., παn दक्षिणावर्त क्रम में। होने देना f : H → Δ सीमाओं के बीच के मानचित्र तक लगातार विस्तारित एक होलोमोर्फिक मानचित्र बनें। मान लीजिए कि शीर्ष बिंदुओं के अनुरूप हैं a1, ..., an वास्तविक अक्ष पर। तब p(x) = S(f)(x) के लिए वास्तविक मूल्यवान है x वास्तविक और बिंदुओं में से एक नहीं। श्वार्ज प्रतिबिंब सिद्धांत द्वारा p(x) दोहरे ध्रुव के साथ जटिल तल पर एक तर्कसंगत कार्य तक विस्तारित होता है ai:

असली संख्या βi सहायक पैरामीटर कहलाते हैं। वे तीन रैखिक बाधाओं के अधीन हैं:

जो के गुणांकों के लुप्त होने के अनुरूप है और के विस्तार में p(z) आस-पास z = ∞. मानचित्रण f(z) को फिर इस प्रकार लिखा जा सकता है

कहाँ और रैखिक दूसरे क्रम के साधारण अंतर समीकरण के रैखिक रूप से स्वतंत्र होलोमोर्फिक समाधान हैं

वहाँ हैं n−3 रैखिक रूप से स्वतंत्र सहायक पैरामीटर, जिन्हें व्यवहार में निर्धारित करना मुश्किल हो सकता है।

एक त्रिभुज के लिए, कब n = 3, कोई सहायक पैरामीटर नहीं हैं। साधारण अंतर समीकरण हाइपरज्यामितीय अंतर समीकरण के बराबर है और f(z) श्वार्ज़ त्रिकोण फ़ंक्शन है, जिसे हाइपरजियोमेट्रिक फ़ंक्शन के संदर्भ में लिखा जा सकता है।

एक चतुर्भुज के लिए सहायक पैरामीटर एक स्वतंत्र चर पर निर्भर करते हैंλ. लिखना U(z) = q(z)u(z) के उपयुक्त विकल्प के लिए q(z), साधारण अवकल समीकरण का रूप लेता है

इस प्रकार अंतराल पर स्टर्म-लिउविल समीकरण के eigenfunctions हैं . स्टर्म पृथक्करण प्रमेय के अनुसार, गायब न होना ताकतों λ सबसे कम eigenvalue होना।

टेइचमुलर स्पेस पर जटिल संरचना

यूनिवर्सल टेइचमुलर स्पेस को यूनिट डिस्क के वास्तविक विश्लेषणात्मक क्वासिकोनफॉर्मल मैपिंग के स्थान के रूप में परिभाषित किया गया है D, या समकक्ष ऊपरी आधा तल H, अपने आप में, दो मैपिंग को समतुल्य माना जाता है यदि सीमा पर एक मोबियस परिवर्तन के साथ रचना द्वारा दूसरे से प्राप्त किया जाता है। पहचान करना D रीमैन क्षेत्र के निचले गोलार्ध के साथ, कोई भी अर्ध-अनुरूप स्व-मानचित्र {{math|f}निचले गोलार्ध का } स्वाभाविक रूप से ऊपरी गोलार्ध के अनुरूप मानचित्रण से मेल खाता है खुद पर. वास्तव में बेल्ट्रामी अंतर समीकरण के समाधान के ऊपरी गोलार्ध के प्रतिबंध के रूप में निर्धारित किया जाता है

जहां μ द्वारा परिभाषित परिबद्ध मापनीय फलन है

निचले गोलार्ध पर, ऊपरी गोलार्ध पर 0 तक विस्तारित।

ऊपरी गोलार्ध की पहचान के साथ D, लिपमैन बेर्स ने बेर्स एम्बेडिंग को परिभाषित करने के लिए श्वार्ज़ियन व्युत्पन्न का उपयोग किया

