अनुक्रम परिवर्तन: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:अनुक्रम_परिवर्तन) |
(No difference)
|
Revision as of 11:38, 10 August 2023
गणित में, अनुक्रम परिवर्तन एक संचालिका (गणित) है जो अनुक्रमों के किसी दिए गए स्थान (एक अनुक्रम स्थान) पर कार्य करता है। अनुक्रम परिवर्तनों में रैखिक मानचित्रण सम्मिलित हैं जैसे कि किसी अन्य अनुक्रम के साथ कनवल्शन, और एक अनुक्रम का फिर से प्रारंभ होना और, अधिक सामान्यतः, श्रृंखला त्वरण के लिए उपयोग किया जाता है, अर्थात, धीरे-धीरे अभिसरण अनुक्रम या श्रृंखला (गणित) के अभिसरण की दर में सुधार के लिए अनुक्रम परिवर्तनों का उपयोग सामान्यतः संख्यात्मक रूप से भिन्न श्रृंखला की एंटीलिमिट की गणना करने के लिए भी किया जाता है, और एक्सट्रपलेशन विधियों के साथ संयोजन में उपयोग किया जाता है।
अवलोकन
अनुक्रम परिवर्तनों के मौलिक उदाहरणों में द्विपद परिवर्तन, मोबियस परिवर्तन, स्टर्लिंग परिवर्तन और अन्य सम्मिलित हैं।
परिभाषाएँ
किसी दिए गए क्रम के लिए
परिवर्तित क्रम है
जहां रूपांतरित अनुक्रम के सदस्यों की गणना आमतौर पर मूल अनुक्रम के सदस्यों की कुछ सीमित संख्या से की जाती है, अर्थात।
कुछ के लिए जो अधिकांशतः पर निर्भर करता है (cf. उदाहरण के लिए द्विपद परिवर्तन)। सरलतम स्थिति में, और वास्तविक या सम्मिश्र संख्याएँ हैं। अधिक सामान्यतः वे कुछ सदिश समष्टि या बीजगणित के तत्व हो सकते हैं।
अभिसरण के त्वरण के संदर्भ में, रूपांतरित अनुक्रम को मूल अनुक्रम की तुलना में तेजी से अभिसरण करने के लिए कहा जाता है
- जहां की सीमा है, जिसे अभिसरण माना जाता है। इस स्थिति में, अभिसरण त्वरण प्राप्त होता है। यदि मूल अनुक्रम अपसारी है, तो अनुक्रम परिवर्तन एंटीलिमिट के लिए एक्सट्रपलेशन विधि के रूप में कार्य करता है।
यदि मैपिंग इसके प्रत्येक तर्क में रैखिक मानचित्रण है, अर्थात, के लिए
- कुछ स्थिरांक के लिए (जो n पर निर्भर हो सकता है), अनुक्रम परिवर्तन रैखिक अनुक्रम परिवर्तन कहलाता है। अनुक्रम परिवर्तन जो रैखिक नहीं होते हैं उन्हें अरैखिक अनुक्रम परिवर्तन कहा जाता है।
उदाहरण
(रैखिक) अनुक्रम परिवर्तनों के सरलतम उदाहरणों में एक निश्चित k के लिए सभी तत्वों, (सम्मान = 0 यदि n + k < 0) को स्थानांतरित करना और अनुक्रम का अदिश गुणन सम्मिलित है। .
एक कम तुच्छ उदाहरण एक निश्चित अनुक्रम के साथ कन्वोल्यूशन या असतत कन्वोल्यूशन होगा। एक विशेष रूप से मूलभूत रूप अंतर ऑपरेटर है, जो अनुक्रम के साथ कनवल्शन है और व्युत्पन्न का एक अलग एनालॉग है। द्विपद परिवर्तन और भी अधिक सामान्य प्रकार का एक और रैखिक परिवर्तन है।
अरेखीय अनुक्रम परिवर्तन का एक उदाहरण ऐटकेन की डेल्टा-वर्ग प्रक्रिया है, जिसका उपयोग धीरे-धीरे अभिसरण अनुक्रम के अभिसरण की दर में सुधार करने के लिए किया जाता है। इसका एक विस्तारित रूप शैंक्स परिवर्तन है। मोबियस परिवर्तन भी एक अरेखीय परिवर्तन है, जो केवल पूर्णांक अनुक्रमों के लिए संभव है।
यह भी देखें
- ऐटकेन की डेल्टा-वर्ग प्रक्रिया
- न्यूनतम बहुपद एक्सट्रपलेशन
- रिचर्डसन एक्सट्रपलेशन
- शृंखला त्वरण
- स्टेफेंसन की विधि
संदर्भ
- Hugh J. Hamilton, "Mertens' Theorem and Sequence Transformations", AMS (1947)