रैखिक मानचित्रों के स्थानों पर टोपोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] में, दो वेक्टर स्थानों के बीच रैखिक मानचित्रों के स्थानों को विभिन्न प्रकार की [[टोपोलॉजी (संरचना)]] से संपन्न किया जा सकता है। रैखिक मानचित्रों और इन टोपोलॉजी के स्थान का अध्ययन करने से स्वयं रिक्त स्थान के बारे में जानकारी मिल सकती है।
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] में, दो वेक्टर स्थानों के बीच रैखिक मापों के स्थानों को विभिन्न प्रकार की [[टोपोलॉजी (संरचना)]] से संपन्न किया जा सकता है। रैखिक मापों और इन टोपोलॉजी के स्थान का अध्ययन करने से स्वयं रिक्त स्थान के बारे में जानकारी मिल सकती है।


लेख संचालक टोपोलॉजी [[मानक स्थान]]ों के बीच रैखिक मानचित्रों के स्थानों [[ऑपरेटर टोपोलॉजी]] पर चर्चा करता है, जबकि यह लेख टोपोलॉजिकल [[ सदिश स्थल ]] (टीवीएस) की अधिक सामान्य सेटिंग में ऐसे स्थानों पर टोपोलॉजी पर चर्चा करता है।
लेख संचालक टोपोलॉजी [[मानक स्थान|मानक स्थानों]] के बीच रैखिक मापों के स्थानों [[ऑपरेटर टोपोलॉजी]] पर चर्चा करता है, जबकि यह लेख टोपोलॉजिकल [[ सदिश स्थल | वेक्टर स्पेस]] (टीवीएस) की अधिक सामान्य सेटिंग में ऐसे स्थानों पर टोपोलॉजी पर चर्चा करता है।


==मानचित्रों के मनमाने स्थानों पर एकसमान अभिसरण की टोपोलॉजी==
==मापों के मनमाने स्थानों पर एकसमान अभिसरण की टोपोलॉजी==


कुल मिलाकर, निम्नलिखित मान लिया गया है:
कुल मिलाकर, निम्नलिखित मान लिया गया है:
Line 15: Line 15:
===𝒢-टोपोलॉजी===
===𝒢-टोपोलॉजी===


निम्नलिखित सेट रैखिक मानचित्रों के स्थानों पर टोपोलॉजी के बुनियादी खुले उपसमुच्चय का गठन करेंगे।
निम्नलिखित सेट रैखिक मापों के स्थानों पर टोपोलॉजी के बुनियादी खुले उपसमुच्चय का गठन करेंगे।
किसी भी उपसमुच्चय के लिए <math>G \subseteq T</math> और <math>N \subseteq Y,</math> होने देना
किसी भी उपसमुच्चय के लिए <math>G \subseteq T</math> और <math>N \subseteq Y,</math> होने देना
<math display="block">\mathcal{U}(G, N) := \{f \in F : f(G) \subseteq N\}.</math>
<math display="block">\mathcal{U}(G, N) := \{f \in F : f(G) \subseteq N\}.</math>
Line 85: Line 85:


लगता है कि <math>T</math> टोपोलॉजिकल स्पेस है.
लगता है कि <math>T</math> टोपोलॉजिकल स्पेस है.
अगर <math>Y</math> हॉसडॉर्फ़ स्थान है और <math>F</math> का सदिश उपस्थान है <math>Y^T</math> इसमें सभी सतत मानचित्र शामिल हैं जो प्रत्येक पर बंधे हैं <math>G \in \mathcal{G}</math> और अगर <math>\bigcup_{G \in \mathcal{G}} G</math> में सघन है <math>T</math> फिर <math>\mathcal{G}</math>-टोपोलॉजी चालू <math>F</math> हॉसडॉर्फ है.
अगर <math>Y</math> हॉसडॉर्फ़ स्थान है और <math>F</math> का सदिश उपस्थान है <math>Y^T</math> इसमें सभी सतत माप शामिल हैं जो प्रत्येक पर बंधे हैं <math>G \in \mathcal{G}</math> और अगर <math>\bigcup_{G \in \mathcal{G}} G</math> में सघन है <math>T</math> फिर <math>\mathcal{G}</math>-टोपोलॉजी चालू <math>F</math> हॉसडॉर्फ है.


सीमाबद्धता
सीमाबद्धता
Line 100: Line 100:
अगर <math>X</math> गैर-तुच्छ [[पूरी तरह से नियमित स्थान]] हॉसडॉर्फ टोपोलॉजिकल स्पेस और है <math>C(X)</math> सभी वास्तविक (या जटिल) मूल्यवान निरंतर कार्यों का स्थान है <math>X,</math> बिंदुवार अभिसरण की टोपोलॉजी पर <math>C(X)</math> [[मेट्रिज़ेबल टीवीएस]] है यदि और केवल यदि <math>X</math> गणनीय है.{{sfn|Jarchow|1981|pp=43-55}}
अगर <math>X</math> गैर-तुच्छ [[पूरी तरह से नियमित स्थान]] हॉसडॉर्फ टोपोलॉजिकल स्पेस और है <math>C(X)</math> सभी वास्तविक (या जटिल) मूल्यवान निरंतर कार्यों का स्थान है <math>X,</math> बिंदुवार अभिसरण की टोपोलॉजी पर <math>C(X)</math> [[मेट्रिज़ेबल टीवीएस]] है यदि और केवल यदि <math>X</math> गणनीय है.{{sfn|Jarchow|1981|pp=43-55}}


==𝒢-निरंतर रैखिक मानचित्रों के स्थानों पर टोपोलॉजी==
==𝒢-निरंतर रैखिक मापों के स्थानों पर टोपोलॉजी==


