न्यूनतम बहुपद एक्सट्रपलेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 21: Line 21:
==संदर्भ==
==संदर्भ==
<references/>
<references/>
[[Category: संख्यात्मक विश्लेषण]] [[Category: उदाहरण MATLAB/ऑक्टेव कोड वाले लेख]]


[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:उदाहरण MATLAB/ऑक्टेव कोड वाले लेख]]
[[Category:संख्यात्मक विश्लेषण]]

Latest revision as of 17:24, 8 August 2023

गणित में, न्यूनतम बहुपद एक्सट्रपलेशन एक अनुक्रम परिवर्तन है जिसका उपयोग कैबे और जैक्सन के कारण सदिश अनुक्रमों के अभिसरण त्वरण के लिए किया जाता है।[1]

जबकि ऐटकेन की विधि सबसे प्रसिद्ध है, यह प्रायः सदिश अनुक्रमों के लिए विफल रहती है। सदिश अनुक्रमों के लिए एक प्रभावी विधि न्यूनतम बहुपद एक्सट्रपलेशन है। इसे सामान्यतः निश्चित बिंदु पुनरावृत्ति के संदर्भ में व्यक्त किया जाता है:

पुनरावृत्त दिया गया में , एक का निर्माण करता है आव्यूह जिनके कॉलम हैं मतभेद. फिर, कोई सदिश की गणना करता है जहाँ मूर-पेनरोज़ मूर-पेनरोज़ छद्म व्युत्क्रम को दर्शाता है . इसके बाद अंक 1 को अंत में जोड़ दिया जाता है , और एक्सट्रपोलेटेड सीमा है

जहाँ वह आव्यूह है जिसके कॉलम हैं 2 से प्रांरम्भ होकर पुनरावृत्त होता है।

निम्नलिखित 4 लाइन MATLAB कोड खंड MPE एल्गोरिथ्म को लागू करता है:

U = x(:, 2:end - 1) - x(:, 1:end - 2);
c = - pinv(U) * (x(:, end) - x(:, end - 1));
c(end + 1, 1) = 1;
s = (x(:, 2:end) * c) / sum(c);


संदर्भ

  1. Cabay, S.; Jackson, L.W. (1976), "A polynomial extrapolation method for finding limits and antilimits of vector sequences", SIAM Journal on Numerical Analysis, 13 (5): 734–752, doi:10.1137/0713060