उद्देश्य (बीजगणितीय ज्यामिति): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 160: Line 160:


==== होमोटॉपी श्रेणी का स्थानीयकरण ====
==== होमोटॉपी श्रेणी का स्थानीयकरण ====
'''यहां''' से हम होमोटॉपी श्रेणी बना सकते हैं <math>K^b(\mathcal{SmCor})</math> सहज पत्राचार के बंधे हुए परिसरों की। यहां चिकनी विविधता को दर्शाया जाएगा <math>[X]</math>. यदि हम [[किसी श्रेणी का स्थानीयकरण]] करते हैं, तो इस श्रेणी को सबसे छोटी मोटी उपश्रेणी (जिसका अर्थ है कि यह एक्सटेंशन के तहत बंद है) के संबंध में आकारिकी युक्त है
यहां से हम होमोटॉपी श्रेणी बना सकते हैं <math>K^b(\mathcal{SmCor})</math> सहज पत्राचार के बंधे हुए परिसरों की। यहां चिकनी विविधता को दर्शाया जाएगा <math>[X]</math>. यदि हम [[किसी श्रेणी का स्थानीयकरण|किसी श्रेणी को आकारिकी]] युक्त सबसे छोटी मोटी उपश्रेणी (अर्थात् यह एक्सटेंशन के अंतर्गत बंद है) के संबंध में स्थानीयकृत करते हैं


:<math>[X\times\mathbb{A}^1] \to [X]</math>
:<math>[X\times\mathbb{A}^1] \to [X]</math>
Line 174: Line 174:


:<math>\mathbb{L} \to [\mathbb{P}^1] \to [\operatorname{Spec}(k)] \xrightarrow{[+1]}</math>
:<math>\mathbb{L} \to [\mathbb{P}^1] \to [\operatorname{Spec}(k)] \xrightarrow{[+1]}</math>
विहित मानचित्र से <math>\mathbb{P}^1 \to \operatorname{Spec}(k)</math>. हम सेट करेंगे <math>A(1) = \mathbb{L}[-2]</math> और इसे टेट मकसद कहें। पुनरावृत्त टेंसर उत्पाद लेने से हमें निर्माण करने की सुविधा मिलती है <math>A(k)</math>. यदि हमारे पास एक प्रभावी ज्यामितीय मकसद है {{mvar|M}} हम जाने <math>M(k)</math> निरूपित <math>M \otimes A(k).</math> इसके अलावा, यह कार्यात्मक रूप से व्यवहार करता है और एक त्रिकोणीय फ़ंक्शनल बनाता है। अंत में, हम ज्यामितीय मिश्रित मकसदों की श्रेणी को परिभाषित कर सकते हैं <math>\mathcal{DM}_{gm}</math> जोड़ियों की श्रेणी के रूप में <math>(M,n)</math> के लिए {{mvar|M}} एक प्रभावी ज्यामितीय मिश्रित मकसद और {{mvar|n}} टेट मकसद द्वारा मोड़ का प्रतिनिधित्व करने वाला एक पूर्णांक। होम-ग्रुप तब कोलिमिट होते हैं
विहित मानचित्र से <math>\mathbb{P}^1 \to \operatorname{Spec}(k)</math>. हम सेट करेंगे <math>A(1) = \mathbb{L}[-2]</math> और इसे टेट मकसद कहें। पुनरावृत्त टेंसर उत्पाद लेने से हमें निर्माण करने की सुविधा मिलती है <math>A(k)</math>. यदि हमारे पास एक प्रभावी ज्यामितीय मकसद {{mvar|M}} है तो हम ऐसा करते हैं <math>M(k)</math> निरूपित करें <math>M \otimes A(k).</math> इसके अतिरिक्त, यह कार्यात्मक रूप से व्यवहार करता है और एक त्रिकोणीय फ़ंक्शनल बनाता है। अंत में, हम ज्यामितीय मिश्रित मकसदों की श्रेणी को परिभाषित कर सकते हैं <math>\mathcal{DM}_{gm}</math> जोड़े की श्रेणी के रूप में <math>(M,n)</math> {{mvar|M}} के लिए  एक प्रभावी ज्यामितीय मिश्रित मकसद और {{mvar|n}} एक पूर्णांक जो टेट मकसद द्वारा मोड़ का प्रतिनिधित्व करता है। होम-ग्रुप तब कोलिमिट होते हैं


:<math>\operatorname{Hom}_{\mathcal{DM}}((A,n),(B,m))=\lim_{k\geq -n,-m} \operatorname{Hom}_{\mathcal{DM}_{gm}^\operatorname{eff}}(A(k+n),B(k+m))</math>
:<math>\operatorname{Hom}_{\mathcal{DM}}((A,n),(B,m))=\lim_{k\geq -n,-m} \operatorname{Hom}_{\mathcal{DM}_{gm}^\operatorname{eff}}(A(k+n),B(k+m))</math>
Line 182: Line 182:


=== टेट मकसद ===
=== टेट मकसद ===
मकसदों के कई प्राथमिक उदाहरण हैं जो आसानी से उपलब्ध हैं। उनमें से एक टेट मकसद है, जिसे दर्शाया गया है <math>\mathbb{Q}(n)</math>, <math>\mathbb{Z}(n)</math>, या <math>A(n)</math>, मकसदों की श्रेणी के निर्माण में उपयोग किए गए गुणांक पर निर्भर करता है। ये मकसदों की श्रेणी में मौलिक निर्माण खंड हैं क्योंकि वे एबेलियन विविधता के अलावा अन्य भाग बनाते हैं।
मकसदों के कई प्राथमिक उदाहरण हैं जो आसानी से उपलब्ध हैं। उनमें से एक टेट मकसद है, जिसे दर्शाया गया है <math>\mathbb{Q}(n)</math>, <math>\mathbb{Z}(n)</math>, या <math>A(n)</math>, मकसदों की श्रेणी के निर्माण में प्रयुक्त गुणांक पर निर्भर करता है। ये मकसदों की श्रेणी में मौलिक निर्माण खंड हैं क्योंकि वे विनिमेय समूह विविधता के अतिरिक्त "अन्य भाग" बनाते हैं।


=== वक्रों के मकसद ===
=== वक्रों के मकसद ===


वक्र के मकसद को सापेक्ष आसानी से स्पष्ट रूप से समझा जा सकता है: उनकी चाउ रिंग उचित है<math display="block">\Z\oplus \text{Pic}(C)</math>किसी भी चिकने प्रक्षेप्य वक्र के लिए <math>C</math>, इसलिए जैकोबियन को मकसदों की श्रेणी में शामिल किया गया है।
वक्र के मकसद को सापेक्ष आसानी से स्पष्ट रूप से समझा जा सकता है: उनकी चाउ रिंग उचित है<math display="block">\Z\oplus \text{Pic}(C)</math>किसी भी चिकने प्रक्षेप्य वक्र के लिए <math>C</math>, इसलिए जैकोबियन मकसदों की श्रेणी में सम्मिलित किया गया है।


==गैर-विशेषज्ञों के लिए स्पष्टीकरण==
==गैर-विशेषज्ञों के लिए स्पष्टीकरण==
गणित में आमतौर पर लागू की जाने वाली तकनीक एक श्रेणी (गणित) का परिचय देकर एक विशेष संरचना वाली वस्तुओं का अध्ययन करना है जिसका रूपवाद इस संरचना को संरक्षित करता है। तब कोई यह पूछ सकता है कि दी गई दो वस्तुएं समरूपी हैं, और प्रत्येक समरूपता वर्ग में एक विशेष रूप से अच्छे प्रतिनिधि के लिए पूछें। बीजगणितीय विविधता का वर्गीकरण, अर्थात बीजगणितीय विविधता के स्थिति में इस विचार का अनुप्रयोग, वस्तुओं की अत्यधिक गैर-रैखिक संरचना के कारण बहुत मुश्किल है। द्विवार्षिक समरूपता तक की विविधता का अध्ययन करने के शांत प्रश्न ने [[द्विवार्षिक ज्यामिति]] के क्षेत्र को जन्म दिया है। प्रश्न को संभालने का दूसरा तरीका यह है कि किसी दिए गए प्रकार यह रैखिककरण आमतौर पर कोहोलॉजी के नाम से जाना जाता है।
गणित में सामान्यता लागू की जाने वाली तकनीक एक श्रेणी (गणित) का परिचय देकर एक विशेष संरचना वाली वस्तुओं का अध्ययन करना है जिनकी आकृतियाँ इस संरचना को संरक्षित करती हैं। तब कोई यह पूछ सकता है कि दी गई दो वस्तुएं समरूपी हैं, और प्रत्येक समरूपता वर्ग में एक "विशेष रूप से अच्छा" प्रतिनिधि मांग सकता है। बीजगणितीय विविधता का वर्गीकरण, अर्थात बीजगणितीय विविधता के स्थिति में इस विचार का अनुप्रयोग, वस्तुओं की अत्यधिक गैर-रैखिक संरचना के कारण बहुत कठिन है। द्विवार्षिक समरूपता तक की विविधता का अध्ययन करने के शांत प्रश्न ने [[द्विवार्षिक ज्यामिति]] के क्षेत्र को जन्म दिया है। प्रश्न को संभालने का दूसरा तरीका यह है कि किसी दिए गए प्रकार यह "रैखिककरण" सामान्यता  कोहोलॉजी के नाम से जाना जाता है।


