श्वार्ज़ियन व्युत्पन्न: Difference between revisions
(→गुण) |
|||
Line 50: | Line 50: | ||
==विभेदक समीकरण== | ==विभेदक समीकरण== | ||
श्वार्ज़ियन व्युत्पन्न का जटिल तल में दूसरे क्रम के रैखिक साधारण अंतर समीकरण के साथ एक मौलिक संबंध है।<ref>{{harvnb|Hille|1976|pages=374–401}}</ref> मान लीजिए <math>f_1(z)</math> और <math>f_2(z)</math> के दो [[रोन्स्कियन|रैखिक रूप]] से स्वतंत्र | श्वार्ज़ियन व्युत्पन्न का जटिल तल में दूसरे क्रम के रैखिक साधारण अंतर समीकरण के साथ एक मौलिक संबंध है।<ref>{{harvnb|Hille|1976|pages=374–401}}</ref> मान लीजिए <math>f_1(z)</math> और <math>f_2(z)</math> के दो [[रोन्स्कियन|रैखिक रूप]] से स्वतंत्र होलोमोर्फिकसमाधान हों | ||
:<math>\frac{d^2f}{dz^2}+ Q(z) f(z)=0.</math> | :<math>\frac{d^2f}{dz^2}+ Q(z) f(z)=0.</math> | ||
फिर अनुपात <math>g(z)=f_1(z)/f_2(z)</math> संतुष्ट | फिर अनुपात <math>g(z)=f_1(z)/f_2(z)</math> संतुष्ट करता है | ||
:<math>(Sg)(z) = 2Q(z)</math> | :<math>(Sg)(z) = 2Q(z)</math> | ||
जिस डोमेन पर <math>f_1(z)</math> और <math>f_2(z)</math> परिभाषित हैं, और <math>f_2(z) \ne 0.</math> इसका विपरीत भी सत्य है: यदि ऐसा है {{math|''g''}} उपस्थित है, और यह एक सरल रूप से जुड़े डोमेन पर | जिस डोमेन पर <math>f_1(z)</math> और <math>f_2(z)</math> परिभाषित हैं, और <math>f_2(z) \ne 0.</math> इसका विपरीत भी सत्य है: यदि ऐसा है {{math|''g''}} उपस्थित है, और यह एक सरल रूप से जुड़े डोमेन पर होलोमोर्फिक है, तो दो समाधान हैं <math>f_1</math> और <math>f_2</math> मिल सकते है, और इसके अलावा, ये एक सामान्य पैमाने के कारक [[तक]] अद्वितीय हैं। | ||
जब एक रैखिक दूसरे क्रम के साधारण अंतर समीकरण को उपरोक्त रूप में लाया जा सकता है, तो | जब एक रैखिक दूसरे क्रम के साधारण अंतर समीकरण को उपरोक्त रूप में लाया जा सकता है, तो परिणामी {{math|''Q''}} को कभी-कभी समीकरण का Q-मान कहा जाता है। | ||
ध्यान दें कि गॉसियन [[हाइपरज्यामितीय विभेदक समीकरण]] को उपरोक्त रूप में लाया जा सकता है, और इस प्रकार | ध्यान दें कि गॉसियन [[हाइपरज्यामितीय विभेदक समीकरण]] को उपरोक्त रूप में लाया जा सकता है, और इस प्रकार हाइपरज्यामितीय समीकरण के समाधान के जोड़े इस तरह से संबंधित हैं। | ||
==असमानता के लिए शर्तें== | ==असमानता के लिए शर्तें== | ||
यदि यूनिट डिस्क, {{math|'''D'''}} पर {{math|''f''}} एक | यदि यूनिट डिस्क, {{math|'''D'''}} पर {{math|''f''}} एक होलोमोर्फिकफलन है, तो डब्ल्यू क्रॉस (1932) और [[ज़ीव नेहारी]] (1949) ने सिद्ध किया कि {{math|''f''}} के लिए एक आवश्यक शर्त है कि वह एकसंयोजक हो। <ref>{{harvnb|Lehto|1987|p=60}}</ref> | ||
:<math>|S(f)| \le 6(1-|z|^2)^{-2}.</math> | :<math>|S(f)| \le 6(1-|z|^2)^{-2}.</math> | ||
इसके विपरीत यदि {{math|''f''(''z'')}}, {{math|'''D'''}} पर एक | इसके विपरीत यदि {{math|''f''(''z'')}}, {{math|'''D'''}} पर एक होलोमोर्फिकफलन है तो यह संतोषजनक है | ||
:<math> |S(f)(z)| \le 2(1-|z|^2)^{-2},</math> | :<math> |S(f)(z)| \le 2(1-|z|^2)^{-2},</math> | ||
Line 76: | Line 76: | ||
श्वार्ज़ियन व्युत्पन्न और संबंधित दूसरे क्रम के साधारण अंतर समीकरण का उपयोग ऊपरी आधे-तल या इकाई चक्र और जटिल तल में किसी भी घिरे बहुभुज के बीच [[रीमैन मैपिंग]] को निर्धारित करने के लिए किया जा सकता है, जिसके किनारे गोलाकार चाप या सीधी रेखाएं हैं। सीधे किनारों वाले बहुभुजों के लिए, यह श्वार्ज़-क्रिस्टोफेल मैपिंग को कम कर देता है, जिसे श्वार्ज़ियन व्युत्पन्न का उपयोग किए बिना सीधे प्राप्त किया जा सकता है। एकीकरण के स्थिरांक के रूप में उत्पन्न होने वाले सहायक पैरामीटर दूसरे क्रम के अंतर समीकरण के साधारण अंतर समीकरणों के वर्णक्रमीय सिद्धांत से संबंधित हैं। पहले से ही 1890 में [[फ़ेलिक्स क्लेन]] ने लैमे फलन|और लैमे अंतर समीकरण के संदर्भ में चतुर्भुजों के स्थितियों का अध्ययन किया था।<ref>{{harvnb|Nehari|1952}}</ref><ref>{{harvnb|von Koppenfels|Stallmann|1959}}</ref><ref>{{harvnb|Klein|1922}}</ref> | श्वार्ज़ियन व्युत्पन्न और संबंधित दूसरे क्रम के साधारण अंतर समीकरण का उपयोग ऊपरी आधे-तल या इकाई चक्र और जटिल तल में किसी भी घिरे बहुभुज के बीच [[रीमैन मैपिंग]] को निर्धारित करने के लिए किया जा सकता है, जिसके किनारे गोलाकार चाप या सीधी रेखाएं हैं। सीधे किनारों वाले बहुभुजों के लिए, यह श्वार्ज़-क्रिस्टोफेल मैपिंग को कम कर देता है, जिसे श्वार्ज़ियन व्युत्पन्न का उपयोग किए बिना सीधे प्राप्त किया जा सकता है। एकीकरण के स्थिरांक के रूप में उत्पन्न होने वाले सहायक पैरामीटर दूसरे क्रम के अंतर समीकरण के साधारण अंतर समीकरणों के वर्णक्रमीय सिद्धांत से संबंधित हैं। पहले से ही 1890 में [[फ़ेलिक्स क्लेन]] ने लैमे फलन|और लैमे अंतर समीकरण के संदर्भ में चतुर्भुजों के स्थितियों का अध्ययन किया था।<ref>{{harvnb|Nehari|1952}}</ref><ref>{{harvnb|von Koppenfels|Stallmann|1959}}</ref><ref>{{harvnb|Klein|1922}}</ref> | ||
मान लीजिए {{math|Δ}} एक गोलाकार चाप बहुभुज है जिसके कोण {{math|{{pi}}''α''<sub>1</sub>, ..., {{pi}}''α''<sub>''n''</sub>}} दक्षिणावर्त क्रम में हैं। मान लीजिए {{math|''f'' : '''H''' → Δ}} एक | मान लीजिए {{math|Δ}} एक गोलाकार चाप बहुभुज है जिसके कोण {{math|{{pi}}''α''<sub>1</sub>, ..., {{pi}}''α''<sub>''n''</sub>}} दक्षिणावर्त क्रम में हैं। मान लीजिए {{math|''f'' : '''H''' → Δ}} एक होलोमोर्फिकमानचित्र है जो सीमाओं के बीच के मानचित्र तक लगातार फैला हुआ है। मान लीजिए कि शीर्ष वास्तविक अक्ष पर बिंदु {{math|''a''<sub>1</sub>, ..., ''a<sub>n</sub>''}} के अनुरूप हैं। तब {{math|1=''p''(''x'') = ''S''(''f'')(''x'')}}, x वास्तविक के लिए वास्तविक-मूल्यवान है, न कि किसी एक बिंदु के लिए। श्वार्ज प्रतिबिंब सिद्धांत द्वारा {{math|''p''(''x'')}}, {{math|''a<sub>i</sub>''}} पर दोहरे ध्रुव के साथ जटिल तल पर एक तर्कसंगत फलनतक विस्तारित होता है: | ||
:<math> p(z)=\sum_{i=1}^n \frac{(1-\alpha_i^2)}{2(z-a_i)^2} + \frac{\beta_i}{z-a_i}.</math> | :<math> p(z)=\sum_{i=1}^n \frac{(1-\alpha_i^2)}{2(z-a_i)^2} + \frac{\beta_i}{z-a_i}.</math> | ||
Line 87: | Line 87: | ||
:<math> f(z) = {u_1(z)\over u_2(z)},</math> | :<math> f(z) = {u_1(z)\over u_2(z)},</math> | ||
जहां <math>u_1(z)</math> और <math>u_2(z)</math> रैखिक दूसरे क्रम के साधारण अंतर समीकरण के रैखिक रूप से स्वतंत्र | जहां <math>u_1(z)</math> और <math>u_2(z)</math> रैखिक दूसरे क्रम के साधारण अंतर समीकरण के रैखिक रूप से स्वतंत्र होलोमोर्फिकसमाधान हैं | ||
:<math> u^{\prime\prime}(z) + \tfrac{1}{2} p(z)u(z)=0.</math> | :<math> u^{\prime\prime}(z) + \tfrac{1}{2} p(z)u(z)=0.</math> | ||
Line 111: | Line 111: | ||
:<math> g= S(\tilde{f}),</math> | :<math> g= S(\tilde{f}),</math> | ||