जो सार्वभौमिक टेइचमुलर स्पेस को एक खुले उपसमुच्चय में एम्बेड करता है U परिबद्ध होलोमोर्फिक फ़ंक्शंस के स्थान का g पर D एकसमान मानदंड के साथ। फ्रेडरिक गेहरिंग ने 1977 में यह करके दिखाया U एकसमान फलनों के श्वार्ज़ियन व्युत्पन्नों के बंद उपसमुच्चय का आंतरिक भाग है।[11][12][13] एक कॉम्पैक्ट रीमैन सतह के लिए S 1 से अधिक जीनस का, इसका सार्वभौमिक आवरण स्थान इकाई डिस्क है Dजिस पर इसका मूल समूह है Γ मोबियस परिवर्तनों द्वारा कार्य करता है। टेइचमुलर क्षेत्र S को यूनिवर्सल टीचमुलर स्पेस इनवेरिएंट के उप-स्थान के साथ पहचाना जा सकता है Γ. होलोमोर्फिक कार्य g उसके पास वह संपत्ति है

के अंतर्गत अपरिवर्तनीय है Γ, इसलिए द्विघात अंतर निर्धारित करें S. इस प्रकार, टीचमुलर स्थान S को द्विघात अंतरों के परिमित-आयामी जटिल वेक्टर स्थान के एक खुले उप-स्थान के रूप में महसूस किया जाता है S.

वृत्त का द्विरूपता समूह

क्रॉस्ड होमोमोर्फिज्म

परिवर्तन संपत्ति

श्वार्ज़ियन व्युत्पन्न को सर्कल पर डिग्री 2 के घनत्व के मॉड्यूल में गुणांक के साथ सर्कल के डिफोमोर्फिज्म समूह के निरंतर 1-कोसाइकल या पार समरूपता के रूप में व्याख्या करने की अनुमति देता है।[14] होने देना Fλ(S1)डिग्री के टेंसर घनत्व का स्थान हो λ पर S1. अभिविन्यास-संरक्षण भिन्नताओं का समूह S1, Diff(S1), पर कार्य करता है Fλ(S1) पुशफॉरवर्ड (अंतर) के माध्यम से। अगर f का एक तत्व है Diff(S1) फिर मैपिंग पर विचार करें

समूह सहसंरचना की भाषा में ऊपर दिया गया चेन-जैसा नियम कहता है कि यह मैपिंग 1-कोसाइकल पर है Diff(S1) में गुणांक के साथ F2(S1). वास्तव में

और 1-कोसायकल सहसंयोजी उत्पन्न करता है fS(f−1). 1-कोहोमोलॉजी की गणना अधिक सामान्य परिणाम का एक विशेष मामला है

ध्यान दें कि यदि G एक समूह है और MG-मॉड्यूल, फिर एक क्रॉस्ड होमोमोर्फिज्म को परिभाषित करने वाली पहचान c का G में M को समूहों के मानक समरूपता के संदर्भ में व्यक्त किया जा सकता है: यह एक समरूपता में एन्कोड किया गया है 𝜙 का G अर्धप्रत्यक्ष उत्पाद में ऐसी है कि की रचना 𝜙 प्रक्षेपण के साथ पर G पहचान मानचित्र है; पत्राचार मानचित्र द्वारा होता है C(g) = (c(g), g). क्रॉस्ड होमोमोर्फिज्म एक वेक्टर स्पेस बनाते हैं और इसमें उप-स्पेस के रूप में कोबाउंडरी क्रॉस्ड होमोमोर्फिज्म शामिल होते हैं b(g) = gmm के लिए m में M. एक साधारण औसत तर्क यह दर्शाता है कि, यदि K एक सघन समूह है और V एक टोपोलॉजिकल वेक्टर स्पेस जिस पर K लगातार कार्य करता है, तो उच्च कोहोलॉजी समूह गायब हो जाते हैं Hm(K, V) = (0) के लिए m > 0. विशेष रूप से 1-कोसाइकिल के लिए χ साथ