कई महत्वपूर्ण सह-समरूपता सिद्धांत हैं, जो विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं। (आंशिक रूप से अनुमानित) 'मकसदों का सिद्धांत' बीजगणितीय विविधता को रैखिक बनाने के लिए एक सार्वभौमिक तरीका खोजने का एक प्रयास है, अर्थात मकसदों को एक सह-समरूपता सिद्धांत प्रदान करना चाहिए जो इन सभी विशेष सह-समरूपताओं का प्रतीक है। उदाहरण के लिए, एक चिकने प्रक्षेप्य [[वक्र]] C का Genus_(गणित), जो वक्र का एक दिलचस्प अपरिवर्तनीय है, एक पूर्णांक है, जिसे C के पहले बेट्टी कोहोमोलॉजी समूह के आयाम से पढ़ा जा सकता है। तो, वक्र का मकसद इसमें वंश की जानकारी होनी चाहिए। बेशक, जीनस एक मोटा अपरिवर्तनीय है, इसलिए सी का मकसद सिर्फ इस संख्या से कहीं अधिक है।
कई महत्वपूर्ण सह-समरूपता सिद्धांत हैं, जो विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं। 'मकसदों का सिद्धांत' (आंशिक रूप से अनुमानित) बीजगणितीय विविधता को रैखिक बनाने का एक सार्वभौमिक तरीका खोजने का एक प्रयास है, अर्थात उद्देश्यों को एक सह-समरूपता सिद्धांत प्रदान करना चाहिए जो इन सभी विशेष सह-समरूपताओं का प्रतीक है। उदाहरण के लिए, एक चिकने प्रक्षेप्य [[वक्र]] C का Genus_(गणित), जो वक्र का एक दिलचस्प अपरिवर्तनीय है, एक पूर्णांक है, जिसे C के पहले बेट्टी कोहोमोलॉजी समूह के आयाम से पढ़ा जा सकता है। तो, वक्र के मकसद में जीनस की जानकारी होनी चाहिए। बिल्कुल, जीनस एक मोटा अपरिवर्तनीय है, इसलिए C का मकसद सिर्फ इस संख्या से कहीं अधिक है।


== एक सार्वभौमिक सह-समरूपता की खोज ==
== एक सार्वभौमिक सह-समरूपता की खोज ==
प्रत्येक बीजगणितीय किस्म X का एक संगत मकसद [X] होता है, इसलिए मकसदों के सबसे सरल उदाहरण हैं:
प्रत्येक बीजगणितीय विविधता X का एक संगत मकसद [X] होता है, इसलिए मकसदों के सबसे सरल उदाहरण हैं:


* [बिंदु]
* [बिंदु]
Line 200: Line 200:
* [प्रक्षेप्य तल] = [तल] + [रेखा] + [बिंदु]
* [प्रक्षेप्य तल] = [तल] + [रेखा] + [बिंदु]


ये 'समीकरण' कई स्थितियों में लागू होते हैं, अर्थात् डी राम कोहोमोलॉजी और बेट्टी कोहोमोलॉजी, एटले कोहोमोलॉजी|एल-एडिक कोहोमोलॉजी, किसी भी [[परिमित क्षेत्र]] पर अंकों की संख्या, और स्थानीय ज़ेटा-फ़ंक्शन के लिए [[गुणक संकेतन]] में।
ये 'समीकरण' कई स्थितियों में लागू होते हैं, अर्थात् डी राम कोहोमोलॉजी और बेट्टी कोहोमोलॉजी, एल-एडिक कोहोमोलॉजी, किसी भी परिमित क्षेत्र पर अंकों की संख्या, और स्थानीय ज़ेटा-फ़ंक्शन के लिए [[गुणक संकेतन]] में।


सामान्य विचार यह है कि किसी भी उचित सह-समरूपता सिद्धांत में अच्छे औपचारिक गुणों के साथ एक 'मकसद' की संरचना समान होती है; विशेष रूप से, किसी भी 'वेइल कोहोमोलॉजी' सिद्धांत में ऐसे गुण होंगे। अलग-अलग वेइल कोहोमोलॉजी सिद्धांत हैं, वे विभिन्न स्थितियों में लागू होते हैं और विभिन्न श्रेणियों में उनके मूल्य होते हैं, और प्रश्न में विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं:
सामान्य विचार यह है कि किसी भी उचित सह-समरूपता सिद्धांत में अच्छे औपचारिक गुणों के साथ एक 'मकसद' की संरचना समान होती है; विशेष रूप से, किसी भी 'वेइल कोहोमोलॉजी' सिद्धांत में ऐसे गुण होंगे। अलग-अलग वेइल कोहोमोलॉजी सिद्धांत हैं, वे विभिन्न श्रेणियों में उनके मूल्य होते हैं, और प्रश्न में विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं:


* बेट्टी कोहोमोलॉजी को [[जटिल संख्या]]ओं (उपक्षेत्रों) की विविधता के लिए परिभाषित किया गया है, इसमें [[पूर्णांकों]] पर परिभाषित होने का लाभ है और यह एक टोपोलॉजिकल अपरिवर्तनीय है
* बेट्टी कोहोमोलॉजी को [[जटिल संख्या]]ओं (उपक्षेत्रों) की विविधता के लिए परिभाषित किया गया है, इसमें [[पूर्णांकों]] पर परिभाषित होने का लाभ है और यह एक टोपोलॉजिकल अपरिवर्तनीय है
* डी राम कोहोमोलॉजी (विविधता के लिए)। <math>\Complex</math>) [[मिश्रित हॉज संरचना]] के साथ आता है, यह एक विभेदक-ज्यामितीय अपरिवर्तनीय है
* डी राम कोहोमोलॉजी (विविधता के लिए)। <math>\Complex</math>) [[मिश्रित हॉज संरचना]] के साथ आता है, यह एक विभेदक-ज्यामितीय अपरिवर्तनीय है
* étale cohomology|l-एडिक कोहोमोलॉजी (विशेषता ≠ l के किसी भी क्षेत्र पर) में एक विहित गैलोज़ समूह क्रिया है, अर्थात (पूर्ण) गैलोज़ समूह के [[प्रतिनिधित्व (गणित)]] में मान हैं
* [[एल-एडिक कोहोमोलॉजी]](विशेषता ≠ l के किसी भी क्षेत्र पर) में एक विहित गैलोज़ समूह क्रिया है, अर्थात (पूर्ण) गैलोज़ समूह के [[प्रतिनिधित्व (गणित)]] में मूल्य हैं
* क्रिस्टलीय सहसंरचना
* क्रिस्टलीय सहसंरचना


ये सभी सह-समरूपता सिद्धांत समान गुण साझा करते हैं, जैसे [[मेयर-विएटोरिस अनुक्रम]]ों का अस्तित्व, होमोटॉपी इनवेरिएंस <math>H^*(X) \cong H^*(X\times \mathbb{A}^1),</math> [[एफ़िन लाइन]] के साथ एक्स का उत्पाद) और अन्य। इसके अलावा, वे तुलनात्मक समरूपता से जुड़े हुए हैं, उदाहरण के लिए बेट्टी कोहोमोलॉजी <math>H^*_{\text{Betti}}(X, \Z/n)</math> एक चिकनी किस्म का एक्स ओवर <math>\Complex</math> परिमित गुणांकों के साथ एल-एडिक कोहोमोलॉजी परिमित गुणांकों के साथ समरूपी है।
ये सभी सह-समरूपता सिद्धांत समान गुण साझा करते हैं, जैसे [[मेयर-विएटोरिस अनुक्रम|मेयर-विएटोरिस]] अनुक्रमों का अस्तित्व, होमोटॉपी इनवेरिएंस <math>H^*(X) \cong H^*(X\times \mathbb{A}^1),</math> [[एफ़िन लाइन]] के साथ ''X'' का गुणनफल) और अन्य। इसके अतिरिक्त, वे तुलनात्मक समरूपता से जुड़े हुए हैं, उदाहरण के लिए बेट्टी कोहोमोलॉजी <math>H^*_{\text{Betti}}(X, \Z/n)</math> एक चिकनी किस्म के X के ऊपर <math>\Complex</math> परिमित गुणांकों के साथ एल-एडिक कोहोमोलॉजी के लिए समरूपी है।