जो सार्वभौमिक टेइचमुलर स्थान को [[एकसमान मानदंड]] के साथ {{math|'''D'''}} पर बंधे | जो सार्वभौमिक टेइचमुलर स्थान को [[एकसमान मानदंड]] के साथ {{math|'''D'''}} पर बंधे होलोमोर्फिकफलन {{math|''g''}} के स्थान के एक विवृत उपसमुच्चय {{math|''U''}} को एम्बेड करता है। [[फ्रेडरिक गेहरिंग]] ने 1977 में दिखाया कि {{math|''U''}} एकसमान फलनों के श्वार्ज़ियन व्युत्पन्नों के संवृत उपसमुच्चय का आंतरिक भाग है।<ref>{{harvnb|Ahlfors|1966}}</ref><ref>{{harvnb|Lehto|1987}}</ref><ref>{{harvnb|Imayoshi|Taniguchi|1992}}</ref> | ||
1 से अधिक जीनस की एक [[कॉम्पैक्ट रीमैन सतह]] {{math|''S''}} 1 के लिए, इसका [[सार्वभौमिक आवरण स्थान]] इकाई डिस्क है {{math|'''D'''}} है जिस पर इसका मूल समूह {{math|Γ}} मोबियस परिवर्तनों द्वारा कार्य करता है। {{math|''S''}} के टेइचमुलर स्थान को {{math|Γ}} के तहत सार्वभौमिक टेइचमुलर स्थान अपरिवर्तनीय के उप-स्थान से पहचाना जा सकता है। | 1 से अधिक जीनस की एक [[कॉम्पैक्ट रीमैन सतह]] {{math|''S''}} 1 के लिए, इसका [[सार्वभौमिक आवरण स्थान]] इकाई डिस्क है {{math|'''D'''}} है जिस पर इसका मूल समूह {{math|Γ}} मोबियस परिवर्तनों द्वारा कार्य करता है। {{math|''S''}} के टेइचमुलर स्थान को {{math|Γ}} के तहत सार्वभौमिक टेइचमुलर स्थान अपरिवर्तनीय के उप-स्थान से पहचाना जा सकता है। होलोमोर्फिकफलन {{math|''g''}} में वह गुण होता है | ||
:<math>g(z) \, dz^2</math> | :<math>g(z) \, dz^2</math> | ||
Line 124: | Line 124: | ||
: <math>S(f \circ g) = \left( S(f)\circ g\right ) \cdot(g')^2+S(g).</math> | : <math>S(f \circ g) = \left( S(f)\circ g\right ) \cdot(g')^2+S(g).</math> | ||
श्वार्ज़ियन व्युत्पन्न को वृत्तपर डिग्री 2 के घनत्व के मॉड्यूल में गुणांक के साथ वृत्त के | श्वार्ज़ियन व्युत्पन्न को वृत्तपर डिग्री 2 के घनत्व के मॉड्यूल में गुणांक के साथ वृत्त के होलोमोर्फिकसमूह के निरंतर 1-सहचक्र या [[पार समरूपता|पार]] होलोमोर्फिकके रूप में व्याख्या करने की अनुमति देता है।<ref>{{harvnb|Ovsienko|Tabachnikov|2005|pages=21–22}}</ref> | ||
मान लीजिए {{math|''F''<sub>''λ''</sub>('''S'''<sup>1</sup>)}}डिग्री के [[टेंसर घनत्व]] का स्थान हो {{math|''λ''}} पर {{math|'''S'''<sup>1</sup>}}. अभिविन्यास-संरक्षण भिन्नताओं का समूह {{math|'''S'''<sup>1</sup>, Diff('''S'''<sup>1</sup>)}}, पर कार्य करता है {{math|''F''<sub>''λ''</sub>('''S'''<sup>1</sup>)}} पुशफॉरवर्ड (अंतर) के माध्यम से। यदि{{math|''f''}} का एक तत्व है {{math|Diff('''S'''<sup>1</sup>)}} फिर मैपिंग पर विचार करें | मान लीजिए {{math|''F''<sub>''λ''</sub>('''S'''<sup>1</sup>)}}डिग्री के [[टेंसर घनत्व]] का स्थान हो {{math|''λ''}} पर {{math|'''S'''<sup>1</sup>}}. अभिविन्यास-संरक्षण भिन्नताओं का समूह {{math|'''S'''<sup>1</sup>, Diff('''S'''<sup>1</sup>)}}, पर कार्य करता है {{math|''F''<sub>''λ''</sub>('''S'''<sup>1</sup>)}} पुशफॉरवर्ड (अंतर) के माध्यम से। यदि{{math|''f''}} का एक तत्व है {{math|Diff('''S'''<sup>1</sup>)}} फिर मैपिंग पर विचार करें | ||
Line 136: | Line 136: | ||
:<math>H^1(\text{Diff}(\mathbf{S}^1);F_\lambda (\mathbf{S}^1)) = \mathbf{R}\,\, \mathrm{for} \,\, \lambda=0,1,2\,\, \mathrm{and} \,\,(0) \,\,\mathrm{otherwise.}</math> | :<math>H^1(\text{Diff}(\mathbf{S}^1);F_\lambda (\mathbf{S}^1)) = \mathbf{R}\,\, \mathrm{for} \,\, \lambda=0,1,2\,\, \mathrm{and} \,\,(0) \,\,\mathrm{otherwise.}</math> | ||
ध्यान दें कि यदि {{math|''G''}} एक समूह है और {{math|''M''}} ए {{math|''G''}}-मॉड्यूल, फिर एक क्रॉस्ड समरूपताएँ को परिभाषित करने वाली पहचान {{math|''c''}} का {{math|''G''}} में {{math|''M''}} को समूहों के मानक | ध्यान दें कि यदि {{math|''G''}} एक समूह है और {{math|''M''}} ए {{math|''G''}}-मॉड्यूल, फिर एक क्रॉस्ड समरूपताएँ को परिभाषित करने वाली पहचान {{math|''c''}} का {{math|''G''}} में {{math|''M''}} को समूहों के मानक होलोमोर्फिकके संदर्भ में व्यक्त किया जा सकता है: यह एक होलोमोर्फिकमें इनकोडिंग किया गया है {{phi}} का {{math|''G''}} अर्धप्रत्यक्ष उत्पाद में <math>M\rtimes G</math> ऐसी है कि की रचना {{phi}} प्रक्षेपण के साथ <math>M\rtimes G</math> पर {{math|''G''}} पहचान मानचित्र है; पत्राचार मानचित्र द्वारा होता है {{math|1=''C''(''g'') = (''c''(''g''), ''g'')}}. क्रॉस्ड समरूपताएँ एक सदिश स्थान बनाते हैं और इसमें उप-स्थान के रूप में सहसीमा क्रॉस्ड समरूपताएँ सम्मलित होते हैं {{math|1=''b''(''g'') = ''g'' ⋅ ''m'' − ''m''}} के लिए {{math|''m''}} में {{math|''M''}}. एक साधारण औसत तर्क यह दर्शाता है कि, यदि {{math|''K''}} एक सघन समूह है और {{math|''V''}} एक टोपोलॉजिकल सदिश स्थान जिस पर K लगातार कार्य करता है, तो उच्च कोहोलॉजी समूह गायब हो जाते हैं {{math|1=''H''<sup>''m''</sup>(''K'', ''V'') = (0)}} के लिए {{math|''m'' > 0}}. विशेष रूप से 1-सहचक्र के लिए χ साथ | ||
:<math>\chi(xy) = \chi(x) + x\cdot \chi(y),</math> | :<math>\chi(xy) = \chi(x) + x\cdot \chi(y),</math> | ||
Line 145: | Line 145: | ||
:<math>m=\int_K \chi(y)\,dy.</math> | :<math>m=\int_K \chi(y)\,dy.</math> | ||
इस प्रकार औसत से यह माना जा सकता है कि {{math|''c''}}, {{math|Rot('''S'''<sup>1</sup>)}} में {{math|''x''}} के लिए सामान्यीकरण स्थिति {{math|1=''c''(''x'') = 0}} को संतुष्ट करता है। ध्यान दें कि यदि {{math|''G''}} में कोई तत्व {{math|''x''}},में {{math|1=''c''(''x'') = 0}} को संतुष्ट करता है तो {{math|1=''C''(''x'') = (0,''x'')}}। लेकिन फिर, चूँकि {{math|''C''}} एक | इस प्रकार औसत से यह माना जा सकता है कि {{math|''c''}}, {{math|Rot('''S'''<sup>1</sup>)}} में {{math|''x''}} के लिए सामान्यीकरण स्थिति {{math|1=''c''(''x'') = 0}} को संतुष्ट करता है। ध्यान दें कि यदि {{math|''G''}} में कोई तत्व {{math|''x''}},में {{math|1=''c''(''x'') = 0}} को संतुष्ट करता है तो {{math|1=''C''(''x'') = (0,''x'')}}। लेकिन फिर, चूँकि {{math|''C''}} एक होलोमोर्फिकहै, {{math|1=''C''(''xgx''<sup>−1</sup>) = ''C''(''x'')''C''(''g'')''C''(''x'')<sup>−1</sup>}}, जिससे कि {{math|''c''}} समतुल्य स्थिति {{math|1=''c''(''xgx''<sup>−1</sup>) = ''x'' ⋅ ''c''(''g'')}} को संतुष्ट करे। इस प्रकार यह माना जा सकता है कि सहचक्र इन सामान्यीकरण शर्तों को पूरा करता है {{math|Rot('''S'''<sup>1</sup>)}}. श्वार्ज़ियन व्युत्पन्न वास्तव में जब भी गायब हो जाता है {{math|''x''}} एक मोबियस परिवर्तन के अनुरूप है {{math|SU(1,1)}}. नीचे चर्चा की गई अन्य दो 1-चक्र केवल विलुप्त हो जाते हैं {{math|1=Rot('''S'''<sup>1</sup>) (''λ'' = 0, 1)}}. | ||
इस परिणाम का एक अत्यंत छोटा संस्करण है जो 1-सहचक्र देता है {{math|Vect('''S'''<sup>1</sup>)}}, चिकने सदिश क्षेत्रों का बीजगणित, और इसलिए [[विट बीजगणित]] के लिए, त्रिकोणमितीय बहुपद सदिश क्षेत्रों का उप बीजगणित हैं। दरअसल, जब {{math|''G''}} एक लाई समूह और की कार्रवाई है {{math|''G''}} पर {{math|''M''}} सुचारू है, लाई बीजगणित (पहचान पर | इस परिणाम का एक अत्यंत छोटा संस्करण है जो 1-सहचक्र देता है {{math|Vect('''S'''<sup>1</sup>)}}, चिकने सदिश क्षेत्रों का बीजगणित, और इसलिए [[विट बीजगणित]] के लिए, त्रिकोणमितीय बहुपद सदिश क्षेत्रों का उप बीजगणित हैं। दरअसल, जब {{math|''G''}} एक लाई समूह और की कार्रवाई है {{math|''G''}} पर {{math|''M''}} सुचारू है, लाई बीजगणित (पहचान पर होलोमोर्फिकके व्युत्पन्न) के संगत होलोमोर्फिकको ले कर प्राप्त किए गए पार होलोमोर्फिकका एक लाई बीजगणितीय संस्करण है। यह भी समझ आता है {{math|Diff('''S'''<sup>1</sup>)}} और 1-सहचक्र की ओर ले जाता है | ||
