जैकनाइफ क्रॉस-वैलिडेशन: Difference between revisions
m (Deepak moved page जैकनाइफ़ पुनः नमूनाकरण to जैकनाइफ क्रॉस-वैलिडेशन without leaving a redirect) |
(text) |
||
Line 1: | Line 1: | ||
{{Short description|Statistical method for resampling}} | {{Short description|Statistical method for resampling}} | ||
आँकड़ों में, जैकनाइफ़ (जैकनाइफ़ अंतः वैधीकरण) एक अंतः वैधीकरण तकनीक है और इसलिए, यह पुनः प्रतिचयन का एक रूप है। | |||
यह पूर्वाग्रह और भिन्नता आकलन के लिए विशेष रूप से उपयोगी है। जैकनाइफ़ [[बूटस्ट्रैप (सांख्यिकी)]] जैसी अन्य सामान्य पुन: प्रतिचयन विधियों को पूर्व-दिनांकित करता है। आकार n के एक प्रतिरूप को देखते हुए, एक अवलोकन को छोड़कर प्राप्त आकार (n-1) के प्रत्येक उप-प्रतिरूप से मापदण्ड प्राक्कलन को एकत्रित करके एक जैकनाइफ प्राक्कलक बनाया जा सकता है। {{sfn|Efron|1982|p=2}} | |||
जैकनाइफ़ बूटस्ट्रैप (सांख्यिकी) का एक रैखिक | जैकनाइफ तकनीक को मौरिस क्वेनोइल (1924-1973) द्वारा 1949 में विकसित किया गया था और 1956 में परिष्कृत किया गया था।[[ जॉन तुकी | जॉन तुकी]] ने 1958 में इस तकनीक का विस्तार किया और "जैकनाइफ" नाम प्रस्तावित किया, क्योंकि एक भौतिक जैक-नाइफ (एक कॉम्पैक्ट फोल्डिंग चाकू) की तरह, यह एक काम चलाऊ उपकरण है जो विभिन्न प्रकार की समस्याओं के लिए भी समाधान निकाल सकता है। हालाँकि उद्देश्य-डिज़ाइन किए गए उपकरण से विशिष्ट समस्याओं को अधिक निपूणता से हल किया जा सकता है। {{sfn|Cameron|Trivedi|2005|p=375}} | ||
जैकनाइफ़ बूटस्ट्रैप (सांख्यिकी) का '''एक रैखिक सादृश्य है।''' {{sfn|Cameron|Trivedi|2005|p=375}} | |||
==एक सरल उदाहरण: माध्य अनुमान== | ==एक सरल उदाहरण: माध्य अनुमान== | ||
Line 39: | Line 40: | ||
==आकलनकर्ता के पूर्वाग्रह का अनुमान लगाना== | ==आकलनकर्ता के पूर्वाग्रह का अनुमान लगाना== | ||
जैकनाइफ तकनीक का उपयोग पूरे | जैकनाइफ तकनीक का उपयोग पूरे प्रतिरूपपर गणना किए गए अनुमानक के पूर्वाग्रह का अनुमान लगाने (और सही करने) के लिए किया जा सकता है। | ||
कल्पना करना <math>\theta</math> रुचि का लक्ष्य पैरामीटर है, जिसे वितरण के कुछ कार्यात्मक माना जाता है <math>x</math>. अवलोकनों के एक सीमित सेट पर आधारित <math>x_1, ..., x_n</math>, जिसमें आई.आई.डी. शामिल माना जाता है। की प्रतियाँ <math>x</math>, अनुमानक <math>\hat{\theta}</math> निर्माण किया है: | कल्पना करना <math>\theta</math> रुचि का लक्ष्य पैरामीटर है, जिसे वितरण के कुछ कार्यात्मक माना जाता है <math>x</math>. अवलोकनों के एक सीमित सेट पर आधारित <math>x_1, ..., x_n</math>, जिसमें आई.आई.डी. शामिल माना जाता है। की प्रतियाँ <math>x</math>, अनुमानक <math>\hat{\theta}</math> निर्माण किया है: | ||