इस पूरे खंड में हम यही मानेंगे <math>X</math> और <math>Y</math> टोपोलॉजिकल वेक्टर स्पेस हैं।
इस पूरे खंड में हम यही मानेंगे <math>X</math> और <math>Y</math> टोपोलॉजिकल वेक्टर स्पेस हैं।
  <math>\mathcal{G}</math> के उपसमुच्चय का गैर-रिक्त संग्रह होगा <math>X</math> समावेशन द्वारा निर्देशित सेट.
  <math>\mathcal{G}</math> के उपसमुच्चय का गैर-रिक्त संग्रह होगा <math>X</math> समावेशन द्वारा निर्देशित सेट.
  <math>L(X; Y)</math> से सभी सतत रैखिक मानचित्रों के सदिश समष्टि को निरूपित करेगा <math>X</math> में <math>Y.</math> अगर <math>L(X; Y)</math> दिया गया है <math>\mathcal{G}</math>-टोपोलॉजी विरासत में मिली है <math>Y^X</math> फिर इस टोपोलॉजी के साथ इस स्थान को दर्शाया जाता है <math>L_{\mathcal{G}}(X; Y)</math>.
  <math>L(X; Y)</math> से सभी सतत रैखिक मापों के सदिश समष्टि को निरूपित करेगा <math>X</math> में <math>Y.</math> अगर <math>L(X; Y)</math> दिया गया है <math>\mathcal{G}</math>-टोपोलॉजी विरासत में मिली है <math>Y^X</math> फिर इस टोपोलॉजी के साथ इस स्थान को दर्शाया जाता है <math>L_{\mathcal{G}}(X; Y)</math>.
टोपोलॉजिकल वेक्टर स्पेस का दोहरा स्थान#सतत दोहरा स्थान <math>X</math> मैदान के ऊपर <math>\mathbb{F}</math> (जिसे हम [[वास्तविक संख्या]]एँ या सम्मिश्र संख्याएँ मानेंगे) सदिश समष्टि है <math>L(X; \mathbb{F})</math> और द्वारा दर्शाया गया है <math>X^{\prime}</math>. <math>\mathcal{G}</math>वें>-टोपोलॉजी पर <math>L(X; Y)</math> की वेक्टर अंतरिक्ष संरचना के साथ संगत है <math>L(X; Y)</math> यदि और केवल यदि सभी के लिए <math>G \in \mathcal{G}</math> और सभी <math>f \in L(X; Y)</math> सेट <math>f(G)</math> में घिरा हुआ है <math>Y,</math> जिसे हम शेष लेख के लिए भी यही मानेंगे।
टोपोलॉजिकल वेक्टर स्पेस का दोहरा स्थान#सतत दोहरा स्थान <math>X</math> मैदान के ऊपर <math>\mathbb{F}</math> (जिसे हम [[वास्तविक संख्या]]एँ या सम्मिश्र संख्याएँ मानेंगे) सदिश समष्टि है <math>L(X; \mathbb{F})</math> और द्वारा दर्शाया गया है <math>X^{\prime}</math>. <math>\mathcal{G}</math>वें>-टोपोलॉजी पर <math>L(X; Y)</math> की वेक्टर अंतरिक्ष संरचना के साथ संगत है <math>L(X; Y)</math> यदि और केवल यदि सभी के लिए <math>G \in \mathcal{G}</math> और सभी <math>f \in L(X; Y)</math> सेट <math>f(G)</math> में घिरा हुआ है <math>Y,</math> जिसे हम शेष लेख के लिए भी यही मानेंगे।
विशेष रूप से ध्यान दें कि यह मामला है यदि <math>\mathcal{G}</math> इसमें बाउंडेड सेट (टोपोलॉजिकल वेक्टर स्पेस)|(वॉन-न्यूमैन) के बाउंडेड उपसमुच्चय शामिल हैं <math>X.</math>
विशेष रूप से ध्यान दें कि यह मामला है यदि <math>\mathcal{G}</math> इसमें बाउंडेड सेट (टोपोलॉजिकल वेक्टर स्पेस)|(वॉन-न्यूमैन) के बाउंडेड उपसमुच्चय शामिल हैं <math>X.</math>
Line 156: Line 156:
टीवीएस का उपसमुच्चय <math>X</math> जिसका [[रैखिक विस्तार]] सघन समुच्चय है <math>X</math> का कुल समुच्चय कहा जाता है <math>X.</math> अगर <math>\mathcal{G}</math> टीवीएस के उपसमुच्चय का परिवार है <math>T</math> तब <math>\mathcal{G}</math> टोटल सेट|टोटल इन कहा जाता है <math>T</math>यदि का रैखिक विस्तार <math>\bigcup_{G \in \mathcal{G}} G</math> में सघन है <math>T.</math>{{sfn|Schaefer|Wolff|1999|p=80}}
टीवीएस का उपसमुच्चय <math>X</math> जिसका [[रैखिक विस्तार]] सघन समुच्चय है <math>X</math> का कुल समुच्चय कहा जाता है <math>X.</math> अगर <math>\mathcal{G}</math> टीवीएस के उपसमुच्चय का परिवार है <math>T</math> तब <math>\mathcal{G}</math> टोटल सेट|टोटल इन कहा जाता है <math>T</math>यदि का रैखिक विस्तार <math>\bigcup_{G \in \mathcal{G}} G</math> में सघन है <math>T.</math>{{sfn|Schaefer|Wolff|1999|p=80}}


अगर <math>F</math> का सदिश उपस्थान है <math>Y^T</math> इसमें सभी सतत रेखीय मानचित्र शामिल हैं जो प्रत्येक पर बंधे हैं <math>G \in \mathcal{G},</math> फिर <math>\mathcal{G}</math>-टोपोलॉजी चालू <math>F</math> हॉसडॉर्फ़ है यदि <math>Y</math> हॉसडॉर्फ़ है और <math>\mathcal{G}</math> में कुल है <math>T.</math>{{sfn|Narici|Beckenstein|2011|pp=371-423}}
अगर <math>F</math> का सदिश उपस्थान है <math>Y^T</math> इसमें सभी सतत रेखीय माप शामिल हैं जो प्रत्येक पर बंधे हैं <math>G \in \mathcal{G},</math> फिर <math>\mathcal{G}</math>-टोपोलॉजी चालू <math>F</math> हॉसडॉर्फ़ है यदि <math>Y</math> हॉसडॉर्फ़ है और <math>\mathcal{G}</math> में कुल है <math>T.</math>{{sfn|Narici|Beckenstein|2011|pp=371-423}}


संपूर्णता
संपूर्णता
Line 170: Line 170:
<li>यदि <math>X</math> तो यह मैके स्थान है <math>L_{\mathcal{G}}(X; Y)</math>पूर्ण है यदि और केवल यदि दोनों <math>X^{\prime}_{\mathcal{G}}</math> और <math>Y</math> पूर्ण हैं.</li>
<li>यदि <math>X</math> तो यह मैके स्थान है <math>L_{\mathcal{G}}(X; Y)</math>पूर्ण है यदि और केवल यदि दोनों <math>X^{\prime}_{\mathcal{G}}</math> और <math>Y</math> पूर्ण हैं.</li>
<li>यदि <math>X</math> तो [[बैरल वाली जगह]] है <math>L_{\mathcal{G}}(X; Y)</math> हॉसडॉर्फ और अर्ध-पूर्ण है।</li>
<li>यदि <math>X</math> तो [[बैरल वाली जगह]] है <math>L_{\mathcal{G}}(X; Y)</math> हॉसडॉर्फ और अर्ध-पूर्ण है।</li>
<li>चलिए <math>X</math> और <math>Y</math> टीवीएस के साथ रहें <math>Y</math> अर्ध-पूर्ण और मान लें कि (1) <math>X</math> [[बैरल वाली जगह]] है, वरना (2) <math>X</math> बेयर स्थान है और <math>X</math> और <math>Y</math> स्थानीय रूप से उत्तल हैं। अगर <math>\mathcal{G}</math> कवर <math>X</math> फिर प्रत्येक बंद समविरंतर रेखीय मानचित्र <math>L(X; Y)</math> में पूर्ण है <math>L_{\mathcal{G}}(X; Y)</math> और <math>L_{\mathcal{G}}(X; Y)</math> अर्ध-पूर्ण है.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
<li>चलिए <math>X</math> और <math>Y</math> टीवीएस के साथ रहें <math>Y</math> अर्ध-पूर्ण और मान लें कि (1) <math>X</math> [[बैरल वाली जगह]] है, वरना (2) <math>X</math> बेयर स्थान है और <math>X</math> और <math>Y</math> स्थानीय रूप से उत्तल हैं। अगर <math>\mathcal{G}</math> कवर <math>X</math> फिर प्रत्येक बंद समविरंतर रेखीय माप <math>L(X; Y)</math> में पूर्ण है <math>L_{\mathcal{G}}(X; Y)</math> और <math>L_{\mathcal{G}}(X; Y)</math> अर्ध-पूर्ण है.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
<ली>लेट <math>X</math> [[जन्मजात स्थान]] बनें, <math>Y</math> स्थानीय रूप से उत्तल स्थान, और <math>\mathcal{G}</math> के परिबद्ध उपसमुच्चय का परिवार <math>X</math> इस प्रकार कि प्रत्येक अशक्त अनुक्रम की सीमा <math>X</math> कुछ में निहित है <math>G \in \mathcal{G}.</math> अगर <math>Y</math> अर्ध-पूर्ण है (क्रमशः, पूर्ण टोपोलॉजिकल वेक्टर स्पेस) तो ऐसा है <math>L_{\mathcal{G}}(X; Y)</math>.{{sfn|Schaefer|Wolff|1999|p=117}}
<ली>लेट <math>X</math> [[जन्मजात स्थान]] बनें, <math>Y</math> स्थानीय रूप से उत्तल स्थान, और <math>\mathcal{G}</math> के परिबद्ध उपसमुच्चय का परिवार <math>X</math> इस प्रकार कि प्रत्येक अशक्त अनुक्रम की सीमा <math>X</math> कुछ में निहित है <math>G \in \mathcal{G}.</math> अगर <math>Y</math> अर्ध-पूर्ण है (क्रमशः, पूर्ण टोपोलॉजिकल वेक्टर स्पेस) तो ऐसा है <math>L_{\mathcal{G}}(X; Y)</math>.{{sfn|Schaefer|Wolff|1999|p=117}}