:<math> s\left(f\, {d\over d\theta}\right) = {d^3f\over d\theta^3}\,(d\theta)^2</math> | :<math> s\left(f\, {d\over d\theta}\right) = {d^3f\over d\theta^3}\,(d\theta)^2</math> | ||
Line 153: | Line 153: | ||
:<math>s([X,Y])=X\cdot s(Y) -Y\cdot s(X).</math> | :<math>s([X,Y])=X\cdot s(Y) -Y\cdot s(X).</math> | ||
ली बीजगणित मामले में, सह-सीमा मानचित्रों का रूप होता है {{math|1=''b''(''X'') = ''X'' ⋅ ''m''}} के लिए {{math|''m''}} में {{math|''M''}}. दोनों ही स्थितियों में 1-कोहोमोलॉजी को क्रॉस्ड समरूपताएँ मॉड्यूलो सहसीमा के स्थान के रूप में परिभाषित किया गया है। समूह | ली बीजगणित मामले में, सह-सीमा मानचित्रों का रूप होता है {{math|1=''b''(''X'') = ''X'' ⋅ ''m''}} के लिए {{math|''m''}} में {{math|''M''}}. दोनों ही स्थितियों में 1-कोहोमोलॉजी को क्रॉस्ड समरूपताएँ मॉड्यूलो सहसीमा के स्थान के रूप में परिभाषित किया गया है। समूह होलोमोर्फिकऔर लाई बीजगणित होलोमोर्फिकके बीच प्राकृतिक पत्राचार वैन एस्ट समावेशन मानचित्र की ओर ले जाता है | ||
:<math>H^1(\operatorname{Diff}(\mathbf{S}^1);F_\lambda (\mathbf{S}^1)) \hookrightarrow H^1(\operatorname{Vect}(\mathbf{S}^1);F_\lambda (\mathbf{S}^1)),</math> | :<math>H^1(\operatorname{Diff}(\mathbf{S}^1);F_\lambda (\mathbf{S}^1)) \hookrightarrow H^1(\operatorname{Vect}(\mathbf{S}^1);F_\lambda (\mathbf{S}^1)),</math> | ||
इस तरह से गणना को [[झूठ बीजगणित सहसंरचना|लाई बीजगणित सहसंरचना]] तक कम किया जा सकता है। निरंतरता से यह क्रॉस समरूपताएँ की गणना को कम कर देता है {{phi}} विट बीजगणित में {{math|''F''<sub>''λ''</sub>('''S'''<sup>1</sup>)}}. समूह पार | इस तरह से गणना को [[झूठ बीजगणित सहसंरचना|लाई बीजगणित सहसंरचना]] तक कम किया जा सकता है। निरंतरता से यह क्रॉस समरूपताएँ की गणना को कम कर देता है {{phi}} विट बीजगणित में {{math|''F''<sub>''λ''</sub>('''S'''<sup>1</sup>)}}. समूह पार होलोमोर्फिकपर सामान्यीकरण की स्थिति निम्नलिखित अतिरिक्त शर्तों को दर्शाती है {{phi}}: | ||
:<math>\varphi(\operatorname{Ad}(x) X) = x\cdot \varphi(X),\,\, \varphi(d/d\theta) = 0</math> | :<math>\varphi(\operatorname{Ad}(x) X) = x\cdot \varphi(X),\,\, \varphi(d/d\theta) = 0</math> | ||
Line 170: | Line 170: | ||
:<math> d_m \cdot v_n = -(n+\lambda m)v_{n+m},\,\, g_\zeta \cdot v_n = \zeta^{n} v_n,</math> | :<math> d_m \cdot v_n = -(n+\lambda m)v_{n+m},\,\, g_\zeta \cdot v_n = \zeta^{n} v_n,</math> | ||
के लिए {{math|''g''<sub>ζ</sub>}} में {{math|1=Rot('''S'''<sup>1</sup>) = '''T'''}}. ये मजबूर करता है {{math|1={{phi}}(''d''<sub>''n''</sub>) = ''a''<sub>''n''</sub> ⋅ ''v''<sub>''n'' </sub>}} उपयुक्त गुणांकों के लिए {{math|''a''<sub>''n''</sub>}}. पार की गई | के लिए {{math|''g''<sub>ζ</sub>}} में {{math|1=Rot('''S'''<sup>1</sup>) = '''T'''}}. ये मजबूर करता है {{math|1={{phi}}(''d''<sub>''n''</sub>) = ''a''<sub>''n''</sub> ⋅ ''v''<sub>''n'' </sub>}} उपयुक्त गुणांकों के लिए {{math|''a''<sub>''n''</sub>}}. पार की गई होलोमोर्फिकस्थिति | ||
{{math|1={{phi}}([''X'',''Y'']) = ''X''{{phi}}(''Y'') – ''Y''{{phi}}(''X'')}} के लिए पुनरावृत्ति संबंध देता है {{math|''a''<sub>''n''</sub>}}: | {{math|1={{phi}}([''X'',''Y'']) = ''X''{{phi}}(''Y'') – ''Y''{{phi}}(''X'')}} के लिए पुनरावृत्ति संबंध देता है {{math|''a''<sub>''n''</sub>}}: | ||
Line 193: | Line 193: | ||
श्वार्ज़ियन व्युत्पन्न और {{math|Diff('''S'''<sup>1</sup>)}} पर परिभाषित अन्य 1-सहचक्र को जटिल तल में विवृत सेटों के बीच बायोलोमोर्फिक तक बढ़ाया जा सकता है। इस स्थिति में स्थानीय विवरण विश्लेषणात्मक छद्म समूहों के सिद्धांत की ओर ले जाता है, जो अनंत-आयामी समूहों के सिद्धांत को औपचारिक बनाता है और ली बीजगणित का अध्ययन पहली बार 1910 के दशक में एली कार्टन द्वारा किया गया था। यह रीमैन सतहों पर एफ़िन और प्रोजेक्टिव संरचनाओं के साथ-साथ श्वार्ज़ियन या प्रोजेक्टिव सम्बन्ध के सिद्धांत से संबंधित है, जिस पर गनिंग, शिफ़र और हॉले ने चर्चा की है। | श्वार्ज़ियन व्युत्पन्न और {{math|Diff('''S'''<sup>1</sup>)}} पर परिभाषित अन्य 1-सहचक्र को जटिल तल में विवृत सेटों के बीच बायोलोमोर्फिक तक बढ़ाया जा सकता है। इस स्थिति में स्थानीय विवरण विश्लेषणात्मक छद्म समूहों के सिद्धांत की ओर ले जाता है, जो अनंत-आयामी समूहों के सिद्धांत को औपचारिक बनाता है और ली बीजगणित का अध्ययन पहली बार 1910 के दशक में एली कार्टन द्वारा किया गया था। यह रीमैन सतहों पर एफ़िन और प्रोजेक्टिव संरचनाओं के साथ-साथ श्वार्ज़ियन या प्रोजेक्टिव सम्बन्ध के सिद्धांत से संबंधित है, जिस पर गनिंग, शिफ़र और हॉले ने चर्चा की है। | ||
{{math|'''C'''}} पर एक | {{math|'''C'''}} पर एक होलोमोर्फिकछद्म समूह{{math|Γ}} में विवृत समूह {{math|''U''}} और {{math|''V''}} के बीच [[बिहोलोमोर्फिज्म]] {{math|''f''}} का एक संग्रह होता है जिसमें प्रत्येक विवृत{{math|''U''}} के लिए पहचान मानचित्र सम्मलित होते हैं, जो विवृत को प्रतिबंधित करने के तहत संवृत होता है, जो संरचना (जब संभव हो) के तहत संवृत होता है, जो व्युत्क्रम लेने के तहत संवृत कर दिया गया है और इस तरह कि यदि कोई बायोलोमोर्फिज्म स्थानीय रूप से {{math|Γ}} में है, तो यह भी {{math|Γ}} में होता है। छद्म समूह को सकर्मक कहा जाता है यदि, {{math|'''C'''}} में {{math|''z''}} और {{math|''w''}} दिए जाने पर, {{math|Γ}} में एक बायोलोमोर्फिज्म {{math|''f''}} है जैसे कि {{math|1=''f''(''z'') = ''w''}}। सकर्मक छद्म समूहों का एक विशेष स्थिति वे हैं जो सपाट हैं, अर्थात जिनमें सभी जटिल अनुवाद {{math|1=''T''<sub>''b''</sub>(''z'') = ''z'' + ''b''}} सम्मलित हैं। मान लीजिए कि संरचना के अंतर्गत {{math|''G''}}, [[औपचारिक शक्ति श्रृंखला]] परिवर्तनों {{math|1=''F''(z) = ''a''<sub>1</sub>''z'' + ''a''<sub>2</sub>''z''<sup>2</sup> + ....}} का समूह है, जिसमें {{math|''a''<sub>1</sub> ≠ 0}} है। एक होलोमोर्फिकछद्म समूह {{math|Γ}}, {{math|''G''}} के एक उपसमूह {{math|''A''}} को परिभाषित करता है, अर्थात् टेलर श्रृंखला के विस्तार द्वारा परिभाषित उपसमूह {{math|Γ}} के तत्वों {{math|''f''}} के 0 (या "जेट") के साथ {{math|1=''f''(0) = 0}}. {{math|''U''}} पर एक बायोलोमोर्फिज्म एफ {{math|Γ}} में निहित है यदि और केवल यदि {{math|''T''<sub>–''f''(''a'')</sub> ∘ ''f'' ∘ ''T''<sub>''a''</sub>}} की पावर श्रृंखला {{math|''U''}} में प्रत्येक {{math|''a''}} के लिए {{math|''A''}} में निहित है: दूसरे शब्दों में {{math|''f''}} पर {{math|''f''}} के लिए औपचारिक पावर श्रृंखला दी गई है {{math|''A''}} के एक तत्व द्वारा {{math|''z''}} को {{math|''z'' − ''a''}} द्वारा प्रतिस्थापित किया गया; या संक्षेप में कहें तो {{math|''f''}} के सभी जेट {{math|''A''}} में स्थित हैं।<ref name=":1">{{harvnb|Sternberg|1983|pages=421–424}}</ref> | ||