:<math>\hat{\theta} =f_n(x_1,\ldots,x_n).</math> | :<math>\hat{\theta} =f_n(x_1,\ldots,x_n).</math> | ||
का मान है <math>\hat{\theta}</math> नमूना-निर्भर है, इसलिए यह मान एक यादृच्छिक | का मान है <math>\hat{\theta}</math> नमूना-निर्भर है, इसलिए यह मान एक यादृच्छिक प्रतिरूपसे दूसरे में बदल जाएगा। | ||
परिभाषा के अनुसार, का पूर्वाग्रह <math>\hat{\theta}</math> इस प्रकार है: | परिभाषा के अनुसार, का पूर्वाग्रह <math>\hat{\theta}</math> इस प्रकार है: | ||
:<math>\text{bias}(\hat{\theta}) = E[\hat{\theta}] - \theta.</math> | :<math>\text{bias}(\hat{\theta}) = E[\hat{\theta}] - \theta.</math> | ||
कोई व्यक्ति कई मानों की गणना करना चाह सकता है <math>\hat{\theta}</math> अनुभवजन्य अनुमान की गणना करने के लिए, कई नमूनों से, और उनका औसत निकालें <math>E[\hat{\theta}]</math>, लेकिन यह तब असंभव है जब उपलब्ध अवलोकनों के पूरे सेट में कोई अन्य | कोई व्यक्ति कई मानों की गणना करना चाह सकता है <math>\hat{\theta}</math> अनुभवजन्य अनुमान की गणना करने के लिए, कई नमूनों से, और उनका औसत निकालें <math>E[\hat{\theta}]</math>, लेकिन यह तब असंभव है जब उपलब्ध अवलोकनों के पूरे सेट में कोई अन्य प्रतिरूपन हों <math>x_1, ..., x_n</math> गणना करने के लिए प्रयोग किया जाता था <math>\hat{\theta}</math>. इस तरह की स्थिति में जैकनाइफ रीसैंपलिंग तकनीक मददगार हो सकती है। | ||
हम जैकनाइफ प्रतिकृति का निर्माण करते हैं: | हम जैकनाइफ प्रतिकृति का निर्माण करते हैं: | ||
Line 72: | Line 73: | ||
==एक अनुमानक के विचरण का अनुमान लगाना== | ==एक अनुमानक के विचरण का अनुमान लगाना== | ||
जैकनाइफ तकनीक का उपयोग पूरे | जैकनाइफ तकनीक का उपयोग पूरे प्रतिरूपपर गणना किए गए अनुमानक के विचरण का अनुमान लगाने के लिए भी किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 21:43, 4 August 2023
आँकड़ों में, जैकनाइफ़ (जैकनाइफ़ अंतः वैधीकरण) एक अंतः वैधीकरण तकनीक है और इसलिए, यह पुनः प्रतिचयन का एक रूप है।
यह पूर्वाग्रह और भिन्नता आकलन के लिए विशेष रूप से उपयोगी है। जैकनाइफ़ बूटस्ट्रैप (सांख्यिकी) जैसी अन्य सामान्य पुन: प्रतिचयन विधियों को पूर्व-दिनांकित करता है। आकार n के एक प्रतिरूप को देखते हुए, एक अवलोकन को छोड़कर प्राप्त आकार (n-1) के प्रत्येक उप-प्रतिरूप से मापदण्ड प्राक्कलन को एकत्रित करके एक जैकनाइफ प्राक्कलक बनाया जा सकता है। [1]
जैकनाइफ तकनीक को मौरिस क्वेनोइल (1924-1973) द्वारा 1949 में विकसित किया गया था और 1956 में परिष्कृत किया गया था। जॉन तुकी ने 1958 में इस तकनीक का विस्तार किया और "जैकनाइफ" नाम प्रस्तावित किया, क्योंकि एक भौतिक जैक-नाइफ (एक कॉम्पैक्ट फोल्डिंग चाकू) की तरह, यह एक काम चलाऊ उपकरण है जो विभिन्न प्रकार की समस्याओं के लिए भी समाधान निकाल सकता है। हालाँकि उद्देश्य-डिज़ाइन किए गए उपकरण से विशिष्ट समस्याओं को अधिक निपूणता से हल किया जा सकता है। [2]