'मकसदों का सिद्धांत' एक सार्वभौमिक सिद्धांत खोजने का एक प्रयास है जो इन सभी विशेष सह-समरूपताओं और उनकी संरचनाओं का प्रतीक है और जैसे समीकरणों के लिए एक रूपरेखा प्रदान करता है
'मकसदों का सिद्धांत' एक सार्वभौमिक सिद्धांत खोजने का एक प्रयास है जो इन सभी विशेष सह-समरूपताओं और उनकी संरचनाओं का प्रतीक है और "समीकरणोंके लिए एक रूपरेखा प्रदान करता है


:[प्रक्षेप्य रेखा] = [रेखा]+[बिंदु]।
:[प्रक्षेप्य रेखा] = [रेखा]+[बिंदु]।


विशेष रूप से, किसी भी किस्म एक्स के मकसद की गणना सीधे कई वेइल कोहोमोलॉजी सिद्धांतों एच के बारे में सारी जानकारी देती है{{sup|*}}<sub>Betti</sub>(एक्स), एच{{sup|*}}<sub>DR</sub>(एक्स) आदि।
विशेष रूप से, किसी भी किस्म ''X''  के मकसद की गणना सीधे कई वेइल कोहोमोलॉजी सिद्धांतों के बारे में सारी जानकारी देती है ''H*'' <sub>Betti</sub>(''X'' ), ''H''{{sup|*}}<sub>DR</sub>(''X'') आदि।


ग्रोथेंडिक से शुरुआत करके, लोगों ने कई वर्षों तक इस सिद्धांत को सटीक रूप से परिभाषित करने का प्रयास किया है।
ग्रोथेंडिक से प्रारम्भ करके, लोगों ने कई वर्षों तक इस सिद्धांत को सटीक रूप से परिभाषित करने का प्रयास किया है।


=== [[मोटिविक कोहोमोलॉजी|प्रेरक कोहोमोलॉजी]] ===
=== [[मोटिविक कोहोमोलॉजी|प्रेरक कोहोमोलॉजी]] ===
प्रेरक कोहोलॉजी का आविष्कार बीजगणितीय के-सिद्धांत के माध्यम से मिश्रित मकसदों के निर्माण से पहले किया गया था। उपरोक्त श्रेणी इसे पुनः परिभाषित करने का एक स्पष्ट तरीका प्रदान करती है
प्रेरक कोहोलॉजी का आविष्कार बीजगणितीय K-सिद्धांत के माध्यम से मिश्रित मकसदों के निर्माण से पहले किया गया था। उपरोक्त श्रेणी इसे पुनः परिभाषित करने का एक स्पष्ट तरीका प्रदान करती है


:<math>H^n(X,m) := H^n(X, \Z(m)) := \operatorname{Hom}_{DM}(X, \Z(m)[n]),</math>
:<math>H^n(X,m) := H^n(X, \Z(m)) := \operatorname{Hom}_{DM}(X, \Z(m)[n]),</math>
जहाँ n और m पूर्णांक हैं और <math>\Z(m)</math> टेट ऑब्जेक्ट की एम-वें टेंसर शक्ति है <math>\Z(1),</math> जो वोएवोडस्की की सेटिंग में जटिल है <math>\mathbb{P}^1 \to \operatorname{pt}</math> -2 द्वारा स्थानांतरित किया गया, और [एन] का मतलब त्रिकोणीय श्रेणी में सामान्य त्रिकोणीय श्रेणी है।
जहाँ n और m पूर्णांक हैं और <math>\Z(m)</math> टेट ऑब्जेक्ट की एम-वें टेंसर शक्ति है <math>\Z(1),</math> जो वोएवोडस्की की सेटिंग में जटिल है <math>\mathbb{P}^1 \to \operatorname{pt}</math> -2 द्वारा स्थानांतरित , और [एन] का अर्थ त्रिकोणीय श्रेणी में सामान्य बदलाव है।


== मकसदों से संबंधित अनुमान ==
== मकसदों से संबंधित अनुमान ==
[[बीजगणितीय चक्रों पर मानक अनुमान]] सबसे पहले बीजगणितीय चक्रों और वेइल कोहोमोलॉजी सिद्धांतों की परस्पर क्रिया के संदर्भ में तैयार किए गए थे। शुद्ध मकसदों की श्रेणी इन अनुमानों के लिए एक श्रेणीबद्ध रूपरेखा प्रदान करती है।
[[बीजगणितीय चक्रों पर मानक अनुमान|मानक अनुमान]] सबसे पहले बीजगणितीय चक्रों और वेइल कोहोमोलॉजी सिद्धांतों की परस्पर क्रिया के संदर्भ में तैयार किए गए थे। शुद्ध मकसदों की श्रेणी इन अनुमानों के लिए एक श्रेणीबद्ध रूपरेखा प्रदान करती है।


मानक अनुमान आमतौर पर बहुत कठिन माने जाते हैं और सामान्य स्थिति में खुले होते हैं। बॉम्बिएरी के साथ ग्रोथेंडिक ने मानक अनुमानों को मान्य मानते हुए, वेइल अनुमानों (जो डेलिग्ने द्वारा विभिन्न माध्यमों से सिद्ध किए गए हैं) का एक सशर्त (बहुत छोटा और सुरुचिपूर्ण) प्रमाण तैयार करके प्रेरक दृष्टिकोण की गहराई दिखाई।
मानक अनुमान सामान्यता बहुत कठिन माने जाते हैं और सामान्य स्थिति में खुले होते हैं। बॉम्बिएरी के साथ ग्रोथेंडिक ने मानक अनुमानों को मान्य मानते हुए, वेइल अनुमानों (जो डेलिग्ने द्वारा विभिन्न माध्यमों से सिद्ध किए गए हैं) का एक सशर्त (बहुत छोटा और सुरुचिपूर्ण) प्रमाण तैयार करके प्रेरक दृष्टिकोण की गहराई दिखाई।


उदाहरण के लिए, कुनेथ मानक अनुमान, जो बीजीय चक्रों के अस्तित्व को बताता है π<sup>i</sup> ⊂ X × X विहित प्रोजेक्टर H को प्रेरित करता है{{sup|*}}(एक्स) → एच<sup>i</sup>(X) ↣ H{{sup|*}}(एक्स) (किसी भी वेइल कोहोमोलॉजी एच के लिए) का तात्पर्य है कि प्रत्येक शुद्ध मकसद एम वजन के वर्गीकृत टुकड़ों में विघटित होता है: एम = ⨁Gr<sub>n</sub>एम. शब्दावली भार चिकनी प्रक्षेप्य विविधता के डी-रैम कोहोमोलॉजी के समान अपघटन से आता है, [[हॉज सिद्धांत]] देखें।
उदाहरण के लिए, कुनेथ मानक अनुमान, जो विहित प्रोजेक्टर H*(X) → Hi(X) ↣ H*(X) को प्रेरित करने वाले बीजगणितीय चक्रों π<sup>i</sup> ⊂ X × X शुद्ध उद्देश्य M वजन n के श्रेणीबद्ध टुकड़ों में विघटित होता है:M =⨁''Gr<sub>n</sub>M'' . शब्दावली भार चिकनी प्रक्षेप्य विविधता के डी-रैम कोहोमोलॉजी के समान अपघटन से आता है, [[हॉज सिद्धांत]] देखें।