समूह {{math|''G''}} में {{math|''k''}}-जेड के समूह {{math|''G''<sub>''k''</sub>}} पर एक प्राकृतिक | समूह {{math|''G''}} में {{math|''k''}}-जेड के समूह {{math|''G''<sub>''k''</sub>}} पर एक प्राकृतिक होलोमोर्फिकहै जो कि शब्द ''z<sup>k</sup>'' तक ली गई काटे गए पावर श्रृंखला को लेकर प्राप्त की गई है। यह समूह घात {{math|''k''}} वाले बहुपदों के स्थान पर ({{math|''k''}} से अधिक क्रम के पदों को छोटा करके) निष्कपट से कार्य करता है। ट्रंकेशन इसी तरह {{math|''G''<sub>''k''</sub>}} पर {{math|''G''<sub>''k'' − 1</sub>}} की होलोमोर्फिकको परिभाषित करते हैं; कर्नेल में f{{math|1=''f''(''z'') = ''z'' + ''bz''<sup>''k''</sup>}} के साथ मानचित्र f सम्मलित हैं, एबेलियन भी ऐसा ही है। इस प्रकार समूह ''G<sub>k</sub>'' हल करने योग्य है, एक तथ्य इस तथ्य से भी स्पष्ट है कि यह एकपदी के आधार के लिए त्रिकोणीय रूप में है। | ||
एक समतल छद्मसमूह {{math|Γ}} को अंतर समीकरणों द्वारा परिभाषित किया जाता है यदि कोई परिमित पूर्णांक है {{math|''k''}} ऐसा कि {{math|''A''}} में <math>''G''<sub>''k''</sub></math> यथातथ्य है और छवि एक संवृत उपसमूह है। ऐसे सबसे छोटे {{math|''k''}} {{math|Γ}} का क्रम कहा जाता है। | एक समतल छद्मसमूह {{math|Γ}} को अंतर समीकरणों द्वारा परिभाषित किया जाता है यदि कोई परिमित पूर्णांक है {{math|''k''}} ऐसा कि {{math|''A''}} में <math>''G''<sub>''k''</sub></math> यथातथ्य है और छवि एक संवृत उपसमूह है। ऐसे सबसे छोटे {{math|''k''}} {{math|Γ}} का क्रम कहा जाता है। | ||
Line 209: | Line 209: | ||
<math> S(f\circ g) = g_*S(f) + S(g)</math> | <math> S(f\circ g) = g_*S(f) + S(g)</math> | ||
इस प्रकार | इस प्रकार होलोमोर्फिकद्विघात अंतर में गुणांक के साथ बायोलोमोर्फिज्म के छद्म समूह के लिए 1-सहचक्र का एनालॉग है। उसी प्रकार <math> \varphi_0(f) = \log f^\prime </math> और <math>\varphi_1(f) = f^{\prime\prime}/f^\prime</math> होलोमोर्फिकफलन और होलोमोर्फिकअंतरों में मूल्यों के साथ एक ही छद्म समूह के लिए 1-सहचक्र हैं। सामान्यतः 1-सहचक्र को किसी भी क्रम के होलोमोर्फिकअंतर के लिए परिभाषित किया जा सकता है | ||
:<math>\varphi(f\circ g) = g_*\varphi(f) + \varphi(g).</math> | :<math>\varphi(f\circ g) = g_*\varphi(f) + \varphi(g).</math> | ||
उउपरोक्त पहचान को समावेशन मानचित्र {{math|''j''}} पर क्रियान्वित करने पर, यह इस प्रकार है कि {{math|1={{phi}}(''j'') = 0}}; और इसलिए यदि {{math|''f''<sub>1</sub>}}, {{math|''f''<sub>2</sub>}} का प्रतिबंध है, तो {{math|1=''f''<sub>2</sub> ∘ ''j'' = ''f''<sub>1</sub>}}, तब {{math|1={{phi}}(''f''<sub>1</sub>) = {{phi}} (''f''<sub>2</sub>)}}.दूसरी ओर, | उउपरोक्त पहचान को समावेशन मानचित्र {{math|''j''}} पर क्रियान्वित करने पर, यह इस प्रकार है कि {{math|1={{phi}}(''j'') = 0}}; और इसलिए यदि {{math|''f''<sub>1</sub>}}, {{math|''f''<sub>2</sub>}} का प्रतिबंध है, तो {{math|1=''f''<sub>2</sub> ∘ ''j'' = ''f''<sub>1</sub>}}, तब {{math|1={{phi}}(''f''<sub>1</sub>) = {{phi}} (''f''<sub>2</sub>)}}.दूसरी ओर, होलोमोर्फिकसदिश क्षेत्रों द्वारा परिभाषित स्थानीय होलोमोर्फिकप्रवाह को लेते हुए - सदिश क्षेत्रों का घातांक - स्थानीय बायोलोमोर्फिज्म का होलोमोर्फिकछद्म समूह होलोमोर्फिकसदिश क्षेत्रों द्वारा उत्पन्न होता है। यदि 1-सहचक्र {{phi}} उपयुक्त निरंतरता या विश्लेषणात्मकता स्थितियों को संतुष्ट करता है, तो यह होलोमोर्फिकसदिश क्षेत्र 1-सहचक्र को प्रेरित करता है, जो प्रतिबंध के साथ भी संगत है। तदनुसार, यह {{math|'''C'''}} पर होलोमोर्फिकसदिश क्षेत्र पर 1-सहचक्र को परिभाषित करता है: | ||
:<math>\varphi([X,Y]) = X \varphi(Y) - Y \varphi(X).</math> | :<math>\varphi([X,Y]) = X \varphi(Y) - Y \varphi(X).</math> | ||
आधार {{math|1=''d''<sub>''n''</sub> = ''z''<sup>''n''+1</sup> ''d''/''dz'' (''n'' ≥ −1)}} के साथ बहुपद सदिश क्षेत्रों के ली बीजगणित को सीमित करते हुए, इन्हें ली बीजगणित कोहोमोलॉजी के समान तरीकों का उपयोग करके निर्धारित किया जा सकता है (जैसा कि पार किए गए | आधार {{math|1=''d''<sub>''n''</sub> = ''z''<sup>''n''+1</sup> ''d''/''dz'' (''n'' ≥ −1)}} के साथ बहुपद सदिश क्षेत्रों के ली बीजगणित को सीमित करते हुए, इन्हें ली बीजगणित कोहोमोलॉजी के समान तरीकों का उपयोग करके निर्धारित किया जा सकता है (जैसा कि पार किए गए होलोमोर्फिकपर पिछले अनुभाग में)। वहां गणना क्रम {{math|''k''}}, के घनत्वों पर कार्य करने वाले संपूर्ण विट बीजगणित के लिए थी, जबकि यहां यह केवल क्रम {{math|''k''}} के समरूपता(या बहुपद) अंतरों पर कार्य करने वाले उपबीजगणित के लिए थी। फिर से, यह मानते हुए कि {{phi}} {{math|'''C'''}} के घूर्णन पर गायब हो जाता है, गैर-शून्य 1-सहचक्र होते हैं, जो अदिश गुणकों तक अद्वितीय होते हैं। केवल समान व्युत्पन्न सूत्र द्वारा दिए गए घात 0, 1 और 2 के अंतरों के लिए | ||
:<math>\varphi_k\left(p(z) {d\over dz}\right) = p^{(k+1)}(z) \, (dz)^k,</math> | :<math>\varphi_k\left(p(z) {d\over dz}\right) = p^{(k+1)}(z) \, (dz)^k,</math> |
Revision as of 09:23, 27 July 2023
गणित में, श्वार्ज़ियन व्युत्पन्न व्युत्पन्न के समान एक ऑपरेटर है जो मोबियस परिवर्तनों के तहत अपरिवर्तनीय है। इस प्रकार, यह जटिल प्रक्षेप्य रेखा के सिद्धांत में और विशेष रूप से, मॉड्यूलर रूपों और पराज्यमितीय फ़लनो के सिद्धांत में होता है। यह एकसमान फ़लनो, अनुरूप मानचित्रण (फ़लन) और टीचमुलर रिक्त स्थान के सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है। इसका नाम जर्मन गणितज्ञ हरमन श्वार्ज़ के नाम पर रखा गया है।
परिभाषा
जटिल चर z के होलोमार्फिक फलन f के श्वार्ज़ियन व्युत्पन्न को परिभाषित किया गया है
वही सूत्र एक वास्तविक चर के C3 फलन के श्वार्ज़ियन व्युत्पन्न को भी परिभाषित करता है। वैकल्पिक संकेतन
अधिकांशतःप्रयोग किया जाता है।
गुण
किसी भी मोबियस परिवर्तन का श्वार्ज़ियन व्युत्पन्न
शून्य है। इसके विपरीत, मोबियस परिवर्तन इस गुण का एकमात्र फलन हैं। इस प्रकार, श्वार्ज़ियन व्युत्पन्न सटीक रूप से उस डिग्री को मापता है जिस तक कोई फलन मोबियस परिवर्तन होने में विफल रहता है।[1]
यदि g एक मोबियस परिवर्तन है, तो रचना g o f में f के समान श्वार्ज़ियन व्युत्पन्न है; और दूसरी ओर, f o g का श्वार्ज़ियन व्युत्पन्न श्रृंखला नियम द्वारा दिया गया है
अधिक सामान्यतः, किसी भी पर्याप्त रूप से भिन्न फलन f और g के लिए
जब f और g सुचारू वास्तविक-मूल्य वाले फलन होते हैं, तो इसका तात्पर्य है कि नकारात्मक (या सकारात्मक) श्वार्ज़ियन वाले फलन के सभी पुनरावृत्ति नकारात्मक (सम्मान सकारात्मक) रहेंगे, जो एक-आयामी गतिशील प्रणाली के अध्ययन में उपयोग का एक तथ्य है।[2]
दो जटिल चरों के फलन का परिचय[3]
इसका दूसरा मिश्रित आंशिक अवकलज किसके द्वारा दिया गया है?