औसत से अधिक y, हार माप के बाएँ अपरिवर्तनीय का उपयोग करते हुए K देता है

साथ

इस प्रकार औसत से यह माना जा सकता है c सामान्यीकरण की स्थिति को संतुष्ट करता है c(x) = 0 के लिए x में Rot(S1). ध्यान दें कि यदि कोई तत्व है x में G संतुष्ट करता है c(x) = 0 तब C(x) = (0,x). लेकिन तब से C एक समरूपता है, C(xgx−1) = C(x)C(g)C(x)−1, ताकि c समतुल्य स्थिति को संतुष्ट करता है c(xgx−1) = x ⋅ c(g). इस प्रकार यह माना जा सकता है कि सहचक्र इन सामान्यीकरण शर्तों को पूरा करता है Rot(S1). श्वार्ज़ियन व्युत्पन्न वास्तव में जब भी गायब हो जाता है x एक मोबियस परिवर्तन के अनुरूप है SU(1,1). नीचे चर्चा की गई अन्य दो 1-चक्र केवल गायब हो जाते हैं Rot(S1) (λ = 0, 1).

इस परिणाम का एक अत्यंत छोटा संस्करण है जो 1-कोसाइकल देता है Vect(S1), चिकने सदिश क्षेत्रों का बीजगणित, और इसलिए विट बीजगणित के लिए, त्रिकोणमितीय बहुपद सदिश क्षेत्रों का उपबीजगणित। दरअसल, जब G एक झूठ समूह और की कार्रवाई है G पर M सुचारू है, लाई बीजगणित (पहचान पर समरूपता के व्युत्पन्न) के संगत समरूपता को ले कर प्राप्त किए गए पार समरूपता का एक झूठ बीजगणितीय संस्करण है। यह भी समझ आता है Diff(S1) और 1-कोसाइकिल की ओर ले जाता है

जो पहचान को संतुष्ट करता है

ली बीजगणित मामले में, सह-सीमा मानचित्रों का रूप होता है b(X) = Xm के लिए m में M. दोनों ही मामलों में 1-कोहोमोलॉजी को क्रॉस्ड होमोमोर्फिज्म मॉड्यूलो कोबाउंड्रीज़ के स्थान के रूप में परिभाषित किया गया है। समूह समरूपता और लाई बीजगणित समरूपता के बीच प्राकृतिक पत्राचार वैन एस्ट समावेशन मानचित्र की ओर ले जाता है

इस तरह से गणना को झूठ बीजगणित सहसंरचना तक कम किया जा सकता है। निरंतरता से यह क्रॉस होमोमोर्फिज्म की गणना को कम कर देता है 𝜙 विट बीजगणित में Fλ(S1). समूह पार समरूपता पर सामान्यीकरण की स्थिति निम्नलिखित अतिरिक्त शर्तों को दर्शाती है 𝜙:

के लिए x में Rot(S1).

की परिपाटी का पालन कर रहे हैं Kac & Raina (1987), विट बीजगणित का एक आधार दिया गया है

ताकि [dm,dn] = (mn) dm + n. की जटिलता के लिए एक आधार Fλ(S1) द्वारा दिया गया है

ताकि

के लिए gζ में Rot(S1) = T. ये मजबूर करता है 𝜙(dn) = anvn उपयुक्त गुणांकों के लिए an. पार की गई समरूपता स्थिति 𝜙([X,Y]) = X𝜙(Y) – Y𝜙(X) के लिए पुनरावृत्ति संबंध देता है an:

स्थिति 𝜙(d/dθ) = 0, इसका आशय है a0 = 0. इस स्थिति और पुनरावृत्ति संबंध से, यह पता चलता है कि अदिश गुणज तक, इसका एक अद्वितीय गैर-शून्य समाधान होता है जब λ 0, 1 या 2 के बराबर है और अन्यथा केवल शून्य समाधान है। के लिए समाधान λ = 1 समूह 1-कोसाइकिल से मेल खाता है . के लिए समाधान λ = 0 समूह 1-कोसाइकिल से मेल खाता है 𝜙0(f) = log f' . संबंधित लाई बीजगणित 1-कोसाइकिल के लिए λ = 0, 1, 2 को एक अदिश गुणज तक दिया जाता है


केंद्रीय विस्तार

पार की गई समरूपताएं बदले में केंद्रीय विस्तार को जन्म देती हैं Diff(S1) और इसके झूठ बीजगणित की Vect(S1), तथाकथित विरासोरो बीजगणित