अनुमान डी, बीजगणितीय चक्रों के संख्यात्मक और समतुल्य संबंध की सहमति बताते हुए, समरूप और संख्यात्मक समतुल्यता के संबंध में शुद्ध मकसदों की समतुल्यता का तात्पर्य करता है। (विशेष रूप से मकसदों की पूर्व श्रेणी वेइल कोहोमोलॉजी सिद्धांत की पसंद पर निर्भर नहीं होगी)। जैनसेन (1992) ने निम्नलिखित बिना शर्त परिणाम साबित किया: किसी क्षेत्र पर (शुद्ध) मकसदों की श्रेणी एबेलियन और अर्धसरल है यदि और केवल यदि चुना गया तुल्यता संबंध संख्यात्मक तुल्यता है।
अनुमान D, संख्यात्मक और समवैज्ञानिक तुल्यता की सहमति बताते हुए, समवैज्ञानिक और संख्यात्मक तुल्यता के संबंध में शुद्ध उद्देश्यों की समतुल्यता का तात्पर्य करता है। (विशेष रूप से मकसदों की पूर्व श्रेणी वेइल कोहोमोलॉजी सिद्धांत की पसंद पर निर्भर नहीं होगी)। जैनसेन (1992) ने निम्नलिखित बिना शर्त परिणाम साबित किया: किसी क्षेत्र पर (शुद्ध) मकसदों की श्रेणी विनिमेय समूह और अर्धसरल है यदि और केवल यदि चुना गया तुल्यता संबंध संख्यात्मक तुल्यता है।


[[हॉज अनुमान]] को मकसदों का उपयोग करके बड़े करीने से पुनर्निर्मित किया जा सकता है: यह तर्कसंगत गुणांक (एक उपक्षेत्र पर) के साथ किसी भी शुद्ध मकसद को मैप करने वाले हॉज अहसास को मानता है <math>k</math> का <math>\Complex</math>) इसकी हॉज संरचना एक पूर्ण फ़ंक्टर है <math>H:M(k)_{\Q} \to HS_{\Q}</math> (तर्कसंगत [[हॉज संरचना]]एं)। यहां शुद्ध मकसद का अर्थ सजातीय तुल्यता के संबंध में शुद्ध मकसद से है।
[[हॉज अनुमान]] को मकसदों का उपयोग करके बड़े करीने से पुनर्निर्मित किया जा सकता है: यह तर्कसंगत गुणांक (एक उपक्षेत्र पर) के साथ किसी भी शुद्ध मकसद को प्रतिचित्रकरने वाले हॉज अहसास को मानता है <math>k</math> का <math>\Complex</math>) इसकी हॉज संरचना एक पूर्ण फ़ंक्टर है <math>H:M(k)_{\Q} \to HS_{\Q}</math> (तर्कसंगत [[हॉज संरचना]]एं)। यहां शुद्ध मकसद का अर्थ सजातीय तुल्यता के संबंध में शुद्ध मकसद से है।


इसी तरह, [[टेट अनुमान]] इसके बराबर है: तथाकथित टेट अहसास, अर्थात ℓ-एडिक कोहोमोलॉजी, एक पूर्ण फ़ंक्टर है <math>H: M(k)_{\Q_\ell} \to \operatorname{Rep}_{\ell} (\operatorname{Gal}(k))</math> (होमोलॉजिकल तुल्यता तक शुद्ध मकसद, आधार क्षेत्र k के पूर्ण गैलोज़ समूह का निरंतर [[समूह प्रतिनिधित्व]]), जो अर्ध-सरल अभ्यावेदन में मान लेता है। (हॉज एनालॉग के स्थिति में बाद वाला हिस्सा स्वचालित है)।
इसी तरह, [[टेट अनुमान]] इसके बराबर है: तथाकथित टेट अहसास, अर्थात ℓ-एडिक कोहोमोलॉजी, एक पूर्ण फ़ंक्टर है <math>H: M(k)_{\Q_\ell} \to \operatorname{Rep}_{\ell} (\operatorname{Gal}(k))</math> (होमोलॉजिकल तुल्यता तक शुद्ध मकसद, आधार क्षेत्र k के पूर्ण गैलोज़ समूह का निरंतर [[समूह प्रतिनिधित्व|प्रतिनिधित्व]]), जो अर्ध-सरल अभ्यावेदन में मान लेता है। (हॉज एनालॉग के स्थिति में बाद वाला हिस्सा स्वचालित है)।


==तन्नाकियन औपचारिकता और प्रेरक गैलोज़ समूह==
==तन्नाकियन औपचारिकता और प्रेरक गैलोज़ समूह==
(अनुमानात्मक) प्रेरक गैलोइस समूह को प्रेरित करने के लिए, एक फ़ील्ड k तय करें और फ़ैक्टर पर विचार करें
(अनुमानात्मक) प्रेरक गैलोइस समूह को प्रेरित करने के लिए, एक क्षेत्र k तय करें और फ़ैक्टर पर विचार करें


:k के परिमित वियोज्य विस्तार K → k के निरपेक्ष गैलोज़ समूह की (निरंतर) सकर्मक क्रिया के साथ गैर-रिक्त परिमित सेट
:k के परिमित वियोज्य विस्तार K → k के निरपेक्ष गैलोज़ समूह की (निरंतर) सकर्मक क्रिया के साथ गैर-रिक्त परिमित समुच्चय


जो K को k के बीजगणितीय समापन में K के एम्बेडिंग के (परिमित) सेट पर मैप करता है। [[गैलोइस सिद्धांत]] में इस फ़ैक्टर को श्रेणियों के तुल्यता के रूप में दिखाया गया है। ध्यान दें कि फ़ील्ड 0-आयामी हैं। इस प्रकार के मकसदों को आर्टिन मकसद कहा जाता है। द्वारा <math>\Q</math>-उपरोक्त वस्तुओं को रैखिक करते हुए, उपरोक्त को व्यक्त करने का दूसरा तरीका यह कहना है कि आर्टिन मकसद परिमित के बराबर हैं <math>\Q</math>-गैलोइस समूह की एक कार्रवाई के साथ वेक्टर रिक्त स्थान।
जो K को k के बीजगणितीय समापन में K के अंत: स्थापन के (परिमित) समुच्चय पर प्रतिचित्र करता है। [[गैलोइस सिद्धांत]] में इस फ़ैक्टर को श्रेणियों के तुल्यता के रूप में दिखाया गया है। ध्यान दें कि क्षेत्र 0-आयामी हैं। इस प्रकार के मकसदों को आर्टिन मकसद कहा जाता है। द्वारा <math>\Q</math>-उपरोक्त वस्तुओं को रैखिक बनाना, उपरोक्त व्यक्त करने का दूसरा तरीका यह कहना है कि आर्टिन मकसद परिमित के बराबर हैं <math>\Q</math>-गैलोइस समूह की एक कार्रवाई के साथ वेक्टर रिक्त स्थान।


प्रेरक गैलोज़ समूह का मकसद उपरोक्त तुल्यता को उच्च-आयामी विविधता तक विस्तारित करना है। ऐसा करने के लिए, [[तन्नाकियन श्रेणी]] सिद्धांत (तन्नाका-क्रेन द्वैत पर वापस जाते हुए, लेकिन एक विशुद्ध बीजगणितीय सिद्धांत) की तकनीकी मशीनरी का उपयोग किया जाता है। इसका मकसद [[बीजगणितीय चक्र]] सिद्धांत में उत्कृष्ट प्रश्नों, हॉज अनुमान और टेट अनुमान दोनों पर प्रकाश डालना है। वेइल कोहोमोलॉजी सिद्धांत ''एच'' को ठीक करें। यह ''एम'' से एक फ़नकार देता है<sub>num</sub>(संख्यात्मक तुल्यता का उपयोग करके शुद्ध मकसद) परिमित-आयामी तक <math>\Q</math>-वेक्टर रिक्त स्थान. यह दिखाया जा सकता है कि पूर्व श्रेणी एक तन्नाकियन श्रेणी है। समरूप और संख्यात्मक तुल्यता की समतुल्यता को मानते हुए, अर्थात उपरोक्त मानक अनुमान डी, फ़ैक्टर एच एक सटीक वफादार टेंसर-फ़ंक्टर है। तन्नाकियन औपचारिकता को लागू करते हुए, कोई यह निष्कर्ष निकालता है कि एम<sub>num</sub>[[बीजगणितीय समूह]] जी के समूह प्रतिनिधित्व की श्रेणी के बराबर है, जिसे प्रेरक गैलोज़ समूह के रूप में जाना जाता है।
प्रेरक गैलोज़ समूह का मकसद उपरोक्त तुल्यता को उच्च-आयामी विविधता तक विस्तारित करना है। ऐसा करने के लिए, [[तन्नाकियन श्रेणी]] सिद्धांत (तन्नाका-क्रेन द्वैत पर वापस जाते हुए, लेकिन एक विशुद्ध बीजगणितीय सिद्धांत) की तकनीकी मशीनरी का उपयोग किया जाता है। इसका मकसद [[बीजगणितीय चक्र]] सिद्धांत में उत्कृष्ट प्रश्नों, हॉज अनुमान और टेट अनुमान दोनों पर प्रकाश डालना है। वेइल कोहोमोलॉजी सिद्धांत ''एच'' को ठीक करें। यह ''एम'' से एक फ़नकार देता है<sub>num</sub>(संख्यात्मक तुल्यता का उपयोग करके शुद्ध मकसद) परिमित-आयामी तक <math>\Q</math>-वेक्टर रिक्त स्थान. यह दिखाया जा सकता है कि पूर्व श्रेणी एक तन्नाकियन श्रेणी है। समरूप और संख्यात्मक तुल्यता की समतुल्यता को मानते हुए, अर्थात उपरोक्त मानक अनुमान डी, फ़ैक्टर एच एक सटीक वफादार टेंसर-फ़ंक्टर है। तन्नाकियन औपचारिकता को लागू करते हुए, कोई यह निष्कर्ष निकालता है कि एम<sub>num</sub>[[बीजगणितीय समूह]] जी के समूह प्रतिनिधित्व की श्रेणी के बराबर है, जिसे प्रेरक गैलोज़ समूह के रूप में जाना जाता है।

