निश्चित समुच्चय: Difference between revisions
m (Abhishek moved page निश्चित सेट to निश्चित समुच्चय without leaving a redirect) |
No edit summary |
||
Line 16: | Line 16: | ||
=== केवल क्रम संबंध के साथ प्राकृतिक संख्याएँ === | === केवल क्रम संबंध के साथ प्राकृतिक संख्याएँ === | ||
मान लीजिए कि <math>\mathcal{N}=(\mathbb{N},<)</math> सामान्य क्रम के साथ प्राकृतिक संख्याओं से युक्त संरचना है। तब प्रत्येक प्राकृत संख्या बिना पैरामीटर के <math>\mathcal{N}</math> में निश्चित होती है। तथा संख्या <math>0</math> को सूत्र <math>\varphi(x)</math> द्वारा परिभाषित किया गया है जिसमें कहा गया है कि x से कम कोई अवयव | मान लीजिए कि <math>\mathcal{N}=(\mathbb{N},<)</math> सामान्य क्रम के साथ प्राकृतिक संख्याओं से युक्त संरचना है। तब प्रत्येक प्राकृत संख्या बिना पैरामीटर के <math>\mathcal{N}</math> में निश्चित होती है। तथा संख्या <math>0</math> को सूत्र <math>\varphi(x)</math> द्वारा परिभाषित किया गया है जिसमें कहा गया है कि x से कम कोई अवयव उपस्थित नहीं है | | ||
:<math>\varphi=\neg\exists y(y<x), </math> | :<math>\varphi=\neg\exists y(y<x), </math> | ||
और प्राकृतिक संख्या <math>n>0</math> सूत्र <math>\varphi(x)</math> द्वारा परिभाषित किया गया है यह कहते हुए कि वहाँ वास्तव में अस्तित्व है कि x से कम n अवयव उपस्तिथ हैं | और प्राकृतिक संख्या <math>n>0</math> सूत्र <math>\varphi(x)</math> द्वारा परिभाषित किया गया है यह कहते हुए कि वहाँ वास्तव में अस्तित्व है कि x से कम n अवयव उपस्तिथ हैं | ||
Line 31: | Line 31: | ||
:<math>\varphi = \exists y(y \cdot y \equiv x).</math> | :<math>\varphi = \exists y(y \cdot y \equiv x).</math> | ||
इस प्रकार कोई भी <math>a\in\R</math> गैर-ऋणात्मक है यदि और केवल यदि <math>\mathcal{R}\models\varphi[a]</math>.होता है जिसमे कि सूत्र के साथ संयोजन में जो <math>\mathcal{R}</math> वास्तविक संख्या के योगात्मक व्युत्क्रम को परिभाषित करता है ,कोई व्यक्ति <math>\mathcal{R}</math> में सामान्य क्रम को परिभाषित करने के लिए <math>\varphi</math> का उपयोग कर सकता है: <math>a,b\in\R</math> के लिए <math>a\le b</math> तय करना यदि और केवल यदि <math>b-a</math> गैर-ऋणात्मक है. बढ़ी हुई संरचना <math>\mathcal{R}^{\le}=(\mathbb{R},0,1,+,\cdot,\le) </math> मूल संरचना की परिभाषाओं के अनुसार इसे विस्तार कहा जाता है। इसमें मूल संरचना के समान ही अभिव्यंजक शक्ति है, इस अर्थ में कि समुच्चय को मापदंडों के समुच्चय से विस्तारित संरचना पर परिभाषित किया जा सकता है यदि और केवल यदि यह मापदंडों के उसी समुच्चय से मूल संरचना पर परिभाषित किया जा सकता है। | इस प्रकार कोई भी <math>a\in\R</math> गैर-ऋणात्मक है यदि और केवल यदि <math>\mathcal{R}\models\varphi[a]</math>.