सहसंयुक्त क्रिया

समूह Diff(S1) और इसका केंद्रीय विस्तार टेइचमुलर सिद्धांत और स्ट्रिंग सिद्धांत के संदर्भ में भी स्वाभाविक रूप से दिखाई देता है।[15] वास्तव में की होमोमोर्फिज्म S1 के क्वासिकोनफॉर्मल स्व-मानचित्रों से प्रेरित D बिल्कुल अर्धसममितीय मानचित्र हैं S1; ये बिल्कुल होमोमोर्फिज्म हैं जो क्रॉस अनुपात 1/2 के साथ चार बिंदुओं को 1 या 0 के करीब क्रॉस अनुपात वाले बिंदुओं पर नहीं भेजते हैं। सीमा मूल्यों को लेते हुए, सार्वभौमिक टेइचमुलर को क्वासिसिमेट्रिक होमोमोर्फिज्म के समूह के भागफल के साथ पहचाना जा सकता है। QS(S1) मोबियस परिवर्तनों के उपसमूह द्वारा Moeb(S1). (इसे स्वाभाविक रूप से अर्धवृत्त के स्थान के रूप में भी महसूस किया जा सकता है C।) तब से

सजातीय स्थान Diff(S1)/Moeb(S1) स्वाभाविक रूप से सार्वभौमिक टेइचमुलर अंतरिक्ष का एक उपस्थान है। यह स्वाभाविक रूप से एक जटिल विविधता है और यह और अन्य प्राकृतिक ज्यामितीय संरचनाएं टेइचमुलर स्थान पर मौजूद संरचनाओं के साथ संगत हैं। के लाई बीजगणित का द्वैत Diff(S1) को हिल डिफरेंशियल समीकरण के स्थान से पहचाना जा सकता है|हिल के ऑपरेटरों पर S1

और की सहसंयुक्त कार्रवाई Diff(S1) श्वार्ज़ियन व्युत्पन्न का आह्वान करता है। भिन्नता का उलटा f हिल के ऑपरेटर को भेजता है


छद्मसमूह और कनेक्शन

श्वार्ज़ियन व्युत्पन्न और अन्य 1-कोसायकल पर परिभाषित Diff(S1) को जटिल तल में खुले सेटों के बीच बायोलोमोर्फिक तक बढ़ाया जा सकता है। इस मामले में स्थानीय विवरण विश्लेषणात्मक छद्म समूहों के सिद्धांत की ओर ले जाता है, जो अनंत-आयामी समूहों के सिद्धांत को औपचारिक बनाता है और ली बीजगणित का अध्ययन पहली बार 1910 के दशक में एली कार्टन द्वारा किया गया था। यह रीमैन सतहों पर एफ़िन और प्रोजेक्टिव संरचनाओं के साथ-साथ श्वार्ज़ियन या प्रोजेक्टिव कनेक्शन के सिद्धांत से संबंधित है, जिस पर गनिंग, शिफ़र और हॉले ने चर्चा की है।