Line 183: Line 183:
</ol>
</ol>


अगर <math>\mathcal{G}</math> के परिबद्ध उपसमुच्चय का संग्रह है <math>X</math> जिसका मिलन टोटल सेट इन है <math>X</math> फिर प्रत्येक समविरंतर रेखीय मानचित्र <math>L(X; Y)</math> में घिरा हुआ है <math>\mathcal{G}</math>-टोपोलॉजी.{{sfn|Schaefer|Wolff|1999|p=83}}
अगर <math>\mathcal{G}</math> के परिबद्ध उपसमुच्चय का संग्रह है <math>X</math> जिसका मिलन टोटल सेट इन है <math>X</math> फिर प्रत्येक समविरंतर रेखीय माप <math>L(X; Y)</math> में घिरा हुआ है <math>\mathcal{G}</math>-टोपोलॉजी.{{sfn|Schaefer|Wolff|1999|p=83}}
इसके अलावा, यदि <math>X</math> और <math>Y</math> तब स्थानीय रूप से उत्तल हॉसडॉर्फ स्थान हैं
इसके अलावा, यदि <math>X</math> और <math>Y</math> तब स्थानीय रूप से उत्तल हॉसडॉर्फ स्थान हैं
<ul>
<ul>
Line 236: Line 236:
कमजोर-टोपोलॉजी पर <math>L(X; Y)</math> निम्नलिखित गुण हैं:
कमजोर-टोपोलॉजी पर <math>L(X; Y)</math> निम्नलिखित गुण हैं:
<ul>
<ul>
<li>यदि <math>X</math> वियोज्य स्थान है (अर्थात इसमें गणनीय सघन उपसमुच्चय है) और यदि <math>Y</math> प्रत्येक समविरंतर रेखीय मानचित्र की तुलना में मेट्रिज़ेबल टोपोलॉजिकल वेक्टर स्पेस है <math>H</math> का <math>L_{\sigma}(X; Y)</math> मेट्रिज़ेबल है; यदि इसके अतिरिक्त <math>Y</math> वियोज्य है तो वैसा है <math>H.</math>{{sfn|Schaefer|Wolff|1999|p=87}}
<li>यदि <math>X</math> वियोज्य स्थान है (अर्थात इसमें गणनीय सघन उपसमुच्चय है) और यदि <math>Y</math> प्रत्येक समविरंतर रेखीय माप की तुलना में मेट्रिज़ेबल टोपोलॉजिकल वेक्टर स्पेस है <math>H</math> का <math>L_{\sigma}(X; Y)</math> मेट्रिज़ेबल है; यदि इसके अतिरिक्त <math>Y</math> वियोज्य है तो वैसा है <math>H.</math>{{sfn|Schaefer|Wolff|1999|p=87}}
* तो विशेष रूप से, प्रत्येक समविराम उपसमुच्चय पर <math>L(X; Y),</math> बिंदुवार अभिसरण की टोपोलॉजी मेट्रिज़ेबल है।</li>
* तो विशेष रूप से, प्रत्येक समविराम उपसमुच्चय पर <math>L(X; Y),</math> बिंदुवार अभिसरण की टोपोलॉजी मेट्रिज़ेबल है।</li>
<li>चलिए <math>Y^X</math> से सभी कार्यों के स्थान को निरूपित करें <math>X</math> में <math>Y.</math> अगर <math>L(X; Y)</math> बिंदुवार अभिसरण की टोपोलॉजी दी गई है फिर सभी रैखिक मानचित्रों का स्थान (निरंतर या नहीं) <math>X</math> में <math>Y</math> में बंद है <math>Y^X</math>.
<li>चलिए <math>Y^X</math> से सभी कार्यों के स्थान को निरूपित करें <math>X</math> में <math>Y.</math> अगर <math>L(X; Y)</math> बिंदुवार अभिसरण की टोपोलॉजी दी गई है फिर सभी रैखिक मापों का स्थान (निरंतर या नहीं) <math>X</math> में <math>Y</math> में बंद है <math>Y^X</math>.
* इसके साथ ही, <math>L(X; Y)</math> सभी रैखिक मानचित्रों के स्थान में सघन है (निरंतर या नहीं) <math>X</math> में <math>Y.</math></li>
* इसके साथ ही, <math>L(X; Y)</math> सभी रैखिक मापों के स्थान में सघन है (निरंतर या नहीं) <math>X</math> में <math>Y.</math></li>
<li>मान लीजिए <math>X</math> और <math>Y</math> स्थानीय रूप से उत्तल हैं। का कोई भी सरल रूप से परिबद्ध उपसमुच्चय <math>L(X; Y)</math> कब बाध्य है <math>L(X; Y)</math> उत्तल, संतुलित सेट, परिबद्ध, पूर्ण उपसमुच्चय पर एकसमान अभिसरण की टोपोलॉजी है <math>X.</math> यदि इसके अतिरिक्त <math>X</math> के परिबद्ध उपसमुच्चय के परिवारों से अर्ध-पूर्ण है <math>L(X; Y)</math> सभी के लिए समान हैं <math>\mathcal{G}</math>-टोपोलॉजी चालू <math>L(X; Y)</math> ऐसा है कि <math>\mathcal{G}</math> बाउंडेड सेट कवरिंग का परिवार है <math>X.</math>{{sfn|Schaefer|Wolff|1999|p=82}}</li>
<li>मान लीजिए <math>X</math> और <math>Y</math> स्थानीय रूप से उत्तल हैं। का कोई भी सरल रूप से परिबद्ध उपसमुच्चय <math>L(X; Y)</math> कब बाध्य है <math>L(X; Y)</math> उत्तल, संतुलित सेट, परिबद्ध, पूर्ण उपसमुच्चय पर एकसमान अभिसरण की टोपोलॉजी है <math>X.</math> यदि इसके अतिरिक्त <math>X</math> के परिबद्ध उपसमुच्चय के परिवारों से अर्ध-पूर्ण है <math>L(X; Y)</math> सभी के लिए समान हैं <math>\mathcal{G}</math>-टोपोलॉजी चालू <math>L(X; Y)</math> ऐसा है कि <math>\mathcal{G}</math> बाउंडेड सेट कवरिंग का परिवार है <math>X.</math>{{sfn|Schaefer|Wolff|1999|p=82}}</li>
</ul>
</ul>
Line 246: Line 246:


<ul>
<ul>
<li>समविराम रेखीय मानचित्र का कमजोर समापन <math>L(X; Y)</math> समसतत् है.</li>
<li>समविराम रेखीय माप का कमजोर समापन <math>L(X; Y)</math> समसतत् है.</li>
<li>यदि <math>Y</math> स्थानीय रूप से उत्तल है, तो समविराम उपसमुच्चय का उत्तल संतुलित पतवार <math>L(X; Y)</math> समसतत् है.</li>
<li>यदि <math>Y</math> स्थानीय रूप से उत्तल है, तो समविराम उपसमुच्चय का उत्तल संतुलित पतवार <math>L(X; Y)</math> समसतत् है.</li>
<li>चलिए <math>X</math> और <math>Y</math> टीवीएस बनें और मान लें कि (1) <math>X</math> बैरल वाली जगह है, वरना (2) <math>X</math> बेयर स्थान है और <math>X</math> और <math>Y</math> स्थानीय रूप से उत्तल हैं। फिर प्रत्येक सरल रूप से परिबद्ध उपसमुच्चय <math>L(X; Y)</math> समविराम है.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
<li>चलिए <math>X</math> और <math>Y</math> टीवीएस बनें और मान लें कि (1) <math>X</math> बैरल वाली जगह है, वरना (2) <math>X</math> बेयर स्थान है और <math>X</math> और <math>Y</math> स्थानीय रूप से उत्तल हैं। फिर प्रत्येक सरल रूप से परिबद्ध उपसमुच्चय <math>L(X; Y)</math> समविराम है.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
Line 259: Line 259:
<ul>
<ul>
<li>यदि <math>X</math> फ़्रेचेट स्पेस या [[एलएफ-स्पेस]] है और यदि <math>Y</math> तब यह पूर्ण टोपोलॉजिकल वेक्टर स्पेस है जो स्थानीय रूप से उत्तल हॉसडॉर्फ स्पेस है <math>L_c(X; Y)</math> पूरा हो गया है.</li>
<li>यदि <math>X</math> फ़्रेचेट स्पेस या [[एलएफ-स्पेस]] है और यदि <math>Y</math> तब यह पूर्ण टोपोलॉजिकल वेक्टर स्पेस है जो स्थानीय रूप से उत्तल हॉसडॉर्फ स्पेस है <math>L_c(X; Y)</math> पूरा हो गया है.</li>
<li>समविराम रेखीय मानचित्रों पर <math>L(X; Y),</math> निम्नलिखित टोपोलॉजी मेल खाती हैं:
<li>समविराम रेखीय मापों पर <math>L(X; Y),</math> निम्नलिखित टोपोलॉजी मेल खाती हैं:
* के सघन उपसमुच्चय पर बिंदुवार अभिसरण की टोपोलॉजी <math>X,</math>
* के सघन उपसमुच्चय पर बिंदुवार अभिसरण की टोपोलॉजी <math>X,</math>
* बिंदुवार अभिसरण की टोपोलॉजी <math>X,</math>
* बिंदुवार अभिसरण की टोपोलॉजी <math>X,</math>
Line 335: Line 335:




==𝒢-ℋ द्विरेखीय मानचित्रों के स्थानों पर टोपोलॉजी==
==𝒢-ℋ द्विरेखीय मापों के स्थानों पर टोपोलॉजी==


हम जाने देंगे <math>\mathcal{B}(X, Y; Z)</math> अलग-अलग निरंतर द्विरेखीय मानचित्रों के स्थान को निरूपित करें और <math>B(X, Y; Z)</math>सतत द्विरेखीय मानचित्रों के स्थान को निरूपित करें, जहाँ <math>X, Y,</math> और <math>Z</math> ही क्षेत्र पर टोपोलॉजिकल वेक्टर स्पेस हैं (या तो वास्तविक या जटिल संख्याएं)।
हम जाने देंगे <math>\mathcal{B}(X, Y; Z)</math> अलग-अलग निरंतर द्विरेखीय मापों के स्थान को निरूपित करें और <math>B(X, Y; Z)</math>सतत द्विरेखीय मापों के स्थान को निरूपित करें, जहाँ <math>X, Y,</math> और <math>Z</math> ही क्षेत्र पर टोपोलॉजिकल वेक्टर स्पेस हैं (या तो वास्तविक या जटिल संख्याएं)।
हमने टोपोलॉजी को जिस तरह से रखा है, उसी तरह से <math>L(X; Y)</math> हम टोपोलॉजी रख सकते हैं <math>\mathcal{B}(X, Y; Z)</math> और <math>B(X, Y; Z)</math>.
हमने टोपोलॉजी को जिस तरह से रखा है, उसी तरह से <math>L(X; Y)</math> हम टोपोलॉजी रख सकते हैं <math>\mathcal{B}(X, Y; Z)</math> और <math>B(X, Y; Z)</math>.


Line 344: Line 344:
इस टोपोलॉजी को के नाम से जाना जाता है<math>\mathcal{G}-\mathcal{H}</math>-टोपोलॉजी या उत्पादों पर समान अभिसरण की टोपोलॉजी के रूप में <math>G \times H</math> का <math>\mathcal{G} \times \mathcal{H}</math>.
इस टोपोलॉजी को के नाम से जाना जाता है<math>\mathcal{G}-\mathcal{H}</math>-टोपोलॉजी या उत्पादों पर समान अभिसरण की टोपोलॉजी के रूप में <math>G \times H</math> का <math>\mathcal{G} \times \mathcal{H}</math>.


हालाँकि, पहले की तरह, यह टोपोलॉजी वेक्टर स्पेस संरचना के साथ आवश्यक रूप से संगत नहीं है <math>\mathcal{B}(X, Y; Z)</math> या का <math>B(X, Y; Z)</math>सभी द्विरेखीय मानचित्रों के लिए अतिरिक्त आवश्यकता के बिना, <math>b</math> इस स्थान में (अर्थात्, में <math>\mathcal{B}(X, Y; Z)</math> या में <math>B(X, Y; Z)</math>) और सभी के लिए <math>G \in \mathcal{G}</math> और <math>H \in \mathcal{H},</math> सेट <math>b(G, H)</math> में घिरा हुआ है <math>X.</math> अगर दोनों <math>\mathcal{G}</math> और <math>\mathcal{H}</math> यदि हम टोपोलॉजीज़िंग कर रहे हैं तो यह बाध्य सेटों से मिलकर बनता है तो यह आवश्यकता स्वचालित रूप से संतुष्ट हो जाती है <math>B(X, Y; Z)</math>लेकिन अगर हम टोपोलॉजी बनाने की कोशिश कर रहे हैं तो यह मामला नहीं हो सकता है <math>\mathcal{B}(X, Y; Z)</math>. <math>\mathcal{G}-\mathcal{H}</math>वें>-टोपोलॉजी पर <math>\mathcal{B}(X, Y; Z)</math> के वेक्टर अंतरिक्ष संरचना के साथ संगत होगा <math>\mathcal{B}(X, Y; Z)</math> अगर दोनों <math>\mathcal{G}</math> और <math>\mathcal{H}</math> इसमें परिबद्ध सेट शामिल हैं और निम्नलिखित में से कोई भी शर्त लागू होती है:
हालाँकि, पहले की तरह, यह टोपोलॉजी वेक्टर स्पेस संरचना के साथ आवश्यक रूप से संगत नहीं है <math>\mathcal{B}(X, Y; Z)</math> या का <math>B(X, Y; Z)</math>सभी द्विरेखीय मापों के लिए अतिरिक्त आवश्यकता के बिना, <math>b</math> इस स्थान में (अर्थात्, में <math>\mathcal{B}(X, Y; Z)</math> या में <math>B(X, Y; Z)</math>) और सभी के लिए <math>G \in \mathcal{G}</math> और <math>H \in \mathcal{H},</math> सेट <math>b(G, H)</math> में घिरा हुआ है <math>X.</math> अगर दोनों <math>\mathcal{G}</math> और <math>\mathcal{H}</math> यदि हम टोपोलॉजीज़िंग कर रहे हैं तो यह बाध्य सेटों से मिलकर बनता है तो यह आवश्यकता स्वचालित रूप से संतुष्ट हो जाती है <math>B(X, Y; Z)</math>लेकिन अगर हम टोपोलॉजी बनाने की कोशिश कर रहे हैं तो यह मामला नहीं हो सकता है <math>\mathcal{B}(X, Y; Z)</math>. <math>\mathcal{G}-\mathcal{H}</math>वें>-टोपोलॉजी पर <math>\mathcal{B}(X, Y; Z)</math> के वेक्टर अंतरिक्ष संरचना के साथ संगत होगा <math>\mathcal{B}(X, Y; Z)</math> अगर दोनों <math>\mathcal{G}</math> और <math>\mathcal{H}</math> इसमें परिबद्ध सेट शामिल हैं और निम्नलिखित में से कोई भी शर्त लागू होती है:
* <math>X</math> और <math>Y</math> बैरल वाली जगहें हैं और <math>Z</math> स्थानीय रूप से उत्तल है.
* <math>X</math> और <math>Y</math> बैरल वाली जगहें हैं और <math>Z</math> स्थानीय रूप से उत्तल है.
* <math>X</math> [[एफ-स्पेस]] है, <math>Y</math> मेट्रिज़ेबल है, और <math>Z</math> इस मामले में हॉसडॉर्फ है <math>\mathcal{B}(X, Y; Z) = B(X, Y; Z).</math>
* <math>X</math> [[एफ-स्पेस]] है, <math>Y</math> मेट्रिज़ेबल है, और <math>Z</math> इस मामले में हॉसडॉर्फ है <math>\mathcal{B}(X, Y; Z) = B(X, Y; Z).</math>