होता है जिसमे कि सूत्र के साथ संयोजन में जो <math>\mathcal{R}</math> वास्तविक संख्या के योगात्मक व्युत्क्रम को परिभाषित करता है ,कोई व्यक्ति <math>\mathcal{R}</math> में सामान्य क्रम को परिभाषित करने के लिए <math>\varphi</math> का उपयोग कर सकता है: जो की <math>a,b\in\R</math> के लिए <math>a\le b</math> तय करना यदि और केवल यदि <math>b-a</math> गैर-ऋणात्मक है. बढ़ी हुई संरचना <math>\mathcal{R}^{\le}=(\mathbb{R},0,1,+,\cdot,\le) </math> मूल संरचना की परिभाषाओं के अनुसार इसे विस्तार कहा जाता है। इसमें मूल संरचना के समान ही अभिव्यंजक शक्ति है, इस अर्थ में कि समुच्चय को मापदंडों के समुच्चय से विस्तारित संरचना पर परिभाषित किया जा सकता है यदि और केवल यदि यह मापदंडों के उसी समुच्चय से मूल संरचना पर परिभाषित किया जा सकता है। | ||
<math>\mathcal{R}^{\le}</math> का [[सिद्धांत (गणितीय तर्क)]]। क्वांटिफ़ायर उन्मूलन है। इस प्रकार निश्चित समुच्चय बहुपद समानताओं और असमानताओं के समाधान के समुच्चय के क्षेत्र हैं | इन्हें अर्ध-बीजीय समुच्चय कहा जाता है। वास्तविक रेखा की इस संपत्ति का सामान्यीकरण [[ओ-न्यूनतमता]] के अध्ययन की ओर ले जाता है। | <math>\mathcal{R}^{\le}</math> का [[सिद्धांत (गणितीय तर्क)]]। क्वांटिफ़ायर उन्मूलन है। इस प्रकार निश्चित समुच्चय बहुपद समानताओं और असमानताओं के समाधान के समुच्चय के क्षेत्र हैं | इन्हें अर्ध-बीजीय समुच्चय कहा जाता है। वास्तविक रेखा की इस संपत्ति का सामान्यीकरण [[ओ-न्यूनतमता]] के अध्ययन की ओर ले जाता है। | ||
Line 38: | Line 38: | ||
निश्चित समुच्चय के बारे में महत्वपूर्ण परिणाम यह है कि उन्हें ऑटोमोर्फिज्म के अनुसार संरक्षित किया जाता है। | निश्चित समुच्चय के बारे में महत्वपूर्ण परिणाम यह है कि उन्हें ऑटोमोर्फिज्म के अनुसार संरक्षित किया जाता है। | ||
:मान लीजिए कि <math>\mathcal{L}</math> संरचना है जिसमें डोमेन <math>\mathcal{M}</math>, <math>X\subseteq M</math> और <math>A\subseteq M^m</math> है, जिसे <math>X</math> के मापदंडों के साथ <math>M</math> में परिभाषित किया जा सकता है। मान लीजिए कि <math>\pi:M\to M</math>, <math>\mathcal{M}</math> का ऑटोमोर्फिज्म है जो कि <math>X</math> पर पहचान है। फिर सभी <math>a_1,\ldots,a_m\in M</math> के लिए, | :मान लीजिए कि <math>\mathcal{L}</math> संरचना है जिसमें डोमेन <math>\mathcal{M}</math>, <math>X\subseteq M</math> और <math>A\subseteq M^m</math> है, जिसे <math>X</math> के मापदंडों के साथ <math>M</math> में परिभाषित किया जा सकता है। मान लीजिए कि <math>\pi:M\to M</math>, <math>\mathcal{M}</math> का ऑटोमोर्फिज्म है जो कि <math>X</math> पर पहचान है। फिर सभी <math>a_1,\ldots,a_m\in M</math> के लिए है, | ||