Revision as of 14:29, 29 July 2023

बीजगणितीय ज्यामिति में, मकसद (या कभी-कभी रूपांकन, फ्रांसीसी भाषा के उपयोग के बाद) 1960 के दशक में अलेक्जेंडर ग्रोथेंडिक द्वारा प्रस्तावित एक सिद्धांत है, जो समान व्यवहार वाले कोहोमोलॉजी सिद्धांतों जैसे कि एकवचन कोहोमोलॉजी, डी राम कोहोमोलॉजी, ईटेल कोहोमोलॉजी और क्रिस्टलीय कोहोमोलॉजी के विशाल सरणी को एकीकृत करता है। दार्शनिक रूप से, एक "मोटिफ़" विभिन्न प्रकार का "कोहोमोलॉजी सार" है।

चिकनी प्रक्षेप्य विविधता के लिए ग्रोथेंडिक के सूत्रीकरण में, एक मकसद एक ट्रिपल है , जहां एक्स एक सहज प्रक्षेप्य विविधता है, एक निष्क्रिय पत्राचार (बीजगणितीय ज्यामिति) है, और एम एक पूर्णांक है, हालांकि, इस तरह के ट्रिपल में ग्रोथेंडिक की शुद्ध मकसदों की श्रेणी (गणित) के संदर्भ के बाहर लगभग कोई जानकारी नहीं होती है, जहां से एक रूपवाद को डिग्री के पत्राचार द्वारा दिया जाता है . पियरे डेलिग्ने द्वारा ले ग्रुप फोंडामेंटल डे ला ड्रोइट प्रोजेक्टिव मोइन्स ट्रोइस पॉइंट्स में एक अधिक वस्तु-केंद्रित दृष्टिकोण अपनाया गया है। उस लेख में, एक मकसद एक "प्राप्ति की प्रणाली" है - अर्थात, एक टपल

मॉड्यूल (गणित) से मिलकर

रिंग के ऊपर (गणित)

क्रमशः, विभिन्न तुलनात्मक समरूपताएँ

इन मॉड्यूलों के स्पष्ट आधार परिवर्तनों, निस्पंदन क्रिया के बीच , ए -कार्य पर और एक "फ्रोबेनियस" ऑटोमोर्फिज्म का . यह डेटा एक सुचारु प्रक्षेप्य के सह-समरूपता पर आधारित है -विविधता , संरचनाएं और अनुकूलता वे स्वीकार करते है, और एक विचार देते है कि किस प्रकार की जानकारी में एक मकसद निहित है।

परिचय

मकसदों के सिद्धांत को मूल रूप से बेट्टी कोहोमोलॉजी, डी राम कोहोमोलॉजी, एल-एडिक कोहोमोलॉजी और क्रिस्टलीय कोहोमोलॉजी सहित कोहोलॉजी सिद्धांतों की तेजी से बढ़ती सरणी को एकजुट करने के प्रयास के रूप में अनुमानित किया गया था। सामान्य आशा यह है कि समीकरण जैसे हों

  • [प्रक्षेप्य रेखा] = [रेखा] + [बिंदु]
  • [प्रक्षेप्य तल] = [तल] + [रेखा] + [बिंदु]

इसे गहरे अर्थ के साथ तेजी से ठोस गणितीय आधार पर रखा जा सकता है। बिल्कुल, उपरोक्त समीकरण पहले से ही कई अर्थों में सत्य माने जाते हैं, जैसे कि सीडब्ल्यू-कॉम्प्लेक्स के अर्थ में जहां "+" संलग्न कोशिकाओं से मेल खाता है, और विभिन्न कोहोमोलॉजी सिद्धांतों के अर्थ में, जहां "+" से मेल खाता है प्रत्यक्ष योग।

दूसरे दृष्टिकोण से, मकसद विविधता पर तर्कसंगत कार्यों से लेकर विविधता पर विभाजक से लेकर विविधता के चाउ समूहों तक सामान्यीकरण के क्रम को जारी रखते हैं। सामान्यीकरण एक से अधिक दिशाओं में होता है, क्योंकि मकसदों को तर्कसंगत तुल्यता की तुलना में अधिक प्रकार की तुल्यता के संबंध में माना जा सकता है। स्वीकार्य तुल्यताएँ पर्याप्त तुल्यता संबंध की परिभाषा द्वारा दी जाती हैं।

शुद्ध मकसदों की परिभाषा

शुद्ध मकसदों की श्रेणी (गणित) प्रायः तीन चरणों में आगे बढ़ती है। नीचे हम चाउ मोटिव्स के मकसद का वर्णन करते हैं , जहां k कोई क्षेत्र है।

पहला चरण: (डिग्री 0) पत्राचार की श्रेणी, कोर(के)

की वस्तुएं K के ऊपर केवल चिकनी प्रक्षेप्य किस्में हैं। रूपवाद पत्राचार हैं। वे विविधता की आकृतियों का सामान्यीकरण करते हैं , जिसे उनके ग्राफ़ के साथ जोड़ा जा सकता है , निश्चित आयामी चाउ रिंग पर .

मनमाने ढंग से डिग्री के पत्राचार का वर्णन करना उपयोगी होगा, हालांकि इसमें रूपवाद है डिग्री 0 के अनुरूप हैं। विस्तार से, मान लें कि X और Y चिकनी प्रक्षेप्य किस्में हैं और जुड़े हुए घटकों में X के अपघटन पर विचार करें:

अगर , तो X से Y तक डिग्री r के पत्राचार है

कहाँ कोडिमेंशन k के चाउ-चक्र को दर्शाता है। पत्राचार को अधिकतर ⊢ -चिह्न का उपयोग करके दर्शाया जाता है, उदाहरण के लिए, . किसी के लिए और उनकी रचना द्वारा परिभाषित किया गया है

जहां बिंदु चाउ रिंग (अर्थात, सर्वनिष्ठ) में उत्पाद को दर्शाता है।

श्रेणी के निर्माण पर वापस लौट रहे हैं ध्यान दें कि डिग्री 0 पत्राचार की संरचना डिग्री 0 है। इसलिए हम रूपवाद को परिभाषित करते हैं डिग्री 0 पत्राचार होना।

निम्नलिखित समिति एक अवच्छेदक है (यहाँ)। के ग्राफ को दर्शाता है ):

ठीक वैसा श्रेणी में प्रत्यक्ष योग (XY := XY) और प्रदिश गुणनफल

(XY := X × Y). यह एक प्रीएडिटिव श्रेणी है। रूपवादों का योग द्वारा परिभाषित किया गया है


दूसरा चरण: शुद्ध प्रभावी चाउ मकसदों की श्रेणी, चाउप्रभाव(k)

मकसदों में परिवर्तन छद्म-विनिमेय समूह लिफाफा लेकर किया जाता है :

.

दूसरे शब्दों में, प्रभावी चाउ मकसद चिकनी प्रक्षेप्य विविधता एक्स और निष्क्रिय पत्राचार α: X ⊢ X के जोड़े हैं, और आकारिकी एक निश्चित प्रकार के पत्राचार के हैं:

संरचना पत्राचार की उपरोक्त परिभाषित संरचना है, और (X, α) की पहचान रूपवाद को α : X ⊢ X के रूप में परिभाषित किया गया है।

समिति,

,

जहां ΔX := [आईडीX] X × X के विकर्ण को दर्शाता है, एक अवच्छेदक है। मकसद [X] को अधिकतर किस्म X से जुड़ा मकसद कहा जाता है।

जैसी कि अभिप्रेत, चौeff(k) एक छद्म-विनिमेय समूह है। प्रभावी मकसदों का प्रत्यक्ष योग किसके द्वारा दिया जाता है?