और श्वार्ज़ियन व्युत्पन्न सूत्र द्वारा दिया गया है:
श्वार्ज़ियन व्युत्पन्न में एक सरल व्युत्क्रम सूत्र है, जो आश्रित और स्वतंत्र चर का आदान-प्रदान करता है। किसी के पास
या अधिक स्पष्ट रूप से, . यह उपरोक्त श्रृंखला नियम का अनुसरण करता है।
ज्यामितीय व्याख्या
विलियम थर्स्टन ने श्वार्ज़ियन व्युत्पन्न की व्याख्या इस माप के रूप में की है कि एक अनुरूप मानचित्र मोबियस परिवर्तन से कितना विचलित होता है।[1] मान लीजिए के निकट में एक अनुरूप मानचित्रण हो . फिर एक अद्वितीय मोबियस परिवर्तन उपस्थित है ऐसा है कि पर समान 0, 1, 2-वें क्रम के व्युत्पन्न हैं .
अब . स्पष्ट रूप से हल करने के लिए , यह स्थिति को सुलझाने के लिए पर्याप्त है . मान लीजिए , और के लिए हल करें इससे पहले तीन गुणांक बनेंगे 0, 1, 0 के बराबर। इसे चौथे गुणांक में जोड़ने पर, प्राप्त होता है .
जटिल तल के अनुवाद, घूर्णन और स्केलिंग के बाद, हमारे पास है शून्य के निकट में। फिर, तीसरे क्रम तक, यह फलन त्रिज्या के वृत्त को मैप करता है द्वारा परिभाषित वक्र के लिए , जहां । यह वक्र, चौथे क्रम तक, अर्धअक्षों वाला एक दीर्घवृत्त है :
विभेदक समीकरण
श्वार्ज़ियन व्युत्पन्न का जटिल तल में दूसरे क्रम के रैखिक साधारण अंतर समीकरण के साथ एक मौलिक संबंध है।[4] मान लीजिए और के दो रैखिक रूप से स्वतंत्र होलोमोर्फिकसमाधान हों
फिर अनुपात संतुष्ट करता है
जिस डोमेन पर और परिभाषित हैं, और इसका विपरीत भी सत्य है: यदि ऐसा है g उपस्थित है, और यह एक सरल रूप से जुड़े डोमेन पर होलोमोर्फिक है, तो दो समाधान हैं और मिल सकते है, और इसके अलावा, ये एक सामान्य पैमाने के कारक तक अद्वितीय हैं।
जब एक रैखिक दूसरे क्रम के साधारण अंतर समीकरण को उपरोक्त रूप में लाया जा सकता है, तो परिणामी Q को कभी-कभी समीकरण का Q-मान कहा जाता है।
ध्यान दें कि गॉसियन हाइपरज्यामितीय विभेदक समीकरण को उपरोक्त रूप में लाया जा सकता है, और इस प्रकार हाइपरज्यामितीय समीकरण के समाधान के जोड़े इस तरह से संबंधित हैं।
असमानता के लिए शर्तें
यदि यूनिट डिस्क, D पर f एक होलोमोर्फिकफलन है, तो डब्ल्यू क्रॉस (1932) और ज़ीव नेहारी (1949) ने सिद्ध किया कि f के लिए एक आवश्यक शर्त है कि वह एकसंयोजक हो। [5]
इसके विपरीत यदि f(z), D पर एक होलोमोर्फिकफलन है तो यह संतोषजनक है
तब नेहारी ने सिद्ध किया कि f एकसंयोजक है।[6]
विशेष रूप से एकरूपता के लिए पर्याप्त शर्त है[7]
वृत्ताकार चाप बहुभुजों का अनुरूप मानचित्रण
श्वार्ज़ियन व्युत्पन्न और संबंधित दूसरे क्रम के साधारण अंतर समीकरण का उपयोग ऊपरी आधे-तल या इकाई चक्र और जटिल तल में किसी भी घिरे बहुभुज के बीच रीमैन मैपिंग को निर्धारित करने के लिए किया जा सकता है, जिसके किनारे गोलाकार चाप या सीधी रेखाएं हैं। सीधे किनारों वाले बहुभुजों के लिए, यह श्वार्ज़-क्रिस्टोफेल मैपिंग को कम कर देता है, जिसे श्वार्ज़ियन व्युत्पन्न का उपयोग किए बिना सीधे प्राप्त किया जा सकता है। एकीकरण के स्थिरांक के रूप में उत्पन्न होने वाले सहायक पैरामीटर दूसरे क्रम के अंतर समीकरण के साधारण अंतर समीकरणों के वर्णक्रमीय सिद्धांत से संबंधित हैं। पहले से ही 1890 में फ़ेलिक्स क्लेन ने लैमे फलन|और लैमे अंतर समीकरण के संदर्भ में चतुर्भुजों के स्थितियों का अध्ययन किया था।[8][9][10]
मान लीजिए Δ एक गोलाकार चाप बहुभुज है जिसके कोण πα1, ..., παn दक्षिणावर्त क्रम में हैं। मान लीजिए f : H → Δ एक होलोमोर्फिकमानचित्र है जो सीमाओं के बीच के मानचित्र तक लगातार फैला हुआ है। मान लीजिए कि शीर्ष वास्तविक अक्ष पर बिंदु a1, ..., an के अनुरूप हैं। तब p(x) = S(f)(x), x वास्तविक के लिए वास्तविक-मूल्यवान है, न कि किसी एक बिंदु के लिए। श्वार्ज प्रतिबिंब सिद्धांत द्वारा p(x), ai पर दोहरे ध्रुव के साथ जटिल तल पर एक तर्कसंगत फलनतक विस्तारित होता है:
वास्तविक संख्या βi को सहायक पैरामीटर कहा जाता है। वे तीन रैखिक बाधाओं के अधीन हैं:
जो के गुणांकों के लुप्त होने के अनुरूप है और के विस्तार में p(z) आस-पास z = ∞. मानचित्रण f(z) को फिर इस प्रकार लिखा जा सकता है
जहां और रैखिक दूसरे क्रम के साधारण अंतर समीकरण के रैखिक रूप से स्वतंत्र होलोमोर्फिकसमाधान हैं
वहाँ हैं n−3 रैखिक रूप से स्वतंत्र सहायक पैरामीटर, जिन्हें व्यवहार में निर्धारित करना कठिन हो सकता है।
एक त्रिभुज के लिए, कब n = 3, कोई सहायक पैरामीटर नहीं हैं। साधारण अंतर समीकरण हाइपरज्यामितीय अंतर समीकरण के बराबर है और f(z) श्वार्ज़ त्रिकोण फलन है, जिसे हाइपरजियोमेट्रिक फलन के संदर्भ में लिखा जा सकता है।
एक चतुर्भुज के लिए सहायक पैरामीटर एक स्वतंत्र चर λ पर निर्भर करते हैं। q(z) के उपयुक्त विकल्प के लिए U(z) = q(z)u(z) लिखने पर साधारण अंतर समीकरण का रूप ले लेता है
इस प्रकार अंतराल पर स्टर्म-लिउविल समीकरण के अभिलाक्षणिक फलन हैं . स्टर्म पृथक्करण प्रमेय के अनुसार, विलुप्त न होना , λ को न्यूनतम अभिलाक्षणिक मान होने के लिए बाध्य करता है।
टेइचमुलर स्थान पर जटिल संरचना
यूनिवर्सल टेइचमुलर स्थान को यूनिट डिस्क D, या समकक्ष ऊपरी आधा तल H, के वास्तविक विश्लेषणात्मक क्वासिकोनफॉर्मल मैपिंग के स्थान के रूप में परिभाषित किया गया है, जिसमें दो मैपिंग को समतुल्य माना जाता है यदि सीमा पर एक मोबियस परिवर्तन के साथ संरचना द्वारा दूसरे से प्राप्त किया जाता है। रीमैन क्षेत्र के निचले गोलार्ध के साथ D की पहचान करते हुए, निचले गोलार्ध का कोई भी अर्ध-अनुरूप स्व-मानचित्र स्वाभाविक रूप से ऊपरी गोलार्ध के अनुरूप मानचित्रण से मेल खाता है स्वयं पर। वास्तव में को बेल्ट्रामी अंतर समीकरण के समाधान के ऊपरी गोलार्ध के प्रतिबंध के रूप में निर्धारित किया जाता है
जहां μ द्वारा परिभाषित परिबद्ध मापनीय फलन है
निचले गोलार्ध पर, ऊपरी गोलार्ध पर 0 तक विस्तारित है।
ऊपरी गोलार्ध की पहचान के साथ D, लिपमैन बेर्स ने बेर्स एम्बेडिंग को परिभाषित करने के लिए श्वार्ज़ियन व्युत्पन्न का उपयोग किया
जो सार्वभौमिक टेइचमुलर स्थान को एकसमान मानदंड के साथ D पर बंधे होलोमोर्फिकफलन g के स्थान के एक विवृत उपसमुच्चय U को एम्बेड करता है। फ्रेडरिक गेहरिंग ने 1977 में दिखाया कि U एकसमान फलनों के श्वार्ज़ियन व्युत्पन्नों के संवृत उपसमुच्चय का आंतरिक भाग है।[11][12][13]
1 से अधिक जीनस की एक कॉम्पैक्ट रीमैन सतह S 1 के लिए, इसका सार्वभौमिक आवरण स्थान इकाई डिस्क है D है जिस पर इसका मूल समूह Γ मोबियस परिवर्तनों द्वारा कार्य करता है। S के टेइचमुलर स्थान को Γ के तहत सार्वभौमिक टेइचमुलर स्थान अपरिवर्तनीय के उप-स्थान से पहचाना जा सकता है। होलोमोर्फिकफलन g में वह गुण होता है