:<math>(a_1,\ldots,a_m)\in A</math> यदि और केवल यदि <math>(\pi(a_1),\ldots,\pi(a_m))\in A. </math> | :<math>(a_1,\ldots,a_m)\in A</math> यदि और केवल यदि <math>(\pi(a_1),\ldots,\pi(a_m))\in A. </math> | ||
इस परिणाम का उपयोग कभी-कभी किसी दी गई संरचना के निश्चित उपसमुच्चय को वर्गीकृत करने के लिए किया जा सकता है। उदाहरण के लिए, <math>\mathcal{Z}=(\mathbb{Z},<) </math> के स्तिथियों में ऊपर, का कोई भी अनुवाद <math>\mathcal{Z}</math> पैरामीटर के रिक्त समुच्चय को संरक्षित करने वाला ऑटोमोर्फिज्म है, और इस प्रकार <math>\mathcal{Z}</math> पैरामीटर के बिना इस संरचना में किसी विशेष पूर्णांक को परिभाषित करना असंभव है .वास्तव में, चूँकि किन्हीं दो पूर्णांकों को अनुवाद और उसके व्युत्क्रम द्वारा दूसरे तक ले जाया जाता है, पूर्णांकों का एकमात्र समुच्चय निश्चित होता है <math>\mathcal{Z}</math> पैरामीटर के बिना रिक्त समुच्चय हैं और <math>\mathbb{Z}</math> अपने आप इसके विपरीत, अवयव के जोड़े के अनंत रूप से अनेक निश्चित समुच्चय हैं (या वास्तव में किसी निश्चित n > 1 के लिए n-टुपल्स) <math>\mathcal{Z}</math>: (स्तिथियों में n = 2) समुच्चय के बूलियन संयोजन <math>\{(a, b) \mid a - b = m\} </math> के लिए <math>m \in \mathbb Z </math>. विशेष रूप से, कोई भी ऑटोमोर्फिज्म (अनुवाद) दो अवयव के मध्य की दूरी को संरक्षित करता है। | इस परिणाम का उपयोग कभी-कभी किसी दी गई संरचना के निश्चित उपसमुच्चय को वर्गीकृत करने के लिए किया जा सकता है। उदाहरण के लिए, <math>\mathcal{Z}=(\mathbb{Z},<) </math> के स्तिथियों में ऊपर, का कोई भी अनुवाद <math>\mathcal{Z}</math> पैरामीटर के रिक्त समुच्चय को संरक्षित करने वाला ऑटोमोर्फिज्म है, और इस प्रकार <math>\mathcal{Z}</math> पैरामीटर के बिना इस संरचना में किसी विशेष पूर्णांक को परिभाषित करना असंभव है .वास्तव में, चूँकि किन्हीं दो पूर्णांकों को अनुवाद और उसके व्युत्क्रम द्वारा दूसरे तक ले जाया जाता है, पूर्णांकों का एकमात्र समुच्चय निश्चित होता है जिसमे <math>\mathcal{Z}</math> पैरामीटर के बिना रिक्त समुच्चय हैं और <math>\mathbb{Z}</math> अपने आप इसके विपरीत, अवयव के जोड़े के अनंत रूप से अनेक निश्चित समुच्चय हैं (या वास्तव में किसी निश्चित n > 1 के लिए n-टुपल्स) <math>\mathcal{Z}</math>: (स्तिथियों में n = 2) समुच्चय के बूलियन संयोजन <math>\{(a, b) \mid a - b = m\} </math> के लिए <math>m \in \mathbb Z </math>. विशेष रूप से, कोई भी ऑटोमोर्फिज्म (अनुवाद) दो अवयव के मध्य की दूरी को संरक्षित करता है। | ||
== अतिरिक्त परिणाम == | == अतिरिक्त परिणाम == |
Revision as of 10:09, 7 August 2023
गणितीय तर्क में, निश्चित समुच्चय संरचना (गणितीय तर्क) के संरचना (गणितीय तर्क) या डोमेन पर n-आर्य संबंध (गणित) होता है, जिसके अवयव उस संरचना की प्रथम-क्रम लैंग्वेज में कुछ सूत्र (गणितीय तर्क) को संतुष्ट करते हैं। तथा इस प्रकार के समुच्चय (गणित) को पैरामीटर के साथ या उसके बिना परिभाषित किया जा सकता है, जो डोमेन के अवयव होते हैं जिन्हें संबंध को परिभाषित करने वाले सूत्र में संदर्भित किया जा सकता है।