Revision as of 14:38, 2 August 2023

गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, दो वेक्टर स्थानों के बीच रैखिक मापों के स्थानों को विभिन्न प्रकार की टोपोलॉजी (संरचना) से संपन्न किया जा सकता है। रैखिक मापों और इन टोपोलॉजी के स्थान का अध्ययन करने से स्वयं रिक्त स्थान के बारे में जानकारी मिल सकती है।

लेख संचालक टोपोलॉजी मानक स्थानों के बीच रैखिक मापों के स्थानों ऑपरेटर टोपोलॉजी पर चर्चा करता है, जबकि यह लेख टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) की अधिक सामान्य सेटिंग में ऐसे स्थानों पर टोपोलॉजी पर चर्चा करता है।

मापों के मनमाने स्थानों पर एकसमान अभिसरण की टोपोलॉजी

कुल मिलाकर, निम्नलिखित मान लिया गया है:

    <ली> क्या कोई गैर-रिक्त सेट है और के उपसमुच्चय का गैर-रिक्त संग्रह है सबसेट समावेशन द्वारा निर्देशित सेट (यानी किसी के लिए)। वहाँ कुछ मौजूद है ऐसा है कि ). <ली> टोपोलॉजिकल वेक्टर स्पेस है (जरूरी नहीं कि हॉसडॉर्फ या स्थानीय रूप से उत्तल हो)। <ली> 0 इंच के पड़ोस का आधार है <ली> का सदिश उपसमष्टि है [note 1] जो सभी के समुच्चय को दर्शाता है -मूल्यवान कार्य डोमेन के साथ </al>

    𝒢-टोपोलॉजी

    निम्नलिखित सेट रैखिक मापों के स्थानों पर टोपोलॉजी के बुनियादी खुले उपसमुच्चय का गठन करेंगे। किसी भी उपसमुच्चय के लिए और होने देना

    परिवार

    पड़ोस प्रणाली बनाता है[1] अद्वितीय अनुवाद-अपरिवर्तनीय टोपोलॉजी के मूल में यह टोपोलॉजी कहां है not आवश्यक रूप से वेक्टर टोपोलॉजी (अर्थात, यह नहीं बन सकती है टीवीएस में)। यह टोपोलॉजी पड़ोस के आधार पर निर्भर नहीं करती है इसे चुना गया और इसे सेट पर एकसमान अभिसरण की टोपोलॉजी के रूप में जाना जाता है या के रूप में-टोपोलॉजी.[2] हालाँकि, सेट के प्रकार के अनुसार यह नाम बार-बार बदला जाता है (उदाहरण के लिए कॉम्पैक्ट सेट पर समान अभिसरण की टोपोलॉजी या कॉम्पैक्ट अभिसरण की टोपोलॉजी, अधिक विवरण के लिए फ़ुटनोट देखें[3]).

    उपसमुच्चय का के संबंध में मौलिक कहा गया है यदि प्रत्येक में कुछ तत्व का उपसमुच्चय है इस मामले में, संग्रह द्वारा प्रतिस्थापित किया जा सकता है टोपोलॉजी को बदले बिना [2] कोई प्रतिस्थापित भी कर सकता है तत्वों के सभी परिमित संघों के सभी उपसमूहों के संग्रह के साथ परिणाम को बदले बिना -टोपोलॉजी चालू [4]

    उपसमुच्चय को कॉल करें का -बाउंड अगर का परिबद्ध उपसमुच्चय है हरके लिए [5]

    Theorem[2][5] — The -topology on is compatible with the vector space structure of if and only if every is -bounded; that is, if and only if for every and every is bounded in

    गुण

    अब मूल खुले सेटों के गुणों का वर्णन किया जाएगा, इसलिए मान लें और तब का अवशोषक सेट उपसमुच्चय है यदि और केवल यदि सभी के लिए अवशोषण .[6] अगर संतुलित सेट है[6] (क्रमशः, उत्तल समुच्चय) तो ऐसा ही है समानता हमेशा धारण करता है. अगर तब अदिश राशि है ताकि विशेष रूप से, [6] इसके अतिरिक्त,[4]

    और इसी तरह[5]
    किसी भी उपसमुच्चय के लिए और कोई भी गैर-रिक्त उपसमुच्चय [5]

    जो ये दर्शाता हे:

    • यदि तब [6]
    • यदि तब
    • किसी के लिए और उपसमुच्चय का अगर तब

    किसी भी परिवार के लिए के उपसमुच्चय और कोई भी परिवार मूल के आस-पड़ोस के [4]


    समान संरचना

    किसी के लिए और का कोई एकसमान स्थान हो (कहाँ अपने संपूर्ण टोपोलॉजिकल वेक्टर स्पेस#कैनोनिकल एकरूपता से संपन्न है), आइए

    दिया गया सभी सेटों का परिवार जैसा प्रतिवेशों की किसी भी मौलिक प्रणाली पर आधारित है समान संरचना के लिए प्रतिवेशों की मौलिक प्रणाली बनाता है बुलाया the uniformity of uniform converges on या केवल the -convergence uniform structure.[7] वह -convergence uniform structure सभी में सबसे निचली ऊपरी सीमा है -अभिसरण समान संरचनाओं के रूप में तक फैली हुई है [7]

    जाल और एकसमान अभिसरण

    होने देना और जाने नेट (गणित) में हो फिर किसी भी उपसमुच्चय के लिए का कहते हैं कि समान रूप से अभिसरित होता है पर यदि प्रत्येक के लिए वहाँ कुछ मौजूद है ऐसा कि हर किसी के लिए संतुष्टि देने वाला (या समकक्ष, हरके लिए ).[5]

    Theorem[5] — If and if is a net in then in the -topology on if and only if for every converges uniformly to on

    विरासत में मिली संपत्तियाँ

    स्थानीय उत्तलता

    अगर स्थानीय रूप से उत्तल है तो वैसा ही है -टोपोलॉजी चालू और अगर इस टोपोलॉजी को उत्पन्न करने वाले निरंतर सेमीनॉर्म्स का परिवार है फिर -टोपोलॉजी सेमीनॉर्म्स के निम्नलिखित परिवार से प्रेरित है:

    जैसा भिन्न-भिन्न होता है और भिन्न-भिन्न होता है .[8]

    हॉसडॉर्फनेस

    अगर हॉसडॉर्फ़ स्थान है और फिर -टोपोलॉजी चालू हॉसडॉर्फ है.[5]

    लगता है कि टोपोलॉजिकल स्पेस है. अगर हॉसडॉर्फ़ स्थान है और का सदिश उपस्थान है इसमें सभी सतत माप शामिल हैं जो प्रत्येक पर बंधे हैं और अगर में सघन है फिर -टोपोलॉजी चालू हॉसडॉर्फ है.

    सीमाबद्धता

    उपसमुच्चय का में बाउंडेड सेट (टोपोलॉजिकल वेक्टर स्पेस) है -टोपोलॉजी यदि और केवल यदि प्रत्येक के लिए में घिरा हुआ है [8]

    𝒢-टोपोलॉजी के उदाहरण

    बिंदुवार अभिसरण

    अगर हम जाने देंगे के सभी परिमित उपसमुच्चयों का समुच्चय हो फिर -टोपोलॉजी चालू बिन्दुवार अभिसरण की टोपोलॉजी कहलाती है। बिंदुवार अभिसरण की टोपोलॉजी पर सबस्पेस टोपोलॉजी के समान है से विरासत में मिला है कब सामान्य उत्पाद टोपोलॉजी से संपन्न है।

    अगर गैर-तुच्छ पूरी तरह से नियमित स्थान हॉसडॉर्फ टोपोलॉजिकल स्पेस और है सभी वास्तविक (या जटिल) मूल्यवान निरंतर कार्यों का स्थान है बिंदुवार अभिसरण की टोपोलॉजी पर मेट्रिज़ेबल टीवीएस है यदि और केवल यदि गणनीय है.[5]

    𝒢-निरंतर रैखिक मापों के स्थानों पर टोपोलॉजी

    इस पूरे खंड में हम यही मानेंगे और टोपोलॉजिकल वेक्टर स्पेस हैं।

     के उपसमुच्चय का गैर-रिक्त संग्रह होगा  समावेशन द्वारा निर्देशित सेट.
     से सभी सतत रैखिक मापों के सदिश समष्टि को निरूपित करेगा  में  अगर  दिया गया है -टोपोलॉजी विरासत में मिली है  फिर इस टोपोलॉजी के साथ इस स्थान को दर्शाया जाता है .
    