प्रभावी मकसदों की प्रदिश गुणनफल को परिभाषित किया गया है

कहाँ

आकारिकी के प्रदिश गुणनफल को भी परिभाषित किया जा सकता है। होने देना f1 : (X1, α1) → (Y1, β1) और f2 : (X2, α2) → (Y2, β2) मकसदों की आकृतियाँ बनें। तो करने दें γ1A*(X1 × Y1) और γ2A*(X2 × Y2) f1 और f2 के प्रतिनिधि बनें। तब

,

जहां πi : X1 × X2 × Y1 × Y2Xi × Yi अनुमान हैं.

तीसरा चरण: शुद्ध चाउ मकसदों की श्रेणी, चाउ(के)

मकसदों की ओर आगे बढ़ने के लिए, हम चाउeff(k) के साथ एक मकसद का औपचारिक व्युत्क्रम (प्रदिश गुणनफल के संबंध में) जोड़ते हैं जिसे लेफ्सचेत्ज़ मकसद कहा जाता है। इसका प्रभाव यह होता है कि मकसद जोड़े के बजाय तीन हो जाते हैं। लेफ्शेट्ज़ मकसद L है

.

यदि हम मकसद 1 को परिभाषित करते हैं, जिसे तुच्छ टेट मकसद कहा जाता है, 1 := h(Spec(k)) द्वारा, तो सुरुचिपूर्ण समीकरण

तब से धारण करता है

लेफ्शेट्ज़ मकसद के प्रदिश गुणनफल को टेट मकसद के रूप में जाना जाता है, T: = L−1. फिर हम शुद्ध चाउ मकसदों की श्रेणी को परिभाषित करते हैं

.

एक मकसद तो एक ट्रिपल है

जैसे कि आकारिकी पत्राचार द्वारा दी जाती है

और आकारिकी की संरचना पत्राचार की संरचना से आती है।

उद्देश के अनुसार, एक कठोर श्रेणी छद्म-विनिमेय समूह श्रेणी है।

अन्य प्रकार के मकसद

एक प्रतिच्छेदन उत्पाद को परिभाषित करने के लिए, चक्रों को "चलने योग्य" होना चाहिए ताकि हम उन्हें सामान्य स्थिति में प्रतिच्छेद कर सकें। चक्रों पर एक उपयुक्त तुल्यता संबंध चुनने से यह बंधक होगी कि चक्रों की प्रत्येक जोड़ी में सामान्य स्थिति में एक समतुल्य जोड़ी होती है जिसे हम प्रतिच्छेद कर सकते हैं। चाउ समूहों को तर्कसंगत तुल्यता का उपयोग करके परिभाषित किया गया है, लेकिन अन्य तुल्यताएं संभव हैं, और प्रत्येक एक अलग प्रकार के मकसद को परिभाषित करता है। सबसे मजबूत से लेकर सबसे कमजोर तक, समतुल्यता के उदाहरण हैं

  • तर्कसंगत तुल्यता
  • बीजीय तुल्यता
  • तोड़-फोड़ तुल्यता (कभी-कभी वोएवोडस्की तुल्यता भी कहा जाता है)
  • समजात तुल्यता (वेइल कोहोमोलॉजी के अर्थ में)
  • संख्यात्मक तुल्यता

साहित्य कभी-कभी हर प्रकार के शुद्ध मकसद को चाउ मकसद कहता है, इस स्थिति में बीजगणितीय तुल्यता के संबंध में एक मकसद को चाउ मकसद मोडुलो बीजगणितीय तुल्यता कहा जाएगा।

मिश्रित मकसद

एक निश्चित आधार क्षेत्र k के लिए, 'मिश्रित मकसदों' की श्रेणी एक अनुमानित विनिमेय समूह टेंसर श्रेणी है , एक विरोधाभासी फ़ैक्टर के साथ

सभी विविधता पर मूल्य लेना (सिर्फ सहज प्रक्षेपी नहीं, जैसा कि शुद्ध मकसदों के स्थिति में था)। यह ऐसा होना चाहिए कि प्रेरक कोहोमोलॉजी द्वारा परिभाषित किया गया हो

बीजगणितीय के-सिद्धांत द्वारा भविष्यवाणी की गई भविष्यवाणी के साथ मेल खाता है, और इसमें उपयुक्त अर्थ (और अन्य गुणों) में चाउ मकसदों की श्रेणी सम्मिलित है। ऐसी श्रेणी के अस्तित्व का अनुमान अलेक्जेंडर बेइलिंसन ने लगाया था।

ऐसी श्रेणी के निर्माण के अतिरिक्त, डेलिग्ने द्वारा यह प्रस्तावित किया गया था कि पहले एक श्रेणी DM का निर्माण किया जाए जिसमें व्युत्पन्न श्रेणी के लिए अपेक्षित गुण हों।

.

DM से MM वापस प्राप्त करना एक (अनुमानात्मक) प्रेरक टी-संरचना द्वारा पूरा किया जाएगा।

सिद्धांत की वर्तमान स्थिति यह है कि हमारे पास एक उपयुक्त श्रेणी DM है। यह श्रेणी पहले से ही अनुप्रयोगों में उपयोगी है। व्लादिमीर वोएवोडस्की के फील्ड्स मेडल-विजेता मिल्नोर अनुमान का प्रमाण इन मकसदों को एक प्रमुख घटक के रूप में उपयोग करता है।

हनामुरा, लेविन और वोवोडस्की के कारण अलग-अलग परिभाषाएँ हैं। वे ज्यादातर स्थिति में समकक्ष माने जाते हैं और हम वोएवोडस्की की परिभाषा नीचे देंगे। श्रेणी में चाउ मोटिव्स को पूर्ण उपश्रेणी के रूप में सम्मिलित किया गया है और यह "सही" प्रेरक कोहोलॉजी देता है। हालाँकि, वोएवोडस्की यह भी दर्शाता है कि (अभिन्न गुणांकों के साथ) यह एक प्रेरक टी-संरचना को स्वीकार नहीं करता है।

ज्यामितीय मिश्रित मकसद

संकेतन

यहां हम विशेषता 0 का एक क्षेत्र k तय करेंगे और जाने देंगे हमारा गुणांक वलय हो। तय करेंगे जैसा कि k से अधिक अर्ध-प्रक्षेपी विविधता की श्रेणी में परिमित प्रकार की अलग-अलग योजनाएं हैं। हम भी देंगे चिकनी विविधता की उपश्रेणी हो।

पत्राचार के साथ चिकनी विविधता

एक सहज विविधता X और एक विविधता Y को देखते हुए एक अभिन्न बंद उपयोजना कहते हैं जो X के ऊपर परिमित है और Y के एक घटक पर विशेषण है। फिर, हम X से Y तक प्राइम पत्राचार का सेट ले सकते हैं और एक मुफ्त ए-मॉड्यूल का निर्माण कर सकते हैं A-मापांक . इसके तत्वों को परिमित संगतता कहा जाता है। फिर, हम एक योगात्मक श्रेणी बना सकते हैं जिनकी वस्तुएं चिकनी विविधता हैं और आकारिकी चिकनी पत्राचार द्वारा दी गई हैं। इस "परिभाषा" का एकमात्र गैर-तुच्छ हिस्सा यह तथ्य है कि हमें रचनाओं का वर्णन करने की आवश्यकता है। ये चाउ रिंग्स के सिद्धांत से पुश-पुल फॉर्मूला द्वारा दिए गए हैं।

पत्राचार के उदाहरण

प्राइम पत्राचार के विशिष्ट उदाहरण ग्राफ़ से आते हैं विविधता के एक रूपवाद का .


होमोटॉपी श्रेणी का स्थानीयकरण

यहां से हम होमोटॉपी श्रेणी बना सकते हैं सहज पत्राचार के बंधे हुए परिसरों की। यहां चिकनी विविधता को दर्शाया जाएगा . यदि हम किसी श्रेणी को आकारिकी युक्त सबसे छोटी मोटी उपश्रेणी (अर्थात् यह एक्सटेंशन के अंतर्गत बंद है) के संबंध में स्थानीयकृत करते हैं

और

तब हम प्रभावी ज्यामितीय मकसदों की त्रिकोणीय श्रेणी बना सकते हैं ध्यान दें कि आकारिकी का पहला वर्ग स्थानीयकरण कर रहा है -विविधता की समरूपता जबकि दूसरा मेयर-विएटोरिस अनुक्रम में ज्यामितीय मिश्रित मकसदों की श्रेणी देगा।

साथ ही, ध्यान दें कि इस श्रेणी में विविधता के उत्पाद द्वारा दी गई एक टेंसर संरचना होती है .