एक होलोमोर्फिक छद्म समूह Γ पर C में बिहोलोमोर्फिज्म का संग्रह शामिल है f खुले सेटों के बीच U और V में C जिसमें प्रत्येक खुले के लिए पहचान मानचित्र शामिल हैं U, जो खुलने पर प्रतिबंध के तहत बंद है, जो संरचना के तहत बंद है (जब संभव हो), जो व्युत्क्रम लेने के तहत बंद है और इस तरह कि यदि कोई बायोलोमोर्फिज्म स्थानीय रूप से है Γ, तो यह भी अंदर है Γ. छद्मसमूह को सकर्मक कहा जाता है यदि, दिया गया हो z और w में C, एक बिहोलोमोर्फिज्म है f में Γ ऐसा है कि f(z) = w. सकर्मक छद्मसमूहों का एक विशेष मामला वे हैं जो सपाट हैं, यानी जिनमें सभी जटिल अनुवाद शामिल हैं Tb(z) = z + b. होने देना G औपचारिक शक्ति श्रृंखला परिवर्तनों की संरचना के तहत समूह बनें F(z) = a1z + a2z2 + .... साथ a1 ≠ 0. एक होलोमोर्फिक छद्म समूह Γ एक उपसमूह को परिभाषित करता है A का G, अर्थात् तत्वों के 0 (या जेट (गणित) | जेट) के बारे में टेलर श्रृंखला विस्तार द्वारा परिभाषित उपसमूह f का Γ साथ f(0) = 0. इसके विपरीत यदि Γ समतल है यह विशिष्ट रूप से निर्धारित होता है A: एक बायोलोमोर्फिज्म f पर U में समाहित है Γ यदि और केवल यदि की शक्ति श्रृंखला में Tf(a)fTa में निहित है A हरएक के लिए a में U: दूसरे शब्दों में, के लिए औपचारिक शक्ति श्रृंखला f पर a के एक तत्व द्वारा दिया गया है A साथ z द्वारा प्रतिस्थापित za; या अधिक संक्षेप में सभी जेट f रिहायश A.[16] समूह G समूह में एक प्राकृतिक समरूपता है Gk का k-जेड शब्द तक ली गई काटी गई पावर श्रृंखला को लेकर जेट प्राप्त किए जाते हैं. यह समूह डिग्री के बहुपदों के स्थान पर ईमानदारी से कार्य करता है k (k से अधिक क्रम की शर्तों को छोटा करना)। ट्रंकेशन इसी प्रकार समरूपता को परिभाषित करते हैं Gkपर Gk − 1; कर्नेल में मानचित्र f शामिल हैं f(z) = z + bzk, एबेलियन भी ऐसा ही है। इस प्रकार समूह जीk हल करने योग्य है, एक तथ्य इस तथ्य से भी स्पष्ट है कि यह एकपदी के आधार के लिए त्रिकोणीय रूप में है।

एक सपाट छद्म समूह Γ को अंतर समीकरणों द्वारा परिभाषित कहा जाता है यदि कोई परिमित पूर्णांक है k ऐसा कि समरूपता A में वफादार है और छवि एक बंद उपसमूह है। सबसे छोटा ऐसा k का क्रम कहा जाता है Γ. सभी उपसमूहों का संपूर्ण वर्गीकरण है A जो इस तरह से उत्पन्न होता है जो छवि की अतिरिक्त धारणाओं को संतुष्ट करता है A में Gk एक जटिल उपसमूह है और वह G1 बराबर है C*: इसका तात्पर्य यह है कि छद्म समूह में स्केलिंग परिवर्तन भी शामिल हैं Sa(z) = az के लिए a ≠ 0, यानी शामिल है A में प्रत्येक बहुपद शामिल है az साथ a ≠ 0.

इस मामले में एकमात्र संभावना यही है k = 1 और A = {az: a ≠ 0}; या वो k = 2 और A = {az/(1−bz) : a ≠ 0}. पूर्व जटिल मोबियस समूह (द) के एफ़िन उपसमूह द्वारा परिभाषित छद्म समूह है az + b परिवर्तन फिक्सिंग ); उत्तरार्द्ध संपूर्ण जटिल मोबियस समूह द्वारा परिभाषित छद्म समूह है।