जैकनाइफ़ बूटस्ट्रैप (सांख्यिकी) का एक रैखिक सादृश्य है। [2]
एक सरल उदाहरण: माध्य अनुमान
एक पैरामीटर का जैकनाइफ़ अनुमानक एक डेटासेट से प्रत्येक अवलोकन को व्यवस्थित रूप से छोड़कर और शेष अवलोकनों पर पैरामीटर अनुमान की गणना करके और फिर इन गणनाओं को एकत्रित करके पाया जाता है।
उदाहरण के लिए, यदि अनुमान लगाया जाने वाला पैरामीटर यादृच्छिक चर का जनसंख्या माध्य है, फिर आई.आई.डी. के दिए गए सेट के लिए टिप्पणियों प्राकृतिक अनुमानक नमूना माध्य है:
जहां अंतिम योग सूचकांक को इंगित करने के लिए दूसरे तरीके का उपयोग करता है सेट पर दौड़ता है .
फिर हम इस प्रकार आगे बढ़ते हैं: प्रत्येक के लिए हम माध्य की गणना करते हैं जैकनाइफ़ उपनमूना में के अलावा सभी शामिल हैं-वां डेटा बिंदु, और इसे कहा जाता है -वें जैकनाइफ़ प्रतिकृति:
यह सोचने में मदद मिल सकती है कि येजैकनाइफ़ प्रतिकृति बनाता है हमें नमूना माध्य के वितरण का एक अनुमान दीजिए और उतना ही बड़ा यह अनुमान उतना ही बेहतर होगा. फिर अंततः जैकनाइफ़ अनुमानक प्राप्त करने के लिए हम इनका औसत निकालते हैं जैकनाइफ़ प्रतिकृति:
कोई पूर्वाग्रह और भिन्नता के बारे में पूछ सकता है . की परिभाषा से जैसा कि जैकनाइफ़ के औसत की प्रतिकृति से कोई स्पष्ट रूप से गणना करने का प्रयास कर सकता है, और पूर्वाग्रह एक तुच्छ गणना है लेकिन इसका विचरण अधिक शामिल है क्योंकि जैकनाइफ़ प्रतिकृति स्वतंत्र नहीं हैं।
माध्य के विशेष मामले के लिए, कोई स्पष्ट रूप से दिखा सकता है कि जैकनाइफ़ अनुमान सामान्य अनुमान के बराबर है:
इससे पहचान स्थापित होती है . फिर उम्मीदें लेकर हम मिलते हैं , इसलिए निष्पक्ष है, भिन्नता लेते हुए हमें मिलता है . हालाँकि, ये गुण सामान्य रूप से माध्य के अलावा अन्य मापदंडों के लिए मान्य नहीं हैं।
माध्य अनुमान के मामले के लिए यह सरल उदाहरण केवल जैकनाइफ अनुमानक के निर्माण को दर्शाने के लिए है, जबकि वास्तविक सूक्ष्मताएं (और उपयोगिता) अन्य मापदंडों के अनुमान के मामले में उभरती हैं, जैसे कि माध्य से अधिक क्षण या वितरण के अन्य कार्य।
ध्यान दें कि के पूर्वाग्रह का अनुभवजन्य अनुमान बनाने के लिए इस्तेमाल किया जा सकता है , अर्थात् कुछ उपयुक्त कारक के साथ , हालाँकि इस मामले में हम यह जानते हैं इसलिए यह निर्माण कोई सार्थक ज्ञान नहीं जोड़ता है, लेकिन यह ध्यान देने योग्य है कि यह पूर्वाग्रह का सही अनुमान देता है (जो शून्य है)।
के विचरण का एक जैकनाइफ़ अनुमान जैकनाइफ प्रतिकृति के विचरण से गणना की जा सकती है :[3][4]
बाईं समानता अनुमानक को परिभाषित करती है और सही समानता एक पहचान है जिसे सीधे सत्यापित किया जा सकता है। फिर उम्मीदें लेकर हम मिलते हैं , इसलिए यह विचरण का एक निष्पक्ष अनुमानक है .