    टोपोलॉजिकल वेक्टर स्पेस का दोहरा स्थान#सतत दोहरा स्थान मैदान के ऊपर (जिसे हम वास्तविक संख्याएँ या सम्मिश्र संख्याएँ मानेंगे) सदिश समष्टि है और द्वारा दर्शाया गया है . वें>-टोपोलॉजी पर की वेक्टर अंतरिक्ष संरचना के साथ संगत है यदि और केवल यदि सभी के लिए और सभी सेट में घिरा हुआ है जिसे हम शेष लेख के लिए भी यही मानेंगे। विशेष रूप से ध्यान दें कि यह मामला है यदि इसमें बाउंडेड सेट (टोपोलॉजिकल वेक्टर स्पेस)|(वॉन-न्यूमैन) के बाउंडेड उपसमुच्चय शामिल हैं


    === 𝒢=== पर धारणाएँ

    ऐसी मान्यताएँ जो वेक्टर टोपोलॉजी की गारंटी देती हैं

    • ( निर्देश दिया गया है): के उपसमुच्चय का गैर-रिक्त संग्रह होगा (उपसमुच्चय) समावेशन द्वारा निर्देशित। यानी किसी के लिए भी वहां मौजूद ऐसा है कि .

    उपरोक्त धारणा सेटों के संग्रह की गारंटी देती है फ़िल्टर आधार बनाता है. अगली धारणा यह गारंटी देगी कि सेट संतुलित सेट हैं. प्रत्येक टीवीएस का पड़ोस आधार 0 है जिसमें संतुलित सेट शामिल हैं इसलिए यह धारणा बोझिल नहीं है।

    • ( संतुलित हैं): में उत्पत्ति का पड़ोस आधार है जिसमें पूरी तरह से संतुलित सेट सेट शामिल हैं।

    निम्नलिखित धारणा बहुत आम तौर पर बनाई जाती है क्योंकि यह गारंटी देगी कि प्रत्येक सेट में समाहित हो रहा है

    • ( परिबद्ध हैं): यह माना जाता है कि इसमें पूरी तरह से बंधे हुए उपसमुच्चय शामिल हैं

    अगला प्रमेय ऐसे तरीके बताता है परिणाम को बदले बिना संशोधित किया जा सकता है -टोपोलॉजी चालू

    Theorem[6] — Let be a non-empty collection of bounded subsets of Then the -topology on is not altered if is replaced by any of the following collections of (also bounded) subsets of :

    1. all subsets of all finite unions of sets in ;
    2. all scalar multiples of all sets in ;
    3. all finite Minkowski sums of sets in ;
    4. the balanced hull of every set in ;
    5. the closure of every set in ;

    and if and are locally convex, then we may add to this list:

    1. the closed convex balanced hull of every set in

    सामान्य धारणाएँ

    कुछ लेखकों (जैसे नारिसी) को इसकी आवश्यकता होती है निम्नलिखित शर्त को पूरा करें, जिसका तात्पर्य, विशेष रूप से, वह है उपसमुच्चय समावेशन द्वारा निर्धारित निर्देशित है:

    सेटों के परिमित संघों के सबसेट के गठन के संबंध में बंद माना जाता है (अर्थात् समुच्चयों के प्रत्येक परिमित संघ का प्रत्येक उपसमुच्चय से संबंधित ).

    कुछ लेखक (जैसे ट्रेव्स)। [9]) उसकी आवश्यकता है उप-समावेश के तहत निर्देशित किया जाना चाहिए और यह निम्नलिखित शर्तों को पूरा करता है:

    अगर और अदिश राशि है तो वहां मौजूद है ऐसा है कि अगर पर जन्मविज्ञान है जो अक्सर होता है, तब ये सिद्धांत संतुष्ट होते हैं।

    अगर बाउंडेड सेट (टोपोलॉजिकल वेक्टर स्पेस) के सबसेट का संतृप्त परिवार है तब ये सिद्धांत भी संतुष्ट होते हैं।

    गुण

    हॉसडॉर्फनेस

    टीवीएस का उपसमुच्चय जिसका रैखिक विस्तार सघन समुच्चय है का कुल समुच्चय कहा जाता है अगर टीवीएस के उपसमुच्चय का परिवार है तब टोटल सेट|टोटल इन कहा जाता है यदि का रैखिक विस्तार में सघन है [10]

    अगर का सदिश उपस्थान है इसमें सभी सतत रेखीय माप शामिल हैं जो प्रत्येक पर बंधे हैं फिर -टोपोलॉजी चालू हॉसडॉर्फ़ है यदि हॉसडॉर्फ़ है और में कुल है [6]

    संपूर्णता

    निम्नलिखित प्रमेयों के लिए, मान लीजिए टोपोलॉजिकल वेक्टर स्पेस है और स्थानीय रूप से उत्तल हॉसडॉर्फ स्थान है और के परिबद्ध उपसमुच्चय का संग्रह है वह कवर करता है उपसमुच्चय समावेशन द्वारा निर्देशित है, और निम्नलिखित शर्त को पूरा करता है: यदि और अदिश राशि है तो वहां मौजूद है ऐसा है कि <सड़क> <ली> पूर्ण टोपोलॉजिकल वेक्टर स्पेस है यदि

    1. is locally convex and Hausdorff,
    2. is complete, and
    3. whenever is a linear map then restricted to every set is continuous implies that is continuous,
  1. यदि तो यह मैके स्थान है पूर्ण है यदि और केवल यदि दोनों और पूर्ण हैं.
  2. यदि तो बैरल वाली जगह है हॉसडॉर्फ और अर्ध-पूर्ण है।
  3. चलिए और टीवीएस के साथ रहें अर्ध-पूर्ण और मान लें कि (1) बैरल वाली जगह है, वरना (2) बेयर स्थान है और और स्थानीय रूप से उत्तल हैं। अगर कवर फिर प्रत्येक बंद समविरंतर रेखीय माप में पूर्ण है और अर्ध-पूर्ण है.[11]
  4. <ली>लेट जन्मजात स्थान बनें, स्थानीय रूप से उत्तल स्थान, और के परिबद्ध उपसमुच्चय का परिवार इस प्रकार कि प्रत्येक अशक्त अनुक्रम की सीमा कुछ में निहित है अगर अर्ध-पूर्ण है (क्रमशः, पूर्ण टोपोलॉजिकल वेक्टर स्पेस) तो ऐसा है .[12] सीमाबद्धता होने देना और टोपोलॉजिकल वेक्टर स्पेस बनें और का उपसमुच्चय हो उसके बाद निम्न बराबर हैं:[8] <द> <ली> में बाउंडेड सेट (टोपोलॉजिकल वेक्टर स्पेस) है ;
  5. प्रत्येक के लिए में घिरा हुआ है ;[8]
  6. हर पड़ोस के लिए में उत्पत्ति का सेट प्रत्येक को अवशोषक सेट करें

अगर के परिबद्ध उपसमुच्चय का संग्रह है जिसका मिलन टोटल सेट इन है फिर प्रत्येक समविरंतर रेखीय माप में घिरा हुआ है -टोपोलॉजी.[11] इसके अलावा, यदि और तब स्थानीय रूप से उत्तल हॉसडॉर्फ स्थान हैं