औपचारिक लाई बीजगणित के बाद से इस वर्गीकरण को आसानी से लाई बीजगणितीय समस्या में बदला जा सकता है का G औपचारिक वेक्टर फ़ील्ड शामिल हैं F(z) d/dz एफ के साथ एक औपचारिक शक्ति श्रृंखला। इसमें आधार के साथ बहुपद सदिश क्षेत्र शामिल हैं dn = zn+1 d/dz (n ≥ 0), जो विट बीजगणित का एक उपबीजगणित है। झूठ कोष्ठक द्वारा दिए गए हैं [dm,dn] = (nm)dm+n. पुनः ये डिग्री के बहुपदों के स्थान पर कार्य करते हैं k विभेदन द्वारा—इससे पहचाना जा सकता है C[[z]]/(zk+1)—और की छवियाँ d0, ..., dk – 1 के झूठ बीजगणित का एक आधार दीजिए Gk. ध्यान दें कि Ad(Sa) dn= an dn. होने देना के झूठ बीजगणित को निरूपित करें A: यह लाई बीजगणित के उपबीजगणित के समरूपी है Gk. इसमें है d0 और नीचे अपरिवर्तनीय है Ad(Sa). तब से विट बीजगणित का एक झूठ उपबीजगणित है, एकमात्र संभावना यह है कि इसका आधार है d0 या आधार d0, dn कुछ के लिए n ≥ 1. प्रपत्र के संगत समूह तत्व हैं f(z)= z + bzn+1 + .... इसे अनुवाद के साथ लिखने से लाभ मिलता है Tf(ε)fT ε(z) = cz + dz2 + ... साथ c, d ≠ 0. जब तक n = 2, यह उपसमूह के स्वरूप का खंडन करता है A; इसलिए n = 2.[17] श्वार्ज़ियन व्युत्पन्न जटिल मोबियस समूह के लिए छद्म समूह से संबंधित है। वास्तव में यदि f एक बायोलोमोर्फिज्म पर परिभाषित है V तब 𝜙2(f) = S(f) एक द्विघात अंतर है V. अगर g एक समरूपता है जिसे परिभाषित किया गया है U और g(V) ⊆ U, S(fg) और S(g) पर द्विघात अवकलन हैं U; इसके अतिरिक्त S(f) एक द्विघात अंतर है V, ताकि gS(f) भी एक द्विघात अंतर है U. पहचान

इस प्रकार होलोमोर्फिक द्विघात अंतर में गुणांक के साथ बायोलोमोर्फिज्म के छद्म समूह के लिए 1-कोसाइकिल का एनालॉग है। उसी प्रकार और होलोमोर्फिक कार्यों और होलोमोर्फिक अंतरों में मूल्यों के साथ एक ही छद्म समूह के लिए 1-कोसाइकिल हैं। सामान्य तौर पर 1-कोसाइकिल को किसी भी क्रम के होलोमोर्फिक अंतर के लिए परिभाषित किया जा सकता है

उपरोक्त पहचान को समावेशन मानचित्रों पर लागू करना j, यह इस प्रकार है कि 𝜙(j) = 0; और इसलिए यदि f1 का प्रतिबंध है f2, ताकि f2j = f1, तब 𝜙(f1) = 𝜙 (f2). दूसरी ओर, होलोमोर्फिक वेक्टर क्षेत्रों द्वारा परिभाषित स्थानीय होलोमोर्फिक प्रवाह को लेते हुए - वेक्टर क्षेत्रों का घातांक - स्थानीय बायोलोमोर्फिज्म का होलोमोर्फिक स्यूडोग्रुप होलोमोर्फिक वेक्टर क्षेत्रों द्वारा उत्पन्न होता है। यदि 1-कोसाइकिल 𝜙 उपयुक्त निरंतरता या विश्लेषणात्मकता स्थितियों को संतुष्ट करता है, यह होलोमोर्फिक वेक्टर फ़ील्ड के 1-कोसाइकल को प्रेरित करता है, जो प्रतिबंध के साथ भी संगत है। तदनुसार, यह होलोमोर्फिक वेक्टर फ़ील्ड्स पर 1-कोसाइकिल को परिभाषित करता है C:[18]

आधार के साथ बहुपद सदिश क्षेत्रों के बीजगणित को सीमित करना dn = zn+1 d/dz (n ≥ −1), इन्हें लाई अलजेब्रा कोहोमोलॉजी के समान तरीकों का उपयोग करके निर्धारित किया जा सकता है (जैसा कि क्रॉस्ड होमोमोर्फिज्म पर पिछले अनुभाग में है)। वहां गणना क्रम के घनत्व पर कार्य करने वाले संपूर्ण विट बीजगणित के लिए थी k, जबकि यहां यह केवल क्रम के होलोमोर्फिक (या बहुपद) अंतरों पर कार्य करने वाले उपबीजगणित के लिए है k. फिर से, यह मानते हुए 𝜙 के घूमने पर गायब हो जाता है C, गैर-शून्य 1-कोसाइकिल हैं, जो अदिश गुणकों तक अद्वितीय हैं। केवल समान व्युत्पन्न सूत्र द्वारा दिए गए घात 0, 1 और 2 के अंतरों के लिए

कहाँ p(z) एक बहुपद है.