Γ के अंतर्गत अपरिवर्तनीय है, इसलिए S पर द्विघात अंतर निर्धारित करें। इस तरह, S के टेइचमुलर स्थान को एस पर द्विघात अंतर के परिमित-आयामी जटिल सदिश स्थान के एक विवृत उप-स्थान के रूप में ज्ञात किया जाता है।
वृत्त का द्विरूपता समूह
क्रॉस्ड समरूपताएँ
परिवर्तन संपत्ति
श्वार्ज़ियन व्युत्पन्न को वृत्तपर डिग्री 2 के घनत्व के मॉड्यूल में गुणांक के साथ वृत्त के होलोमोर्फिकसमूह के निरंतर 1-सहचक्र या पार होलोमोर्फिकके रूप में व्याख्या करने की अनुमति देता है।[14]
मान लीजिए Fλ(S1)डिग्री के टेंसर घनत्व का स्थान हो λ पर S1. अभिविन्यास-संरक्षण भिन्नताओं का समूह S1, Diff(S1), पर कार्य करता है Fλ(S1) पुशफॉरवर्ड (अंतर) के माध्यम से। यदिf का एक तत्व है Diff(S1) फिर मैपिंग पर विचार करें
समूह सहसंरचना की भाषा में ऊपर दिया गया चेन-जैसा नियम कहता है कि यह मैपिंग F2(S1) में गुणांक के साथ Diff(S1) पर 1-सहचक्र पर है।
और 1-सहचक्र सहसंयोजी उत्पन्न करता है f → S(f−1). 1-कोहोमोलॉजी की गणना अधिक सामान्य परिणाम का एक विशेष स्थिति है
ध्यान दें कि यदि G एक समूह है और M ए G-मॉड्यूल, फिर एक क्रॉस्ड समरूपताएँ को परिभाषित करने वाली पहचान c का G में M को समूहों के मानक होलोमोर्फिकके संदर्भ में व्यक्त किया जा सकता है: यह एक होलोमोर्फिकमें इनकोडिंग किया गया है 𝜙 का G अर्धप्रत्यक्ष उत्पाद में ऐसी है कि की रचना 𝜙 प्रक्षेपण के साथ पर G पहचान मानचित्र है; पत्राचार मानचित्र द्वारा होता है C(g) = (c(g), g). क्रॉस्ड समरूपताएँ एक सदिश स्थान बनाते हैं और इसमें उप-स्थान के रूप में सहसीमा क्रॉस्ड समरूपताएँ सम्मलित होते हैं b(g) = g ⋅ m − m के लिए m में M. एक साधारण औसत तर्क यह दर्शाता है कि, यदि K एक सघन समूह है और V एक टोपोलॉजिकल सदिश स्थान जिस पर K लगातार कार्य करता है, तो उच्च कोहोलॉजी समूह गायब हो जाते हैं Hm(K, V) = (0) के लिए m > 0. विशेष रूप से 1-सहचक्र के लिए χ साथ
औसत से अधिक y, हार माप के बाएँ अपरिवर्तनीय का उपयोग करते हुए K देता है
साथ
इस प्रकार औसत से यह माना जा सकता है कि c, Rot(S1) में x के लिए सामान्यीकरण स्थिति c(x) = 0 को संतुष्ट करता है। ध्यान दें कि यदि G में कोई तत्व x,में c(x) = 0 को संतुष्ट करता है तो C(x) = (0,x)। लेकिन फिर, चूँकि C एक होलोमोर्फिकहै, C(xgx−1) = C(x)C(g)C(x)−1, जिससे कि c समतुल्य स्थिति c(xgx−1) = x ⋅ c(g) को संतुष्ट करे। इस प्रकार यह माना जा सकता है कि सहचक्र इन सामान्यीकरण शर्तों को पूरा करता है Rot(S1). श्वार्ज़ियन व्युत्पन्न वास्तव में जब भी गायब हो जाता है x एक मोबियस परिवर्तन के अनुरूप है SU(1,1). नीचे चर्चा की गई अन्य दो 1-चक्र केवल विलुप्त हो जाते हैं Rot(S1) (λ = 0, 1).
इस परिणाम का एक अत्यंत छोटा संस्करण है जो 1-सहचक्र देता है Vect(S1), चिकने सदिश क्षेत्रों का बीजगणित, और इसलिए विट बीजगणित के लिए, त्रिकोणमितीय बहुपद सदिश क्षेत्रों का उप बीजगणित हैं। दरअसल, जब G एक लाई समूह और की कार्रवाई है G पर M सुचारू है, लाई बीजगणित (पहचान पर होलोमोर्फिकके व्युत्पन्न) के संगत होलोमोर्फिकको ले कर प्राप्त किए गए पार होलोमोर्फिकका एक लाई बीजगणितीय संस्करण है। यह भी समझ आता है Diff(S1) और 1-सहचक्र की ओर ले जाता है
जो पहचान को संतुष्ट करता है
ली बीजगणित मामले में, सह-सीमा मानचित्रों का रूप होता है b(X) = X ⋅ m के लिए m में M. दोनों ही स्थितियों में 1-कोहोमोलॉजी को क्रॉस्ड समरूपताएँ मॉड्यूलो सहसीमा के स्थान के रूप में परिभाषित किया गया है। समूह होलोमोर्फिकऔर लाई बीजगणित होलोमोर्फिकके बीच प्राकृतिक पत्राचार वैन एस्ट समावेशन मानचित्र की ओर ले जाता है
इस तरह से गणना को लाई बीजगणित सहसंरचना तक कम किया जा सकता है। निरंतरता से यह क्रॉस समरूपताएँ की गणना को कम कर देता है 𝜙 विट बीजगणित में Fλ(S1). समूह पार होलोमोर्फिकपर सामान्यीकरण की स्थिति निम्नलिखित अतिरिक्त शर्तों को दर्शाती है 𝜙:
के लिए x में Rot(S1).
की परिपाटी का पालन कर रहे हैं केएसी & रैना (1987), विट बीजगणित का एक आधार दिया गया है
जिससे कि[dm,dn] = (m – n) dm + n. की जटिलता के लिए एक आधार Fλ(S1) द्वारा दिया गया है
ताकि
के लिए gζ में Rot(S1) = T. ये मजबूर करता है 𝜙(dn) = an ⋅ vn उपयुक्त गुणांकों के लिए an. पार की गई होलोमोर्फिकस्थिति 𝜙([X,Y]) = X𝜙(Y) – Y𝜙(X) के लिए पुनरावृत्ति संबंध देता है an:
स्थिति 𝜙(d/dθ) = 0, इसका आशय है a0 = 0. इस स्थिति और पुनरावृत्ति संबंध से, यह पता चलता है कि अदिश गुणज तक, इसका एक अद्वितीय गैर-शून्य समाधान होता है जब λ 0, 1 या 2 के बराबर है और अन्यथा केवल शून्य समाधान है। के लिए समाधान λ = 1 समूह 1-सहचक्र से मेल खाता है . के लिए समाधान λ = 0 समूह 1-सहचक्र से मेल खाता है 𝜙0(f) = log f' . संबंधित लाई बीजगणित 1-सहचक्र के लिए λ = 0, 1, 2 को एक अदिश गुणज तक दिया जाता है
केंद्रीय विस्तार
बदले में पार की गई समरूपताएं Diff(S1) और इसके लेई बीजगणित Vect(S1) के केंद्रीय विस्तार, तथाकथित विरासोरो बीजगणित की उत्पति करती हैं।
सहसंयुक्त क्रिया
समूह Diff(S1) और इसका केंद्रीय विस्तार टेइचमुलर सिद्धांत और स्ट्रिंग सिद्धांत के संदर्भ में भी स्वाभाविक रूप से दिखाई देता है।[15] वास्तव में D के अर्ध-अनुरूप स्व-मानचित्रों से प्रेरित S1 की समरूपताएं सटीक रूप से S1की अर्धसममितीय मानचित्र समरूपताएं हैं; ये बिल्कुल होमियोमोर्फिज्म हैं जो 1/2 के क्रॉस अनुपात वाले चार बिंदुओं को 1 या 0 के करीब क्रॉस अनुपात वाले बिंदुओं पर नहीं भेजते हैं। सीमा मूल्यों को लेते हुए, सार्वभौमिक टेइचमुलर को क्वासिसिमेट्रिक समरूपताएँ के समूह के भागफल के साथ पहचाना जा सकता है। QS(S1) मोबियस परिवर्तनों के उपसमूह द्वारा Moeb(S1). (इसे स्वाभाविक रूप से अर्धवृत्त के स्थान के रूप में भी महसूस किया जा सकता है C।)
सजातीय स्थान Diff(S1)/Moeb(S1) स्वाभाविक रूप से सार्वभौमिक टेइचमुलर स्थान का एक उपस्थान है। यह स्वाभाविक रूप से एक जटिल विविधता है और यह और अन्य प्राकृतिक ज्यामितीय संरचनाएं टेइचमुलर स्थान पर उपस्थित संरचनाओं के साथ संगत हैं। Diff(S1) के लाई बीजगणित के दोहरे को S1पर हिल के ऑपरेटरों के स्थान से पहचाना जा सकता है
और Diff(S1) की सहसंयुक्त क्रिया श्वार्ज़ियन व्युत्पन्न का आह्वान करती है। भिन्नता f का व्युत्क्रम हिल के ऑपरेटर को भेजता है
छद्मसमूह और सम्बन्ध