टेट मकसद को उलटना

त्रिभुजाकार संरचना का उपयोग करके हम एक त्रिभुज का निर्माण कर सकते हैं

विहित मानचित्र से . हम सेट करेंगे और इसे टेट मकसद कहें। पुनरावृत्त टेंसर उत्पाद लेने से हमें निर्माण करने की सुविधा मिलती है . यदि हमारे पास एक प्रभावी ज्यामितीय मकसद M है तो हम ऐसा करते हैं निरूपित करें इसके अतिरिक्त, यह कार्यात्मक रूप से व्यवहार करता है और एक त्रिकोणीय फ़ंक्शनल बनाता है। अंत में, हम ज्यामितीय मिश्रित मकसदों की श्रेणी को परिभाषित कर सकते हैं जोड़े की श्रेणी के रूप में M के लिए एक प्रभावी ज्यामितीय मिश्रित मकसद और n एक पूर्णांक जो टेट मकसद द्वारा मोड़ का प्रतिनिधित्व करता है। होम-ग्रुप तब कोलिमिट होते हैं


मकसदों के उदाहरण

टेट मकसद

मकसदों के कई प्राथमिक उदाहरण हैं जो आसानी से उपलब्ध हैं। उनमें से एक टेट मकसद है, जिसे दर्शाया गया है , , या , मकसदों की श्रेणी के निर्माण में प्रयुक्त गुणांक पर निर्भर करता है। ये मकसदों की श्रेणी में मौलिक निर्माण खंड हैं क्योंकि वे विनिमेय समूह विविधता के अतिरिक्त "अन्य भाग" बनाते हैं।

वक्रों के मकसद

वक्र के मकसद को सापेक्ष आसानी से स्पष्ट रूप से समझा जा सकता है: उनकी चाउ रिंग उचित है

किसी भी चिकने प्रक्षेप्य वक्र के लिए , इसलिए जैकोबियन मकसदों की श्रेणी में सम्मिलित किया गया है।

गैर-विशेषज्ञों के लिए स्पष्टीकरण

गणित में सामान्यता लागू की जाने वाली तकनीक एक श्रेणी (गणित) का परिचय देकर एक विशेष संरचना वाली वस्तुओं का अध्ययन करना है जिनकी आकृतियाँ इस संरचना को संरक्षित करती हैं। तब कोई यह पूछ सकता है कि दी गई दो वस्तुएं समरूपी हैं, और प्रत्येक समरूपता वर्ग में एक "विशेष रूप से अच्छा" प्रतिनिधि मांग सकता है। बीजगणितीय विविधता का वर्गीकरण, अर्थात बीजगणितीय विविधता के स्थिति में इस विचार का अनुप्रयोग, वस्तुओं की अत्यधिक गैर-रैखिक संरचना के कारण बहुत कठिन है। द्विवार्षिक समरूपता तक की विविधता का अध्ययन करने के शांत प्रश्न ने द्विवार्षिक ज्यामिति के क्षेत्र को जन्म दिया है। प्रश्न को संभालने का दूसरा तरीका यह है कि किसी दिए गए प्रकार यह "रैखिककरण" सामान्यता कोहोलॉजी के नाम से जाना जाता है।

कई महत्वपूर्ण सह-समरूपता सिद्धांत हैं, जो विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं। 'मकसदों का सिद्धांत' (आंशिक रूप से अनुमानित) बीजगणितीय विविधता को रैखिक बनाने का एक सार्वभौमिक तरीका खोजने का एक प्रयास है, अर्थात उद्देश्यों को एक सह-समरूपता सिद्धांत प्रदान करना चाहिए जो इन सभी विशेष सह-समरूपताओं का प्रतीक है। उदाहरण के लिए, एक चिकने प्रक्षेप्य वक्र C का Genus_(गणित), जो वक्र का एक दिलचस्प अपरिवर्तनीय है, एक पूर्णांक है, जिसे C के पहले बेट्टी कोहोमोलॉजी समूह के आयाम से पढ़ा जा सकता है। तो, वक्र के मकसद में जीनस की जानकारी होनी चाहिए। बिल्कुल, जीनस एक मोटा अपरिवर्तनीय है, इसलिए C का मकसद सिर्फ इस संख्या से कहीं अधिक है।

एक सार्वभौमिक सह-समरूपता की खोज

प्रत्येक बीजगणितीय विविधता X का एक संगत मकसद [X] होता है, इसलिए मकसदों के सबसे सरल उदाहरण हैं:

  • [बिंदु]
  • [प्रक्षेप्य रेखा] = [बिंदु] + [रेखा]
  • [प्रक्षेप्य तल] = [तल] + [रेखा] + [बिंदु]

ये 'समीकरण' कई स्थितियों में लागू होते हैं, अर्थात् डी राम कोहोमोलॉजी और बेट्टी कोहोमोलॉजी, एल-एडिक कोहोमोलॉजी, किसी भी परिमित क्षेत्र पर अंकों की संख्या, और स्थानीय ज़ेटा-फ़ंक्शन के लिए गुणक संकेतन में।

सामान्य विचार यह है कि किसी भी उचित सह-समरूपता सिद्धांत में अच्छे औपचारिक गुणों के साथ एक 'मकसद' की संरचना समान होती है; विशेष रूप से, किसी भी 'वेइल कोहोमोलॉजी' सिद्धांत में ऐसे गुण होंगे। अलग-अलग वेइल कोहोमोलॉजी सिद्धांत हैं, वे विभिन्न श्रेणियों में उनके मूल्य होते हैं, और प्रश्न में विविधता के विभिन्न संरचनात्मक पहलुओं को दर्शाते हैं:

  • बेट्टी कोहोमोलॉजी को जटिल संख्याओं (उपक्षेत्रों) की विविधता के लिए परिभाषित किया गया है, इसमें पूर्णांकों पर परिभाषित होने का लाभ है और यह एक टोपोलॉजिकल अपरिवर्तनीय है
  • डी राम कोहोमोलॉजी (विविधता के लिए)। ) मिश्रित हॉज संरचना के साथ आता है, यह एक विभेदक-ज्यामितीय अपरिवर्तनीय है
  • एल-एडिक कोहोमोलॉजी(विशेषता ≠ l के किसी भी क्षेत्र पर) में एक विहित गैलोज़ समूह क्रिया है, अर्थात (पूर्ण) गैलोज़ समूह के प्रतिनिधित्व (गणित) में मूल्य हैं
  • क्रिस्टलीय सहसंरचना

ये सभी सह-समरूपता सिद्धांत समान गुण साझा करते हैं, जैसे मेयर-विएटोरिस अनुक्रमों का अस्तित्व, होमोटॉपी इनवेरिएंस एफ़िन लाइन के साथ X का गुणनफल) और अन्य। इसके अतिरिक्त, वे तुलनात्मक समरूपता से जुड़े हुए हैं, उदाहरण के लिए बेट्टी कोहोमोलॉजी एक चिकनी किस्म के X के ऊपर परिमित गुणांकों के साथ एल-एडिक कोहोमोलॉजी के लिए समरूपी है।

'मकसदों का सिद्धांत' एक सार्वभौमिक सिद्धांत खोजने का एक प्रयास है जो इन सभी विशेष सह-समरूपताओं और उनकी संरचनाओं का प्रतीक है और "समीकरणों" के लिए एक रूपरेखा प्रदान करता है

[प्रक्षेप्य रेखा] = [रेखा]+[बिंदु]।

विशेष रूप से, किसी भी किस्म X के मकसद की गणना सीधे कई वेइल कोहोमोलॉजी सिद्धांतों के बारे में सारी जानकारी देती है H* Betti(X ), H*DR(X) आदि।

ग्रोथेंडिक से प्रारम्भ करके, लोगों ने कई वर्षों तक इस सिद्धांत को सटीक रूप से परिभाषित करने का प्रयास किया है।

प्रेरक कोहोमोलॉजी

प्रेरक कोहोलॉजी का आविष्कार बीजगणितीय K-सिद्धांत के माध्यम से मिश्रित मकसदों के निर्माण से पहले किया गया था। उपरोक्त श्रेणी इसे पुनः परिभाषित करने का एक स्पष्ट तरीका प्रदान करती है

जहाँ n और m पूर्णांक हैं और टेट ऑब्जेक्ट की एम-वें टेंसर शक्ति है जो वोएवोडस्की की सेटिंग में जटिल है -2 द्वारा स्थानांतरित , और [एन] का अर्थ त्रिकोणीय श्रेणी में सामान्य बदलाव है।