1-कोसाइकल्स तीन छद्म समूहों को परिभाषित करते हैं 𝜙k(f) = 0: यह स्केलिंग समूह देता है (k = 0); एफ़िन समूह (k = 1); और संपूर्ण जटिल मोबियस समूह (k = 2). तो ये 1-कोसाइकिल छद्मसमूह को परिभाषित करने वाले विशेष साधारण अंतर समीकरण हैं। अधिक महत्वपूर्ण रूप से उनका उपयोग रीमैन सतहों पर संबंधित एफ़िन या प्रोजेक्टिव संरचनाओं और कनेक्शनों को परिभाषित करने के लिए किया जा सकता है। अगर Γ चिकनी मैपिंग का एक छद्म समूह है Rn, एक टोपोलॉजिकल स्पेस Mकहा जाता है कि ए Γ-संरचना यदि इसमें चार्ट का संग्रह है f जो खुले सेट से होमियोमोर्फिज्म हैं Vi में M सेट खोलने के लिए Ui में Rn ऐसा कि, प्रत्येक गैर-रिक्त चौराहे के लिए, प्राकृतिक मानचित्र fi (UiUj) को fj (UiUj) में निहित है Γ. यह एक चिकनी की संरचना को परिभाषित करता है n-कई गुना अगर Γ में स्थानीय डिफोमॉर्फिम्स और एक रीमैन सतह शामिल है n = 2-ताकि R2C-और Γ बिहोलोमोर्फिज्म से युक्त है। अगर Γ एफ़िन स्यूडोग्रुप है, M कहा जाता है कि इसमें एक एफ़िन संरचना होती है; और अगर Γ मोबियस स्यूडोग्रुप है, M को एक प्रक्षेपी संरचना कहा जाता है। इस प्रकार एक जीनस एक सतह के रूप में दिया गया है C कुछ जाली के लिए Λ ⊂ C एक एफ़िन संरचना है; और एक वंश p > 1फ़ुचियन समूह द्वारा ऊपरी आधे तल या यूनिट डिस्क के भागफल के रूप में दी गई सतह में एक प्रक्षेप्य संरचना होती है।[19] 1966 में गनिंग ने बताया कि इस प्रक्रिया को कैसे उलटा किया जा सकता है: जीनस के लिए p > 1, एक प्रक्षेप्य कनेक्शन का अस्तित्व, जिसे श्वार्ज़ियन व्युत्पन्न का उपयोग करके परिभाषित किया गया है 𝜙2 और कोहोमोलॉजी पर मानक परिणामों का उपयोग करके सिद्ध किया गया है, इसका उपयोग ऊपरी आधे विमान या यूनिट डिस्क के साथ सार्वभौमिक कवरिंग सतह की पहचान करने के लिए किया जा सकता है (एक समान परिणाम जीनस 1 के लिए होता है, एफ़िन कनेक्शन का उपयोग करके और 𝜙1).[19]


यह भी देखें

  • रिकाटी समीकरण#श्वार्ज़ियन समीकरण का अनुप्रयोग

टिप्पणियाँ

  1. 1.0 1.1 Thurston, William P. "Zippers and univalent functions." The Bieberbach conjecture (West Lafayette, Ind., 1985) 21 (1986): 185-197.
  2. Weisstein, Eric W. "Schwarzian Derivative." From MathWorld—A Wolfram Web Resource.
  3. Schiffer 1966
  4. Hille 1976, pp. 374–401
  5. Lehto 1987, p. 60
  6. Duren 1983
  7. Lehto 1987, p. 90
  8. Nehari 1952
  9. von Koppenfels & Stallmann 1959
  10. Klein 1922
  11. Ahlfors 1966
  12. Lehto 1987
  13. Imayoshi & Taniguchi 1992
  14. Ovsienko & Tabachnikov 2005, pp. 21–22
  15. Pekonen 1995
  16. Sternberg 1983, pp. 421–424
  17. Gunning 1978
  18. Libermann
  19. 19.0 19.1 Gunning 1966