परिभाषा
मान लीजि यह कि प्रथम-क्रम की लैंग्वेज होती है तब, -डोमेन के साथ संरचना , का निश्चित उपसमुच्चय है, और प्राकृतिक संख्या है तब:
- ऐसे समुच्चय में के साथ में निश्चित है यदि और केवल यदि और अवयवों से कोई सूत्र पैरामीटर उपस्तिथ है जैसे कि सभी के लिए उपस्थित नहीं हैं,
- यदि और केवल यदि
- यहां ब्रैकेट नोटेशन सूत्र में मुक्त वेरिएबल के अर्थपूर्ण मूल्यांकन को संकेतिक करता है।
- ऐसे समुच्चय को बिना पैरामीटर के में परिभाषित किया जा सकता है यदि यह रिक्त समुच्चय के पैरामीटर के साथ में परिभाषित किया जा सकता है (अर्थात, परिभाषित सूत्र में कोई पैरामीटर नहीं है)।
- ऐसे फलन (मापदंडों के साथ) में निश्चित है जो यदि इसका ग्राफ़ में (उन मापदंडों के साथ) निश्चित होते है | .
- अवयव को (मापदंडों के साथ) में परिभाषित किया जा सकता है यदि सिंगलटन (गणित) को (उन मापदंडों के साथ) में परिभाषित किया जा सकता है।
उदाहरण
केवल क्रम संबंध के साथ प्राकृतिक संख्याएँ
मान लीजिए कि सामान्य क्रम के साथ प्राकृतिक संख्याओं से युक्त संरचना है। तब प्रत्येक प्राकृत संख्या बिना पैरामीटर के में निश्चित होती है। तथा संख्या को सूत्र द्वारा परिभाषित किया गया है जिसमें कहा गया है कि x से कम कोई अवयव उपस्थित नहीं है |
और प्राकृतिक संख्या सूत्र द्वारा परिभाषित किया गया है यह कहते हुए कि वहाँ वास्तव में अस्तित्व है कि x से कम n अवयव उपस्तिथ हैं
इसके विपरीत, कोई संरचना में मापदंडों के बिना किसी विशिष्ट पूर्णांक को परिभाषित नहीं कर सकता है सामान्य क्रम के साथ पूर्णांकों से युक्त (नीचे स्वचालितता पर अनुभाग देखें) ।
प्राकृतिक संख्याएँ उनकी अंकगणितीय संक्रियाओं के साथ
मान लीजिए कि प्राकृतिक संख्याओं और उनके सामान्य अंकगणितीय संचालन और क्रम संबंध से युक्त प्रथम-क्रम संरचना बनते हैं। इस संरचना में परिभाषित समुच्चय को अंकगणितीय समुच्चय के रूप में जाना जाता है, और अंकगणितीय पदानुक्रम में वर्गीकृत किया जाता है। यदि संरचना को प्रथम-क्रम तर्क के अतिरिक्त दूसरे-क्रम तर्क में माना जाता है, तब परिणामी संरचना में प्राकृतिक संख्याओं के निश्चित समुच्चय को विश्लेषणात्मक पदानुक्रम में वर्गीकृत किया जाता है। यह पदानुक्रम इस संरचना में निश्चितता संगणना सिद्धांत सिद्धांत के मध्य अनेक संबंधों को प्रकट करते हैं, और वर्णनात्मक समुच्चय सिद्धांत में भी रुचि रखते हैं।
वास्तविक संख्याओं का क्षेत्र
मान लीजिए कि वास्तविक संख्याओं के क्षेत्र (गणित) से युक्त संरचना बनें. यद्यपि सामान्य क्रम संबंध सीधे संरचना में सम्मिलित नहीं है, कुछ सूत्र है जो गैर-ऋणात्मक वास्तविकताओं के समुच्चय को परिभाषित करता है, क्योंकि यह एकमात्र वास्तविकताएं हैं जिनमें वर्गमूल होते हैं:
इस प्रकार कोई भी गैर-ऋणात्मक है यदि और केवल यदि .होता है जिसमे कि सूत्र के साथ संयोजन में जो वास्तविक संख्या के योगात्मक व्युत्क्रम को परिभाषित करता है ,कोई व्यक्ति में सामान्य क्रम को परिभाषित करने के लिए का उपयोग कर सकता है: जो की के लिए तय करना यदि और केवल यदि गैर-ऋणात्मक है. बढ़ी हुई संरचना मूल संरचना की परिभाषाओं के अनुसार इसे विस्तार कहा जाता है। इसमें मूल संरचना के समान ही अभिव्यंजक शक्ति है, इस अर्थ में कि समुच्चय को मापदंडों के समुच्चय से विस्तारित संरचना पर परिभाषित किया जा सकता है यदि और केवल यदि यह मापदंडों के उसी समुच्चय से मूल संरचना पर परिभाषित किया जा सकता है।
का सिद्धांत (गणितीय तर्क)। क्वांटिफ़ायर उन्मूलन है। इस प्रकार निश्चित समुच्चय बहुपद समानताओं और असमानताओं के समाधान के समुच्चय के क्षेत्र हैं | इन्हें अर्ध-बीजीय समुच्चय कहा जाता है। वास्तविक रेखा की इस संपत्ति का सामान्यीकरण ओ-न्यूनतमता के अध्ययन की ओर ले जाता है।
ऑटोमोर्फिज्म के अंतर्गत अपरिवर्तन
निश्चित समुच्चय के बारे में महत्वपूर्ण परिणाम यह है कि उन्हें ऑटोमोर्फिज्म के अनुसार संरक्षित किया जाता है।
- मान लीजिए कि संरचना है जिसमें डोमेन , और है, जिसे के मापदंडों के साथ में परिभाषित किया जा सकता है। मान लीजिए कि , का ऑटोमोर्फिज्म है जो कि पर पहचान है। फिर सभी के लिए है,
- यदि और केवल यदि
इस परिणाम का उपयोग कभी-कभी किसी दी गई संरचना के निश्चित उपसमुच्चय को वर्गीकृत करने के लिए किया जा सकता है। उदाहरण के लिए, के स्तिथियों में ऊपर, का कोई भी अनुवाद पैरामीटर के रिक्त समुच्चय को संरक्षित करने वाला ऑटोमोर्फिज्म है, और इस प्रकार पैरामीटर के बिना इस संरचना में किसी विशेष पूर्णांक को परिभाषित करना असंभव है .वास्तव में, चूँकि किन्हीं दो पूर्णांकों को अनुवाद और उसके व्युत्क्रम द्वारा दूसरे तक ले जाया जाता है, पूर्णांकों का एकमात्र समुच्चय निश्चित होता है जिसमे पैरामीटर के बिना रिक्त समुच्चय हैं और अपने आप इसके विपरीत, अवयव के जोड़े के अनंत रूप से अनेक निश्चित समुच्चय हैं (या वास्तव में किसी निश्चित n > 1 के लिए n-टुपल्स) : (स्तिथियों में n = 2) समुच्चय के बूलियन संयोजन के लिए . विशेष रूप से, कोई भी ऑटोमोर्फिज्म (अनुवाद) दो अवयव के मध्य की दूरी को संरक्षित करता है।
अतिरिक्त परिणाम
टार्स्की-वॉट परीक्षण का उपयोग किसी दिए गए फ्रेम की प्रारंभिक उपसंरचनाओं को चिह्नित करने के लिए किया जाता है।
संदर्भ
- Hinman, Peter. Fundamentals of Mathematical Logic, A K Peters, 2005.
- Marker, David. Model Theory: An Introduction, Springer, 2002.
- Rudin, Walter. Principles of Mathematical Analysis, 3rd. ed. McGraw-Hill, 1976.
- Slaman, Theodore A. and Woodin, W. Hugh. Mathematical Logic: The Berkeley Undergraduate Course. Spring 2006.