बिंदु वितरण मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''प्वाइंट वितरण मॉडल''' किसी आकृति की औसत ज्यामिति और आकृतियों के प्रशिक्षण सेट से अनुमानित ज्यामितीय भिन्नता के कुछ सांख्यिकीय विधियों का प्रतिनिधित्व करने के लिए मॉडल है। | |||
==पृष्ठभूमि== | ==पृष्ठभूमि== | ||
प्वाइंट वितरण मॉडल अवधारणा कूट्स द्वारा विकसित की गई है,<ref>{{citation | |||
|author = T. F. Cootes | |author = T. F. Cootes | ||
|title = Statistical models of appearance for computer vision | |title = Statistical models of appearance for computer vision | ||
Line 14: | Line 14: | ||
|year = 1995 | |year = 1995 | ||
|author1=D.H. Cooper |author2=T.F. Cootes |author3=C.J. Taylor |author4=J. Graham |issue = 61 | |author1=D.H. Cooper |author2=T.F. Cootes |author3=C.J. Taylor |author4=J. Graham |issue = 61 | ||
}}</ref> और [[सांख्यिकीय आकार विश्लेषण]] के लिए [[कंप्यूटर दृष्टि]] में मानक बन गया<ref>{{cite conference | }}</ref> और [[सांख्यिकीय आकार विश्लेषण|सांख्यिकीय आकृति विश्लेषण]] के लिए [[कंप्यूटर दृष्टि]] में मानक बन गया था <ref>{{cite conference | ||
|title = Shape discrimination in the Hippocampus using an MDL Model | |title = Shape discrimination in the Hippocampus using an MDL Model | ||
|year = 2003 | |year = 2003 | ||
Line 24: | Line 24: | ||
|archive-date = 2008-10-08 | |archive-date = 2008-10-08 | ||
|url-status = dead | |url-status = dead | ||
}}</ref> और [[मेडिकल इमेजिंग]] की [[छवि विभाजन]] के लिए<ref name=taylor/>जहां | }}</ref> और [[मेडिकल इमेजिंग]] की [[छवि विभाजन]] के लिए <ref name=taylor/> जहां आकृति प्रीअर वास्तव में ध्वनि और कम-विपरीत [[पिक्सेल]]/स्वर की व्याख्या में सहायता करते हैं। इसके पश्चात् वाला प्वाइंट [[सक्रिय आकार मॉडल|सक्रिय आकृति मॉडल]] (एएसएम) और [[सक्रिय उपस्थिति मॉडल]] (एएएम) की ओर ले जाता है। | ||
प्वाइंट वितरण मॉडल [[ऐतिहासिक बिंदु]]ओं पर निर्भर करते हैं। मील का पत्थर एनोटेटिंग प्वाइंट है जो एनाटोमिस्ट द्वारा प्रशिक्षण सेट जनसंख्या में प्रत्येक आकृति के उदाहरण के लिए दिए गए स्थान पर लगाया जाता है। उदाहरण के लिए, वही लैंडमार्क 2डी हाथों की रूपरेखा के प्रशिक्षण सेट में [[तर्जनी]] की नोक को नामित कर लेते है। उदाहरण के लिए, प्रमुख कॉम्पोनेन्ट विश्लेषण (पीसीए), प्रशिक्षण सेट जनसंख्या के मध्य स्थलों के समूहों के मध्य आंदोलन के सहसंबंधों का अध्ययन करने के लिए प्रासंगिक उपकरण है। सामान्यतः, यह पता लगा सकता है कि ही उंगली के साथ स्थित सभी स्थलचिह्न प्रशिक्षण सेट उदाहरणों में साथ पुर्णतः साथ चलते हैं, जो सपाट हाथों के संग्रह के लिए भिन्न-भिन्न अंगुलियों के मध्य का अंतर दिखाते हैं। | |||
==विवरण== | ==विवरण== | ||