  • यदि में घिरा हुआ है (अर्थात, बिंदुवार परिबद्ध या केवल परिबद्ध) तो यह उत्तल, संतुलित, परिबद्ध, पूर्ण उपसमुच्चय पर एकसमान अभिसरण की टोपोलॉजी में परिबद्ध है [13]
  • यदि अर्ध-पूर्ण स्थान है | अर्ध-पूर्ण (जिसका अर्थ है कि बंद और परिबद्ध उपसमुच्चय पूर्ण हैं), तो परिबद्ध उपसमुच्चय सभी के लिए समान हैं -टोपोलॉजीज कहां के परिबद्ध उपसमुच्चय का कोई परिवार है कवर [13]

उदाहरण

("topology of uniform convergence on ...") Notation Name ("topology of...") Alternative name
finite subsets of pointwise/simple convergence topology of simple convergence
precompact subsets of precompact convergence
compact convex subsets of compact convex convergence
compact subsets of compact convergence
bounded subsets of bounded convergence strong topology


बिंदुवार अभिसरण की टोपोलॉजी

जैसे भी हो के सभी परिमित उपसमुच्चयों का समुच्चय हो कमजोर टोपोलॉजी चालू होगी या बिंदुवार अभिसरण की टोपोलॉजी या सरल अभिसरण की टोपोलॉजी और इसके साथ टोपोलॉजी को दर्शाया जाता है . दुर्भाग्य से, इस टोपोलॉजी को कभी-कभी मजबूत ऑपरेटर टोपोलॉजी भी कहा जाता है, जिससे अस्पष्टता हो सकती है;[6] इस कारण से, यह लेख इस टोपोलॉजी को इस नाम से संदर्भित करने से बच जाएगा।

का उपसमुच्चय यदि यह घिरा हुआ है तो इसे सरल रूप से घिरा हुआ या कमजोर रूप से घिरा हुआ कहा जाता है .

कमजोर-टोपोलॉजी पर निम्नलिखित गुण हैं:

  • यदि वियोज्य स्थान है (अर्थात इसमें गणनीय सघन उपसमुच्चय है) और यदि प्रत्येक समविरंतर रेखीय माप की तुलना में मेट्रिज़ेबल टोपोलॉजिकल वेक्टर स्पेस है का मेट्रिज़ेबल है; यदि इसके अतिरिक्त वियोज्य है तो वैसा है [14]
    • तो विशेष रूप से, प्रत्येक समविराम उपसमुच्चय पर बिंदुवार अभिसरण की टोपोलॉजी मेट्रिज़ेबल है।
  • चलिए से सभी कार्यों के स्थान को निरूपित करें में अगर बिंदुवार अभिसरण की टोपोलॉजी दी गई है फिर सभी रैखिक मापों का स्थान (निरंतर या नहीं) में में बंद है .
    • इसके साथ ही, सभी रैखिक मापों के स्थान में सघन है (निरंतर या नहीं) में
  • मान लीजिए और स्थानीय रूप से उत्तल हैं। का कोई भी सरल रूप से परिबद्ध उपसमुच्चय कब बाध्य है उत्तल, संतुलित सेट, परिबद्ध, पूर्ण उपसमुच्चय पर एकसमान अभिसरण की टोपोलॉजी है यदि इसके अतिरिक्त के परिबद्ध उपसमुच्चय के परिवारों से अर्ध-पूर्ण है सभी के लिए समान हैं -टोपोलॉजी चालू ऐसा है कि बाउंडेड सेट कवरिंग का परिवार है [13]

समसतत् उपसमुच्चय

  • समविराम रेखीय माप का कमजोर समापन समसतत् है.
  • यदि स्थानीय रूप से उत्तल है, तो समविराम उपसमुच्चय का उत्तल संतुलित पतवार समसतत् है.
  • चलिए और टीवीएस बनें और मान लें कि (1) बैरल वाली जगह है, वरना (2) बेयर स्थान है और और स्थानीय रूप से उत्तल हैं। फिर प्रत्येक सरल रूप से परिबद्ध उपसमुच्चय समविराम है.[11]
  • समविराम उपसमुच्चय पर का निम्नलिखित टोपोलॉजी समान हैं: (1) कुल उपसमुच्चय पर बिंदुवार अभिसरण की टोपोलॉजी ; (2) बिंदुवार अभिसरण की टोपोलॉजी; (3) प्रीकॉम्पैक्ट अभिसरण की टोपोलॉजी।[11]

संक्षिप्त अभिसरण

जैसे भी हो के सभी संहत उपसमुच्चयों का समुच्चय हो कॉम्पैक्ट अभिसरण की टोपोलॉजी या कॉम्पैक्ट सेट पर समान अभिसरण की टोपोलॉजी होगी और इसके साथ टोपोलॉजी को दर्शाया जाता है .

कॉम्पैक्ट अभिसरण की टोपोलॉजी पर निम्नलिखित गुण हैं:

  • यदि फ़्रेचेट स्पेस या एलएफ-स्पेस है और यदि तब यह पूर्ण टोपोलॉजिकल वेक्टर स्पेस है जो स्थानीय रूप से उत्तल हॉसडॉर्फ स्पेस है पूरा हो गया है.
  • समविराम रेखीय मापों पर निम्नलिखित टोपोलॉजी मेल खाती हैं:
    • के सघन उपसमुच्चय पर बिंदुवार अभिसरण की टोपोलॉजी
    • बिंदुवार अभिसरण की टोपोलॉजी
    • कॉम्पैक्ट अभिसरण की टोपोलॉजी।
    • प्रीकॉम्पैक्ट अभिसरण की टोपोलॉजी।
  • यदि मॉन्टेल स्पेस है और तो, टोपोलॉजिकल वेक्टर स्पेस है और समान टोपोलॉजी है.

परिबद्ध अभिसरण की टोपोलॉजी

जैसे भी हो के सभी परिबद्ध उपसमुच्चयों का समुच्चय हो पर परिबद्ध अभिसरण की टोपोलॉजी होगी या परिबद्ध सेटों पर एकसमान अभिसरण की टोपोलॉजी और इसके साथ टोपोलॉजी को दर्शाया जाता है .[6]

परिबद्ध अभिसरण की टोपोलॉजी निम्नलिखित गुण हैं:

  • यदि जन्मजात स्थान है और यदि तब यह पूर्ण टोपोलॉजिकल वेक्टर स्पेस है जो स्थानीय रूप से उत्तल हॉसडॉर्फ स्पेस है पूरा हो गया है.
  • यदि और टोपोलॉजी के बाद दोनों मानक स्थान हैं सामान्य ऑपरेटर मानदंड से प्रेरित टोपोलॉजी के समान है .[6]
    • विशेष रूप से, यदि मानक स्थान है तो निरंतर दोहरे स्थान पर सामान्य मानक टोपोलॉजी परिबद्ध अभिसरण की टोपोलॉजी के समान है .
  • प्रत्येक समसतत् उपसमुच्चय में घिरा हुआ है .

ध्रुवीय टोपोलॉजी

कुल मिलाकर, हम यही मानते हैं टीवीएस है.

𝒢-टोपोलॉजी बनाम ध्रुवीय टोपोलॉजी

अगर टीवीएस है जिसका बाउंडेड सेट (टोपोलॉजिकल वेक्टर स्पेस) सबसेट बिल्कुल इसके जैसा ही है weakly परिबद्ध उपसमुच्चय (उदा. यदि हॉसडॉर्फ स्थानीय रूप से उत्तल स्थान है), फिर ए -टोपोलॉजी चालू (जैसा कि इस आलेख में परिभाषित किया गया है) ध्रुवीय टोपोलॉजी है और इसके विपरीत, प्रत्येक ध्रुवीय टोपोलॉजी यदि ए -टोपोलॉजी. नतीजतन, इस मामले में इस लेख में उल्लिखित परिणामों को ध्रुवीय टोपोलॉजी पर लागू किया जा सकता है।

हालांकि, यदि टीवीएस है जिसके परिबद्ध उपसमुच्चय हैं notबिल्कुल वैसा ही है weakly परिबद्ध उपसमुच्चय, फिर परिबद्ध की धारणा की धारणा से अधिक मजबूत है-में बंधा हुआ (अर्थात घिरा हुआ तात्पर्य -में बंधा हुआ ) ताकि ए -टोपोलॉजी चालू (जैसा कि इस आलेख में परिभाषित किया गया है) है not आवश्यक रूप से ध्रुवीय टोपोलॉजी। महत्वपूर्ण अंतर यह है कि ध्रुवीय टोपोलॉजी हमेशा स्थानीय रूप से उत्तल होती हैं -टोपोलॉजी की आवश्यकता नहीं है.