आकलनकर्ता के पूर्वाग्रह का अनुमान लगाना
जैकनाइफ तकनीक का उपयोग पूरे प्रतिरूपपर गणना किए गए अनुमानक के पूर्वाग्रह का अनुमान लगाने (और सही करने) के लिए किया जा सकता है।
कल्पना करना रुचि का लक्ष्य पैरामीटर है, जिसे वितरण के कुछ कार्यात्मक माना जाता है . अवलोकनों के एक सीमित सेट पर आधारित , जिसमें आई.आई.डी. शामिल माना जाता है। की प्रतियाँ , अनुमानक निर्माण किया है:
का मान है नमूना-निर्भर है, इसलिए यह मान एक यादृच्छिक प्रतिरूपसे दूसरे में बदल जाएगा।
परिभाषा के अनुसार, का पूर्वाग्रह इस प्रकार है:
कोई व्यक्ति कई मानों की गणना करना चाह सकता है अनुभवजन्य अनुमान की गणना करने के लिए, कई नमूनों से, और उनका औसत निकालें , लेकिन यह तब असंभव है जब उपलब्ध अवलोकनों के पूरे सेट में कोई अन्य प्रतिरूपन हों गणना करने के लिए प्रयोग किया जाता था . इस तरह की स्थिति में जैकनाइफ रीसैंपलिंग तकनीक मददगार हो सकती है।
हम जैकनाइफ प्रतिकृति का निर्माण करते हैं:
जहां प्रत्येक प्रतिकृति जैकनाइफ सबसैंपल के आधार पर एक लीव-वन-आउट अनुमान है, जिसमें डेटा बिंदुओं में से एक को छोड़कर सभी शामिल हैं:
फिर हम उनका औसत परिभाषित करते हैं:
जैकनाइफ़ के पूर्वाग्रह का अनुमान द्वारा दिया गया है:
और परिणामी पूर्वाग्रह-सुधारित जैकनाइफ़ अनुमान द्वारा दिया गया है:
यह उस विशेष मामले में पूर्वाग्रह को दूर करता है जो पूर्वाग्रह है और इसे कम कर देता है अन्य मामलों में।[2]
एक अनुमानक के विचरण का अनुमान लगाना
जैकनाइफ तकनीक का उपयोग पूरे प्रतिरूपपर गणना किए गए अनुमानक के विचरण का अनुमान लगाने के लिए भी किया जा सकता है।
यह भी देखें
साहित्य
- Berger, Y.G. (2007). "असमान संभावनाओं वाले अनस्टेज स्तरीकृत नमूनों के लिए एक जैकनाइफ़ विचरण अनुमानक". Biometrika. 94 (4): 953–964. doi:10.1093/biomet/asm072.
- Berger, Y.G.; Rao, J.N.K. (2006). "प्रतिस्थापन के बिना असमान संभाव्यता नमूने के तहत आरोपण के लिए समायोजित जैकनाइफ". Journal of the Royal Statistical Society, Series B. 68 (3): 531–547. doi:10.1111/j.1467-9868.2006.00555.x.
- Berger, Y.G.; Skinner, C.J. (2005). "असमान संभाव्यता नमूने के लिए एक जैकनाइफ़ विचरण अनुमानक". Journal of the Royal Statistical Society, Series B. 67 (1): 79–89. doi:10.1111/j.1467-9868.2005.00489.x.