श्वार्ज़ियन व्युत्पन्न और Diff(S1) पर परिभाषित अन्य 1-सहचक्र को जटिल तल में विवृत सेटों के बीच बायोलोमोर्फिक तक बढ़ाया जा सकता है। इस स्थिति में स्थानीय विवरण विश्लेषणात्मक छद्म समूहों के सिद्धांत की ओर ले जाता है, जो अनंत-आयामी समूहों के सिद्धांत को औपचारिक बनाता है और ली बीजगणित का अध्ययन पहली बार 1910 के दशक में एली कार्टन द्वारा किया गया था। यह रीमैन सतहों पर एफ़िन और प्रोजेक्टिव संरचनाओं के साथ-साथ श्वार्ज़ियन या प्रोजेक्टिव सम्बन्ध के सिद्धांत से संबंधित है, जिस पर गनिंग, शिफ़र और हॉले ने चर्चा की है।
C पर एक होलोमोर्फिकछद्म समूहΓ में विवृत समूह U और V के बीच बिहोलोमोर्फिज्म f का एक संग्रह होता है जिसमें प्रत्येक विवृतU के लिए पहचान मानचित्र सम्मलित होते हैं, जो विवृत को प्रतिबंधित करने के तहत संवृत होता है, जो संरचना (जब संभव हो) के तहत संवृत होता है, जो व्युत्क्रम लेने के तहत संवृत कर दिया गया है और इस तरह कि यदि कोई बायोलोमोर्फिज्म स्थानीय रूप से Γ में है, तो यह भी Γ में होता है। छद्म समूह को सकर्मक कहा जाता है यदि, C में z और w दिए जाने पर, Γ में एक बायोलोमोर्फिज्म f है जैसे कि f(z) = w। सकर्मक छद्म समूहों का एक विशेष स्थिति वे हैं जो सपाट हैं, अर्थात जिनमें सभी जटिल अनुवाद Tb(z) = z + b सम्मलित हैं। मान लीजिए कि संरचना के अंतर्गत G, औपचारिक शक्ति श्रृंखला परिवर्तनों F(z) = a1z + a2z2 + .... का समूह है, जिसमें a1 ≠ 0 है। एक होलोमोर्फिकछद्म समूह Γ, G के एक उपसमूह A को परिभाषित करता है, अर्थात् टेलर श्रृंखला के विस्तार द्वारा परिभाषित उपसमूह Γ के तत्वों f के 0 (या "जेट") के साथ f(0) = 0. U पर एक बायोलोमोर्फिज्म एफ Γ में निहित है यदि और केवल यदि T–f(a) ∘ f ∘ Ta की पावर श्रृंखला U में प्रत्येक a के लिए A में निहित है: दूसरे शब्दों में f पर f के लिए औपचारिक पावर श्रृंखला दी गई है A के एक तत्व द्वारा z को z − a द्वारा प्रतिस्थापित किया गया; या संक्षेप में कहें तो f के सभी जेट A में स्थित हैं।[16]
समूह G में k-जेड के समूह Gk पर एक प्राकृतिक होलोमोर्फिकहै जो कि शब्द zk तक ली गई काटे गए पावर श्रृंखला को लेकर प्राप्त की गई है। यह समूह घात k वाले बहुपदों के स्थान पर (k से अधिक क्रम के पदों को छोटा करके) निष्कपट से कार्य करता है। ट्रंकेशन इसी तरह Gk पर Gk − 1 की होलोमोर्फिकको परिभाषित करते हैं; कर्नेल में ff(z) = z + bzk के साथ मानचित्र f सम्मलित हैं, एबेलियन भी ऐसा ही है। इस प्रकार समूह Gk हल करने योग्य है, एक तथ्य इस तथ्य से भी स्पष्ट है कि यह एकपदी के आधार के लिए त्रिकोणीय रूप में है।
एक समतल छद्मसमूह Γ को अंतर समीकरणों द्वारा परिभाषित किया जाता है यदि कोई परिमित पूर्णांक है k ऐसा कि A में यथातथ्य है और छवि एक संवृत उपसमूह है। ऐसे सबसे छोटे k Γ का क्रम कहा जाता है।
इस प्रकार उत्पन्न होने वाले सभी उपसमूहों A का एक संपूर्ण वर्गीकरण है जो अतिरिक्त धारणाओं को संतुष्ट करता है कि Gk में A की छवि एक जटिल उपसमूह है और G1, C* के बराबर है:इसका तात्पर्य यह है कि छद्म समूह में a ≠ 0 के लिए स्केलिंग परिवर्तन Sa(z) = az भी सम्मलित है, अर्थात A में ≠ 0 के साथ प्रत्येक बहुपद az सम्मलित है।
इस स्थितिय में एकमात्र संभावना यह है कि k = 1 और A = {az: a ≠ 0}; या कि k = 2 और A = {az/(1−bz) : a ≠ 0}। पूर्व जटिल मोबियस समूह के एफ़िन उपसमूह द्वारा परिभाषित छद्म समूह है (az + b परिवर्तन फिक्सिंग ∞); उत्तरार्द्ध संपूर्ण जटिल मोबियस समूह द्वारा परिभाषित छद्म समूह है।
औपचारिक लाई बीजगणित के पश्चातसे इस वर्गीकरण को आसानी से लाई बीजगणितीय समस्या में बदला जा सकता है के G में F के साथ एक औपचारिक शक्ति श्रृंखला के साथ औपचारिक सदिश क्षेत्रF(z) d/dz सम्मलित हैं। इसमें बहुपद सदिश क्षेत्र सम्मलित हैं जिनका आधार dn = zn+1 d/dz (n ≥ 0) है, जो विट बीजगणित का एक उपबीजगणित है। लाई कोष्ठक [dm,dn] = (n − m)dm+n द्वारा दिए गए हैं। फिर से ये डिग्री ≤ k के बहुपदों के स्थान पर विभेदन द्वारा कार्य करते हैं -इसे C[[z]]/(zk+1)—से पहचाना जा सकता है - और d0, ..., dk – 1 की छवियां एक आधार देती हैं Gk का लाई बीजगणितहैं। ध्यान दें कि Ad(Sa) dn= a–n dn मान लीजिए के लाई बीजगणित को निरूपित करें A: यह Gkके लाई बीजगणित के एक उपबीजगणित के समरूपी है। इसमें d0 सम्मलितहै और Ad(Sa) के अंतर्गत अपरिवर्तनीय है। तब से विट बीजगणित का एक लाई उपबीजगणित है, एकमात्र संभावना यह है कि इसका आधार d0 या कुछ n ≥ 1 के लिए आधार d0, dn है। प्रपत्र f(z)= z + bzn+1 + .... के संगत समूह तत्व हैं। अनुवाद के साथ इसकी रचना करने पर T–f(ε) ∘ f ∘ T ε(z) = cz + dz2 + ... प्राप्त होता है c, d ≠ 0 के साथ। जब तक n = 2, न हो, यह उपसमूह A; के रूप का खंडन करता है; तो n = 2.[17]
श्वार्ज़ियन व्युत्पन्न जटिल मोबियस समूह के लिए छद्म समूह से संबंधित है। वास्तव में यदि f, V पर परिभाषित एक द्विघात अंतर है तो 𝜙2(f) = S(f), V पर एक द्विघात अंतर है। यदि g पर परिभाषित एक बायोहोमोलोर्फिज्म है और g(V) ⊆ U, S(f ∘ g) और S(g) U पर द्विघात अवकलन हैं; इसके अतिरिक्त S(f) V पर एक द्विघात अंतर है, इसलिए g∗S(f) भी U पर एक द्विघात अंतर है।
इस प्रकार होलोमोर्फिकद्विघात अंतर में गुणांक के साथ बायोलोमोर्फिज्म के छद्म समूह के लिए 1-सहचक्र का एनालॉग है। उसी प्रकार और होलोमोर्फिकफलन और होलोमोर्फिकअंतरों में मूल्यों के साथ एक ही छद्म समूह के लिए 1-सहचक्र हैं। सामान्यतः 1-सहचक्र को किसी भी क्रम के होलोमोर्फिकअंतर के लिए परिभाषित किया जा सकता है
उउपरोक्त पहचान को समावेशन मानचित्र j पर क्रियान्वित करने पर, यह इस प्रकार है कि 𝜙(j) = 0; और इसलिए यदि f1, f2 का प्रतिबंध है, तो f2 ∘ j = f1, तब 𝜙(f1) = 𝜙 (f2).दूसरी ओर, होलोमोर्फिकसदिश क्षेत्रों द्वारा परिभाषित स्थानीय होलोमोर्फिकप्रवाह को लेते हुए - सदिश क्षेत्रों का घातांक - स्थानीय बायोलोमोर्फिज्म का होलोमोर्फिकछद्म समूह होलोमोर्फिकसदिश क्षेत्रों द्वारा उत्पन्न होता है। यदि 1-सहचक्र 𝜙 उपयुक्त निरंतरता या विश्लेषणात्मकता स्थितियों को संतुष्ट करता है, तो यह होलोमोर्फिकसदिश क्षेत्र 1-सहचक्र को प्रेरित करता है, जो प्रतिबंध के साथ भी संगत है। तदनुसार, यह C पर होलोमोर्फिकसदिश क्षेत्र पर 1-सहचक्र को परिभाषित करता है:
आधार dn = zn+1 d/dz (n ≥ −1) के साथ बहुपद सदिश क्षेत्रों के ली बीजगणित को सीमित करते हुए, इन्हें ली बीजगणित कोहोमोलॉजी के समान तरीकों का उपयोग करके निर्धारित किया जा सकता है (जैसा कि पार किए गए होलोमोर्फिकपर पिछले अनुभाग में)। वहां गणना क्रम k, के घनत्वों पर कार्य करने वाले संपूर्ण विट बीजगणित के लिए थी, जबकि यहां यह केवल क्रम k के समरूपता(या बहुपद) अंतरों पर कार्य करने वाले उपबीजगणित के लिए थी। फिर से, यह मानते हुए कि 𝜙 C के घूर्णन पर गायब हो जाता है, गैर-शून्य 1-सहचक्र होते हैं, जो अदिश गुणकों तक अद्वितीय होते हैं। केवल समान व्युत्पन्न सूत्र द्वारा दिए गए घात 0, 1 और 2 के अंतरों के लिए