इस लेख में वर्णित समान अभिसरण की अधिक सामान्य टोपोलॉजी की तुलना में ध्रुवीय टोपोलॉजी के मजबूत परिणाम हैं और हम मुख्य लेख को पढ़ते हैं: ध्रुवीय टोपोलॉजी। हम यहां कुछ सबसे सामान्य ध्रुवीय टोपोलॉजी की सूची बनाते हैं।

ध्रुवीय टोपोलॉजी की सूची

लगता है कि टीवीएस है जिसके परिबद्ध उपसमुच्चय उसके कमजोर रूप से परिबद्ध उपसमुच्चय के समान हैं।

संकेतन: यदि ध्रुवीय टोपोलॉजी को दर्शाता है तब इस टोपोलॉजी से संपन्न को निरूपित किया जाएगा या केवल (उदाहरण के लिए हमारे पास होगा ताकि और सभी निरूपित करते हैं के साथ संपन्न ).

>
("topology of uniform convergence on ...")
Notation Name ("topology of...") Alternative name
finite subsets of
pointwise/simple convergence weak/weak* topology
-compact disks Mackey topology
-compact convex subsets compact convex convergence
-compact subsets
(or balanced -compact subsets)
compact convergence
-bounded subsets
bounded convergence strong topology


𝒢-ℋ द्विरेखीय मापों के स्थानों पर टोपोलॉजी

हम जाने देंगे अलग-अलग निरंतर द्विरेखीय मापों के स्थान को निरूपित करें और सतत द्विरेखीय मापों के स्थान को निरूपित करें, जहाँ और ही क्षेत्र पर टोपोलॉजिकल वेक्टर स्पेस हैं (या तो वास्तविक या जटिल संख्याएं)। हमने टोपोलॉजी को जिस तरह से रखा है, उसी तरह से हम टोपोलॉजी रख सकते हैं और .

होने देना (क्रमश, ) के उपसमुच्चय का परिवार बनें (क्रमश, ) जिसमें कम से कम गैर-रिक्त सेट हो। होने देना सभी सेटों के संग्रह को निरूपित करें कहाँ हम लगा सकते हैं -टोपोलॉजी, और फलस्वरूप इसके किसी भी उपसमुच्चय पर, विशेष रूप से और पर . इस टोपोलॉजी को के नाम से जाना जाता है-टोपोलॉजी या उत्पादों पर समान अभिसरण की टोपोलॉजी के रूप में का .

हालाँकि, पहले की तरह, यह टोपोलॉजी वेक्टर स्पेस संरचना के साथ आवश्यक रूप से संगत नहीं है या का सभी द्विरेखीय मापों के लिए अतिरिक्त आवश्यकता के बिना, इस स्थान में (अर्थात्, में या में ) और सभी के लिए और सेट में घिरा हुआ है अगर दोनों और यदि हम टोपोलॉजीज़िंग कर रहे हैं तो यह बाध्य सेटों से मिलकर बनता है तो यह आवश्यकता स्वचालित रूप से संतुष्ट हो जाती है लेकिन अगर हम टोपोलॉजी बनाने की कोशिश कर रहे हैं तो यह मामला नहीं हो सकता है . वें>-टोपोलॉजी पर के वेक्टर अंतरिक्ष संरचना के साथ संगत होगा अगर दोनों और इसमें परिबद्ध सेट शामिल हैं और निम्नलिखित में से कोई भी शर्त लागू होती है:

  • और बैरल वाली जगहें हैं और स्थानीय रूप से उत्तल है.
  • एफ-स्पेस है, मेट्रिज़ेबल है, और इस मामले में हॉसडॉर्फ है
  • और रिफ्लेक्सिव फ़्रेचेट रिक्त स्थान के मजबूत दोहरे हैं।
  • मानकीकृत है और और रिफ्लेक्सिव फ़्रेचेट रिक्त स्थान के मजबूत दोहरे।

ε-टोपोलॉजी

लगता है कि और स्थानीय रूप से उत्तल स्थान हैं और चलो और के समसतत् रैखिक कार्यात्मकताओं का संग्रह हो और , क्रमश। फिर -टोपोलॉजी चालू टोपोलॉजिकल वेक्टर स्पेस टोपोलॉजी होगी। इस टोपोलॉजी को ε-टोपोलॉजी कहा जाता है इस टोपोलॉजी से इसे दर्शाया जाता है या बस द्वारा इस वेक्टर स्पेस और इस टोपोलॉजी के महत्व का हिस्सा यह है कि इसमें कई उप-स्पेस शामिल हैं, जैसे जिसे हम निरूपित करते हैं जब इस उप-स्थान को उप-स्थान टोपोलॉजी दी जाती है इसे निरूपित किया जाता है उदाहरण में जहां इन सदिश स्थानों का क्षेत्र है, का टेंसर उत्पाद है और वास्तव में, यदि और तब स्थानीय रूप से उत्तल हॉसडॉर्फ स्थान हैं वेक्टर स्पेस-आइसोमोर्फिक है जो बदले में बराबर है इन स्थानों में निम्नलिखित गुण हैं:

  • अगर और तब स्थानीय रूप से उत्तल हॉसडॉर्फ स्थान हैं पूर्ण है यदि और केवल यदि दोनों और पूर्ण हैं.
  • अगर और दोनों मानक हैं (क्रमशः, दोनों बानाच) तो ऐसा ही है


यह भी देखें

संदर्भ

  1. Because is just a set that is not yet assumed to be endowed with any vector space structure, should not yet be assumed to consist of linear maps, which is a notation that currently can not be defined.
  1. Note that each set is a neighborhood of the origin for this topology, but it is not necessarily an open neighborhood of the origin.
  2. 2.0 2.1 2.2 Schaefer & Wolff 1999, pp. 79–88.
  3. In practice, usually consists of a collection of sets with certain properties and this name is changed appropriately to reflect this set so that if, for instance, is the collection of compact subsets of (and is a topological space), then this topology is called the topology of uniform convergence on the compact subsets of
  4. 4.0 4.1 4.2 Narici & Beckenstein 2011, pp. 19–45.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Jarchow 1981, pp. 43–55.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Narici & Beckenstein 2011, pp. 371–423.
  7. 7.0 7.1 Grothendieck 1973, pp. 1–13.
  8. 8.0 8.1 8.2 8.3 Schaefer & Wolff 1999, p. 81.
  9. Trèves, 2006 & Chapter 32.
  10. Schaefer & Wolff 1999, p. 80.
  11. 11.0 11.1 11.2 11.3 Schaefer & Wolff 1999, p. 83.
  12. Schaefer & Wolff 1999, p. 117.
  13. 13.0 13.1 13.2 Schaefer & Wolff 1999, p. 82.
  14. Schaefer & Wolff 1999, p. 87.


ग्रन्थसूची

  • Grothendieck, Alexander (1973). Topological Vector Spaces. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098.
  • Hogbe-Nlend, Henri (1977). Bornologies and Functional Analysis: Introductory Course on the Theory of Duality Topology-Bornology and its use in Functional Analysis. North-Holland Mathematics Studies. Vol. 26. Amsterdam New York New York: North Holland. ISBN 978-0-08-087137-0. MR 0500064. OCLC 316549583.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.