- Jiang, J.; Lahiri, P.; Wan, S-M. (2002). "एम-आकलन के साथ अनुभवजन्य सर्वोत्तम भविष्यवाणी के लिए एक एकीकृत जैकनाइफ सिद्धांत". The Annals of Statistics. 30 (6): 1782–810. doi:10.1214/aos/1043351257.
- Jones, H.L. (1974). "स्ट्रेटम साधनों के कार्यों का जैकनाइफ आकलन". Biometrika. 61 (2): 343–348. doi:10.2307/2334363. JSTOR 2334363.
- Kish, L.; Frankel, M.R. (1974). "जटिल नमूनों से अनुमान". Journal of the Royal Statistical Society, Series B. 36 (1): 1–37.
- Krewski, D.; Rao, J.N.K. (1981). "स्तरीकृत नमूनों से निष्कर्ष: रैखिकरण, जैकनाइफ और संतुलित दोहराया प्रतिकृति विधियों के गुण". The Annals of Statistics. 9 (5): 1010–1019. doi:10.1214/aos/1176345580.
- Quenouille, M.H. (1956). "आकलन में पूर्वाग्रह पर नोट्स". Biometrika. 43 (3–4): 353–360. doi:10.1093/biomet/43.3-4.353.
- Rao, J.N.K.; Shao, J. (1992). "हॉट डेक इंप्यूटेशन के तहत सर्वेक्षण डेटा के साथ जैकनाइफ विचरण अनुमान". Biometrika. 79 (4): 811–822. doi:10.1093/biomet/79.4.811.
- Rao, J.N.K.; Wu, C.F.J.; Yue, K. (1992). "जटिल सर्वेक्षणों के लिए पुन: नमूनाकरण विधियों पर कुछ हालिया कार्य". Survey Methodology. 18 (2): 209–217.
- शाओ, जे. और तू, डी. (1995)। जैकनाइफ और बूटस्ट्रैप। स्प्रिंगर-वेरलाग, इंक.
- Tukey, J.W. (1958). "बहुत बड़े नमूनों में पूर्वाग्रह और विश्वास (सार)". The Annals of Mathematical Statistics. 29 (2): 614.
- Wu, C.F.J. (1986). "प्रतिगमन विश्लेषण में जैकनाइफ, बूटस्ट्रैप और अन्य पुन: नमूनाकरण विधियां". The Annals of Statistics. 14 (4): 1261–1295. doi:10.1214/aos/1176350142.
टिप्पणियाँ
- ↑ Efron 1982, p. 2.
- ↑ 2.0 2.1 2.2 Cameron & Trivedi 2005, p. 375.
- ↑ Efron 1982, p. 14.
- ↑ McIntosh, Avery I. "जैकनाइफ़ आकलन विधि" (PDF). Boston University. Avery I. McIntosh. Archived from the original (PDF) on 2016-05-14. Retrieved 2016-04-30.: p. 3.
संदर्भ
- Cameron, Adrian; Trivedi, Pravin K. (2005). Microeconometrics : methods and applications. Cambridge New York: Cambridge University Press. ISBN 9780521848053.
- Efron, Bradley; Stein, Charles (May 1981). "The Jackknife Estimate of Variance". The Annals of Statistics. 9 (3): 586–596. doi:10.1214/aos/1176345462. JSTOR 2240822.
- Efron, Bradley (1982). The jackknife, the bootstrap, and other resampling plans. Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 9781611970319.
- Quenouille, Maurice H. (September 1949). "Problems in Plane Sampling". The Annals of Mathematical Statistics. 20 (3): 355–375. doi:10.1214/aoms/1177729989. JSTOR 2236533.
- Quenouille, Maurice H. (1956). "Notes on Bias in Estimation". Biometrika. 43 (3–4): 353–360. doi:10.1093/biomet/43.3-4.353. JSTOR 2332914.
- Tukey, John W. (1958). "Bias and confidence in not quite large samples (abstract)". The Annals of Mathematical Statistics. 29 (2): 614. doi:10.1214/aoms/1177706647.