जहां p(z) एक बहुपद है।
1-सहचक्र्स तीन छद्म समूहों को 𝜙k(f) = 0 द्वारा परिभाषित करते हैं: यह स्केलिंग समूह (k = 0) देता है; एफ़िन समूह (k = 1); और संपूर्ण जटिल मोबियस समूह (k = 2)। तो ये 1-सहचक्र छद्मसमूह को परिभाषित करने वाले विशेष साधारण अंतर समीकरण हैं। अधिक महत्वपूर्ण रूप से उनका उपयोग रीमैन सतहों पर संबंधित एफ़िन या प्रक्षेपीय संरचनाओं और सम्बन्ध को परिभाषित करने के लिए किया जा सकता है। यदि Γ Rn पर सुचारू मैपिंग का एक छद्म समूह है, तो एक टोपोलॉजिकल स्थान M को Γ-संरचना कहा जाता है यदि इसमें चार्ट f का संग्रह होता है जो M में विवृत समूह Vi से Rn में विवृत समूह Ui तक समरूपताएँ होता है, जैसे कि, प्रत्येक गैर-रिक्त प्रतिच्छेदन fi (Ui ∩ Uj) से fj (Ui ∩ Uj) तक का प्राकृतिक मानचित्र Γ में स्थित होता है। यह एक सुचारू n-कई गुना की संरचना को परिभाषित करता है यदि Γ में स्थानीय डिफोमोर्फिम्स और एक रीमैन सतह होती है यदि n = 2-जिससे किR2 ≡ C-और Γ में बिहोलोमोर्फिम्स सम्मलित हों। यदि Γ एफ़िन छद्म समूहहै,तो M को एफ़िन संरचना कहा जाता है; और यदि Γ मोबियस छद्म समूहहै, तो M को एक प्रक्षेपी संरचना कहा जाता है। इस प्रकार कुछ लैटिस C/Λ के लिए Λ ⊂ C के रूप में दी गई एक जीनस एक सतह में एक एफ़िन संरचना होती है; और फुच्सियन समूह द्वारा ऊपरी आधे तल या इकाई डिस्क के भागफल के रूप में दी गई एक जीनस p > 1 सतह में एक प्रक्षेपी संरचना होती है।[18]
1966 में गनिंग ने बताया कि इस प्रक्रिया को कैसे व्युत्पन्न किया जा सकता है: जीनस p > 1 के लिए, एक प्रक्षेप्य सम्बन्ध का अस्तित्व, जिसे श्वार्ज़ियन व्युत्पन्न 𝜙2 का उपयोग करके परिभाषित किया गया है और कोहोलॉजी पर मानक परिणामों का उपयोग करके सिद्ध किया गया है, इसका ऊपरी आधे तल या यूनिट डिस्क के साथ सार्वभौमिक कवरिंग सतह की पहचान करने के लिए उपयोग किया जा सकता है (एफ़िन सम्बन्ध और 𝜙1 का उपयोग करके जीनस 1 के लिए एक समान परिणाम होता है)।[18]
यह भी देखें
- रिकाती समीकरण का एक महत्वपूर्ण अनुप्रयोग तीसरे क्रम के श्वार्ज़ियन अंतर समीकरण के लिए है
टिप्पणियाँ
- ↑ 1.0 1.1 Thurston, William P. "Zippers and univalent functions." The Bieberbach conjecture (West Lafayette, Ind., 1985) 21 (1986): 185-197.
- ↑ Weisstein, Eric W. "Schwarzian Derivative." From MathWorld—A Wolfram Web Resource.
- ↑ Schiffer 1966
- ↑ Hille 1976, pp. 374–401
- ↑ Lehto 1987, p. 60
- ↑ Duren 1983
- ↑ Lehto 1987, p. 90
- ↑ Nehari 1952
- ↑ von Koppenfels & Stallmann 1959
- ↑ Klein 1922
- ↑ Ahlfors 1966
- ↑ Lehto 1987
- ↑ Imayoshi & Taniguchi 1992
- ↑ Ovsienko & Tabachnikov 2005, pp. 21–22
- ↑ Pekonen 1995
- ↑ Sternberg 1983, pp. 421–424
- ↑ Gunning 1978
- ↑ 18.0 18.1 Gunning 1966
संदर्भ
- अहलफोर्स, लार्स (1966), क्वासिकोनफॉर्मल मैपिंग पर व्याख्यान, वैन नॉस्ट्रैंड, pp. 117–146, Chapter 6, "Teichmüller Spaces"
- डुरेन, पीटर एल. (1983), असमान फलन, ग्रुंडलेह्रेन डेर मैथेमेटिसचेन विसेंसचाफ्टन, vol. 259, स्प्रिंगर-वेरलाग, pp. 258–265, ISBN 978-0-387-90795-6]
- गुइउ, लॉरेंट; रोजर, क्लाउड (2007), L'algèbre et le groupe de Virasoro, Montreal: CRM, ISBN 978-2-921120-44-9
- गनिंग, आर. सी. (1966), रीमैन सतहों पर व्याख्यान, प्रिंसटन गणितीय नोट्स, प्रिंसटन यूनिवर्सिटी प्रेस
- गनिंग, आर. सी. (1978), जटिल मैनिफोल्ड्स के एकरूपीकरण पर: कनेक्शन की भूमिका, गणितीय नोट्स, vol. 22, प्रिंसटन यूनिवर्सिटी प्रेस, ISBN 978-0-691-08176-2
- हिले, एइनर (1976), जटिल डोमेन में साधारण अंतर समीकरण, डोवर, pp. 374–401, ISBN 978-0-486-69620-1, अध्याय 10, "द श्वार्ज़ियन"।
- इमायोशी, वाई; तानिगुची, एम (1992), टेइचमुलर स्थानों का परिचय, स्प्रिंगर-वेरलाग, ISBN 978-4-431-70088-3
- केएसी, वी. जी.; रैना, ए. के. (1987), बॉम्बे ने अनंत-आयामी झूठ बीजगणित के उच्चतम वजन प्रतिनिधित्व पर व्याख्यान दिया, विश्व वैज्ञानिक, ISBN 978-9971-50-395-6
- वॉन कोपेनफेल्स, डब्ल्यू.; स्टॉलमैन, एफ. (1959), प्रैक्सिस डेर कॉन्फॉर्मेन एबिल्डुंग, दि ग्रुन्डलेह्रेन डेर मैथेमेटिसचेन विसेनशाफ्टेन, vol. 100, स्प्रिंगर-वेरलाग, pp. 114–141,धारा 12, "वृत्ताकार चापों के साथ बहुभुजों का मानचित्रण"।
- क्लेन, फ़ेलिक्स (1922), एकत्रित कार्य, vol. 2, स्प्रिंगर-वेरलाग, pp. 540–549, "सामान्यीकृत लैम फ़ंक्शंस के सिद्धांत पर"।
- लेहटो, ओटो (1987), Univalent functions and Teichmüller spaces, स्प्रिंगर-वेरलाग, pp. 50–59, 111–118, 196–205, ISBN 978-0-387-96310-5
- लिबरमैन, पौलेट (1959), "स्यूडोग्रुप्स इनफिनिटेसिमॉक्स अटैचेस ऑक्स स्यूडोग्रुप्स डी ली", बुल. समाज. गणित। फ्रांस, 87: 409–425, doi:10.24033/bsmf.1536
- नेहारी, Zeev (1949), "श्वार्ज़ियन व्युत्पन्न और श्लिच्ट फ़ंक्शन", अमेरिकन गणितीय सोसायटी का बुलेटिन, 55 (6): 545–551, doi:10.1090/S0002-9904-1949-09241-8, ISSN 0002-9904, MR 0029999
- नेहारी, ज़ीव (1952), अनुरूप मानचित्रण, डोवर, pp. 189–226, ISBN 978-0-486-61137-2
- ओवसिएन्को, वी.; टाबाच्निकोव, एस. (2005), प्रोजेक्टिव डिफरेंशियल ज्योमेट्री पुराना और नया, कैम्ब्रिज यूनिवर्सिटी प्रेस, ISBN 978-0-521-83186-4
- ओवसिएन्को, वैलेन्टिन; टाबाच्निकोव, सर्गेई (2009), "क्या है । . . श्वार्ज़ियन व्युत्पन्न?" (PDF), एएमएस नोटिस, 56 (1): 34–36
- पेकोनेन, ओस्मो (1995), "ज्यामिति और भौतिकी में यूनिवर्सल टीचमुलर स्थान", जे. जियोम. भौतिक., 15 (3): 227–251, arXiv:hep-th/9310045, Bibcode:1995JGP....15..227P, doi:10.1016/0393-0440(94)00007-Q, S2CID 119598450
- शिफर, मनहेम (1966), "रीमैन सतहों पर आधे-आदेश के अंतर", अनुप्रयुक्त गणित पर सियाम जर्नल, 14 (4): 922–934, doi:10.1137/0114073, JSTOR 2946143, S2CID 120194068
- सहगल, ग्रीम (1981), "कुछ अनंत-आयामी समूहों का एकात्मक प्रतिनिधित्व", कॉम. गणित। भौतिक।, 80 (3): 301–342, Bibcode:1981सीएमएपीएच.80..301S, doi:10.1007/bf01208274, S2CID 121367853
{{citation}}
: Check|bibcode=
length (help) - स्टर्नबर्ग, श्लोमो (1983), विभेदक ज्यामिति पर व्याख्यान (द्वितीय ed.), चेल्सी प्रकाशन, ISBN 978-0-8284-0316-0
- तख्तजा, लियोन ए.; टेओ, ली-पेंग (2006), यूनिवर्सल टीचमुलर स्पेस पर वेइल-पीटरसन मीट्रिक, मेम। आमेर। गणित। समाज।, vol. 183