मकसदों से संबंधित अनुमान

मानक अनुमान सबसे पहले बीजगणितीय चक्रों और वेइल कोहोमोलॉजी सिद्धांतों की परस्पर क्रिया के संदर्भ में तैयार किए गए थे। शुद्ध मकसदों की श्रेणी इन अनुमानों के लिए एक श्रेणीबद्ध रूपरेखा प्रदान करती है।

मानक अनुमान सामान्यता बहुत कठिन माने जाते हैं और सामान्य स्थिति में खुले होते हैं। बॉम्बिएरी के साथ ग्रोथेंडिक ने मानक अनुमानों को मान्य मानते हुए, वेइल अनुमानों (जो डेलिग्ने द्वारा विभिन्न माध्यमों से सिद्ध किए गए हैं) का एक सशर्त (बहुत छोटा और सुरुचिपूर्ण) प्रमाण तैयार करके प्रेरक दृष्टिकोण की गहराई दिखाई।

उदाहरण के लिए, कुनेथ मानक अनुमान, जो विहित प्रोजेक्टर H*(X) → Hi(X) ↣ H*(X) को प्रेरित करने वाले बीजगणितीय चक्रों πi ⊂ X × X शुद्ध उद्देश्य M वजन n के श्रेणीबद्ध टुकड़ों में विघटित होता है:M =⨁GrnM . शब्दावली भार चिकनी प्रक्षेप्य विविधता के डी-रैम कोहोमोलॉजी के समान अपघटन से आता है, हॉज सिद्धांत देखें।

अनुमान D, संख्यात्मक और समवैज्ञानिक तुल्यता की सहमति बताते हुए, समवैज्ञानिक और संख्यात्मक तुल्यता के संबंध में शुद्ध उद्देश्यों की समतुल्यता का तात्पर्य करता है। (विशेष रूप से मकसदों की पूर्व श्रेणी वेइल कोहोमोलॉजी सिद्धांत की पसंद पर निर्भर नहीं होगी)। जैनसेन (1992) ने निम्नलिखित बिना शर्त परिणाम साबित किया: किसी क्षेत्र पर (शुद्ध) मकसदों की श्रेणी विनिमेय समूह और अर्धसरल है यदि और केवल यदि चुना गया तुल्यता संबंध संख्यात्मक तुल्यता है।

हॉज अनुमान को मकसदों का उपयोग करके बड़े करीने से पुनर्निर्मित किया जा सकता है: यह तर्कसंगत गुणांक (एक उपक्षेत्र पर) के साथ किसी भी शुद्ध मकसद को प्रतिचित्रकरने वाले हॉज अहसास को मानता है का ) इसकी हॉज संरचना एक पूर्ण फ़ंक्टर है (तर्कसंगत हॉज संरचनाएं)। यहां शुद्ध मकसद का अर्थ सजातीय तुल्यता के संबंध में शुद्ध मकसद से है।

इसी तरह, टेट अनुमान इसके बराबर है: तथाकथित टेट अहसास, अर्थात ℓ-एडिक कोहोमोलॉजी, एक पूर्ण फ़ंक्टर है (होमोलॉजिकल तुल्यता तक शुद्ध मकसद, आधार क्षेत्र k के पूर्ण गैलोज़ समूह का निरंतर प्रतिनिधित्व), जो अर्ध-सरल अभ्यावेदन में मान लेता है। (हॉज एनालॉग के स्थिति में बाद वाला हिस्सा स्वचालित है)।

तन्नाकियन औपचारिकता और प्रेरक गैलोज़ समूह

(अनुमानात्मक) प्रेरक गैलोइस समूह को प्रेरित करने के लिए, एक क्षेत्र k तय करें और फ़ैक्टर पर विचार करें

k के परिमित वियोज्य विस्तार K → k के निरपेक्ष गैलोज़ समूह की (निरंतर) सकर्मक क्रिया के साथ गैर-रिक्त परिमित समुच्चय

जो K को k के बीजगणितीय समापन में K के अंत: स्थापन के (परिमित) समुच्चय पर प्रतिचित्र करता है। गैलोइस सिद्धांत में इस फ़ैक्टर को श्रेणियों के तुल्यता के रूप में दिखाया गया है। ध्यान दें कि क्षेत्र 0-आयामी हैं। इस प्रकार के मकसदों को आर्टिन मकसद कहा जाता है। द्वारा -उपरोक्त वस्तुओं को रैखिक बनाना, उपरोक्त व्यक्त करने का दूसरा तरीका यह कहना है कि आर्टिन मकसद परिमित के बराबर हैं -गैलोइस समूह की एक कार्रवाई के साथ वेक्टर रिक्त स्थान।

प्रेरक गैलोज़ समूह का मकसद उपरोक्त तुल्यता को उच्च-आयामी विविधता तक विस्तारित करना है। ऐसा करने के लिए, तन्नाकियन श्रेणी सिद्धांत (तन्नाका-क्रेन द्वैत पर वापस जाते हुए, लेकिन एक विशुद्ध बीजगणितीय सिद्धांत) की तकनीकी मशीनरी का उपयोग किया जाता है। इसका मकसद बीजगणितीय चक्र सिद्धांत में उत्कृष्ट प्रश्नों, हॉज अनुमान और टेट अनुमान दोनों पर प्रकाश डालना है। वेइल कोहोमोलॉजी सिद्धांत एच को ठीक करें। यह एम से एक फ़नकार देता हैnum(संख्यात्मक तुल्यता का उपयोग करके शुद्ध मकसद) परिमित-आयामी तक -वेक्टर रिक्त स्थान. यह दिखाया जा सकता है कि पूर्व श्रेणी एक तन्नाकियन श्रेणी है। समरूप और संख्यात्मक तुल्यता की समतुल्यता को मानते हुए, अर्थात उपरोक्त मानक अनुमान डी, फ़ैक्टर एच एक सटीक वफादार टेंसर-फ़ंक्टर है। तन्नाकियन औपचारिकता को लागू करते हुए, कोई यह निष्कर्ष निकालता है कि एमnumबीजगणितीय समूह जी के समूह प्रतिनिधित्व की श्रेणी के बराबर है, जिसे प्रेरक गैलोज़ समूह के रूप में जाना जाता है।

प्रेरक गैलोज़ समूह मकसदों के सिद्धांत के लिए वही है जो ममफोर्ड-टेट समूह हॉज सिद्धांत के लिए है। फिर से मोटे तौर पर कहें तो, हॉज और टेट अनुमान अपरिवर्तनीय सिद्धांत के प्रकार हैं (यदि कोई सही परिभाषाएँ स्थापित करता है, तो वे स्थान जो नैतिक रूप से बीजगणितीय चक्र हैं, उन्हें एक समूह के तहत अपरिवर्तनीयता द्वारा चुना जाता है)। प्रेरक गैलोज़ समूह के पास आसपास का प्रतिनिधित्व सिद्धांत है। (यह जो नहीं है, वह एक गैलोज़ समूह है; हालाँकि टेट अनुमान और ईटेल कोहोमोलॉजी पर गैलोज़ अभ्यावेदन के संदर्भ में, यह गैलोज़ समूह की छवि की भविष्यवाणी करता है, या, अधिक सटीक रूप से, इसके लाई बीजगणित।)

यह भी देखें

संदर्भ

सर्वेक्षण आलेख

  • Beilinson, Alexander; Vologodsky, Vadim (2007), A DG guide to Voevodsky's motives, p. 4004, arXiv:math/0604004, Bibcode:2006math......4004B (अपेक्षाकृत संक्षिप्त प्रमाणों के साथ तकनीकी परिचय)
  • परिमित क्षेत्रों पर मकसद - जे.एस. मिलन
  • Mazur, Barry (2004), "What is ... a motive?" (PDF), Notices of the American Mathematical Society, 51 (10): 1214–1216, ISSN 0002-9920, MR 2104916 (डमी पाठ के लिए मकसद)।
  • Serre, Jean-Pierre (1991), "Motifs" (PDF), Astérisque (in French) (198): 11, 333–349 (1992), ISSN 0303-1179, MR 1144336, archived from the original (PDF) on 2022-01-10{{citation}}: CS1 maint: unrecognized language (link) (फ्रेंच में मकसदों का उच्च स्तरीय परिचय)।
  • Tabauda, Goncalo (2011), "A guided tour through the garden of noncommutative motives", Journal of K-theory, arXiv:1108.3787

पुस्तकें

संदर्भ साहित्य

भविष्य की दिशाएँ

बाहरी संबंध