संदर्भ

  • Ahlfors, Lars (1966), Lectures on quasiconformal mappings, Van Nostrand, pp. 117–146, Chapter 6, "Teichmüller Spaces"
  • Duren, Peter L. (1983), Univalent functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, pp. 258–265, ISBN 978-0-387-90795-6]
  • Guieu, Laurent; Roger, Claude (2007), L'algèbre et le groupe de Virasoro, Montreal: CRM, ISBN 978-2-921120-44-9
  • Gunning, R. C. (1966), Lectures on Riemann surfaces, Princeton Mathematical Notes, Princeton University Press
  • Gunning, R. C. (1978), On uniformization of complex manifolds: the role of connections, Mathematical Notes, vol. 22, Princeton University Press, ISBN 978-0-691-08176-2
  • Hille, Einar (1976), Ordinary differential equations in the complex domain, Dover, pp. 374–401, ISBN 978-0-486-69620-1, Chapter 10, "The Schwarzian".
  • Imayoshi, Y.; Taniguchi, M. (1992), An introduction to Teichmüller spaces, Springer-Verlag, ISBN 978-4-431-70088-3
  • Kac, V. G.; Raina, A. K. (1987), Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, World Scientific, ISBN 978-9971-50-395-6
  • von Koppenfels, W.; Stallmann, F. (1959), Praxis der konformen Abbildung, Die Grundlehren der mathematischen Wissenschaften, vol. 100, Springer-Verlag, pp. 114–141, Section 12, "Mapping of polygons with circular arcs".
  • Klein, Felix (1922), Collected works, vol. 2, Springer-Verlag, pp. 540–549, "On the theory of generalized Lamé functions".
  • Lehto, Otto (1987), Univalent functions and Teichmüller spaces, Springer-Verlag, pp. 50–59, 111–118, 196–205, ISBN 978-0-387-96310-5
  • Libermann, Paulette (1959), "Pseudogroupes infinitésimaux attachés aux pseudogroupes de Lie", Bull. Soc. Math. France, 87: 409–425, doi:10.24033/bsmf.1536
  • Nehari, Zeev (1949), "The Schwarzian derivative and schlicht functions", Bulletin of the American Mathematical Society, 55 (6): 545–551, doi:10.1090/S0002-9904-1949-09241-8, ISSN 0002-9904, MR 0029999
  • Nehari, Zeev (1952), Conformal mapping, Dover, pp. 189–226, ISBN 978-0-486-61137-2
  • Ovsienko, V.; Tabachnikov, S. (2005), Projective Differential Geometry Old and New, Cambridge University Press, ISBN 978-0-521-83186-4
  • Ovsienko, Valentin; Tabachnikov, Sergei (2009), "What Is . . . the Schwarzian Derivative?" (PDF), AMS Notices, 56 (1): 34–36
  • Pekonen, Osmo (1995), "Universal Teichmüller space in geometry and physics", J. Geom. Phys., 15 (3): 227–251, arXiv:hep-th/9310045, Bibcode:1995JGP....15..227P, doi:10.1016/0393-0440(94)00007-Q, S2CID 119598450
  • Schiffer, Menahem (1966), "Half-Order Differentials on Riemann Surfaces", SIAM Journal on Applied Mathematics, 14 (4): 922–934, doi:10.1137/0114073, JSTOR 2946143, S2CID 120194068
  • Segal, Graeme (1981), "Unitary representations of some infinite-dimensional groups", Comm. Math. Phys., 80 (3): 301–342, Bibcode:1981CMaPh..80..301S, doi:10.1007/bf01208274, S2CID 121367853
  • Sternberg, Shlomo (1983), Lectures on differential geometry (Second ed.), Chelsea Publishing, ISBN 978-0-8284-0316-0
  • Takhtajan, Leon A.; Teo, Lee-Peng (2006), Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc., vol. 183