सबसे पहले, प्रशिक्षण छवियों का सेट मूल आकृतियों की ज्यामिति को पर्याप्त रूप से अनुमानित करने के लिए पर्याप्त संबंधित स्थलों के साथ मैन्युअल रूप से चिह्नित किया जाता है। इन स्थलों को [[सामान्यीकृत प्रोक्रस्टेस विश्लेषण]] का उपयोग करके संरेखित किया गया है, जो बिंदुओं के | सबसे पहले, प्रशिक्षण छवियों का सेट मूल आकृतियों की ज्यामिति को पर्याप्त रूप से अनुमानित करने के लिए पर्याप्त संबंधित स्थलों के साथ मैन्युअल रूप से चिह्नित किया जाता है। इन स्थलों को [[सामान्यीकृत प्रोक्रस्टेस विश्लेषण]] का उपयोग करके संरेखित किया गया है, जो बिंदुओं के मध्य न्यूनतम वर्ग त्रुटि को कम करता है। | ||
<math>k</math> | दो आयामों में <math>k</math> संरेखित स्थलचिह्न इस प्रकार दिए गए हैं | ||
:<math>\mathbf{X} = (x_1, y_1, \ldots, x_k, y_k)</math>. | :<math>\mathbf{X} = (x_1, y_1, \ldots, x_k, y_k)</math>. | ||
Line 38: | Line 38: | ||
यह ध्यान रखना महत्वपूर्ण है कि प्रत्येक मील का पत्थर <math>i \in \lbrace 1, \ldots k \rbrace </math> समान संरचनात्मक स्थान का प्रतिनिधित्व करना चाहिए। उदाहरण के लिए, मील का पत्थर #3, <math>(x_3, y_3)</math> सभी प्रशिक्षण छवियों में अनामिका की नोक का प्रतिनिधित्व हो सकता है। | यह ध्यान रखना महत्वपूर्ण है कि प्रत्येक मील का पत्थर <math>i \in \lbrace 1, \ldots k \rbrace </math> समान संरचनात्मक स्थान का प्रतिनिधित्व करना चाहिए। उदाहरण के लिए, मील का पत्थर #3, <math>(x_3, y_3)</math> सभी प्रशिक्षण छवियों में अनामिका की नोक का प्रतिनिधित्व हो सकता है। | ||
अब आकृति की रूपरेखा को | अब आकृति की रूपरेखा को k स्थलों के अनुक्रम में घटा दिया गया है, जिससे किसी दिए गए प्रशिक्षण आकृति को वेक्टर <math>\mathbf{X} \in \mathbb{R}^{2k}</math> के रूप में परिभाषित किया जा सकता है। यह मानते हुए कि इस स्थान में प्रकीर्णन [[गाऊसी वितरण]] है, पीसीए का उपयोग सभी प्रशिक्षण आकृतियों में सहप्रसरण मैट्रिक्स के सामान्यीकृत [[eigenvectors|आइजनवेक्टर]] और [[eigenvalues|आइगेनवैल्यू]] की गणना करने के लिए किया जाता है। शीर्ष <math>d</math> आइजनवेक्टर का मैट्रिक्स <math>\mathbf{P} \in \mathbb{R}^{2k \times d}</math> के रूप में दिया गया है, और प्रत्येक [[eigenvectors|आइजनवेक्टर]] सेट के साथ भिन्नता के एक प्रमुख मोड का वर्णन करता है। | ||
अंत में | अंत में आइजेनवेक्टरों के एक [[रैखिक संयोजन]] का उपयोग गणितीय रूप से परिभाषित एक नए आकृति <math>\mathbf{X}'</math> को परिभाषित करने के लिए किया जाता है: | ||
:<math>\mathbf{X}' = \overline{\mathbf{X}} + \mathbf{P} \mathbf{b}</math> | :<math>\mathbf{X}' = \overline{\mathbf{X}} + \mathbf{P} \mathbf{b}</math> | ||
जहां <math>\overline{\mathbf{X}}</math> को सभी प्रशिक्षण छवियों में माध्य आकृति के रूप में परिभाषित किया गया है, और <math>\mathbf{b}</math> प्रत्येक प्रमुख कॉम्पोनेन्ट के लिए स्केलिंग मानों का एक वेक्टर है। इसलिए, वेरिएबल <math>\mathbf{b}</math> को संशोधित करके अनंत संख्या में आकृतियों को परिभाषित किया जा सकता है। यह सुनिश्चित करने के लिए कि नए आकृति प्रशिक्षण सेट में देखी गई विविधता के अन्दर हैं, केवल <math>\mathbf{b}</math> के प्रत्येक तत्व को <math>\pm</math>3 मानक विचलन के अन्दर होने की अनुमति देना सामान्य बात है, जहां किसी दिए गए प्रमुख कॉम्पोनेन्ट का मानक विचलन होता है इसे इसके संगत [[eigenvalues|आइगेनवैल्यू]] के वर्गमूल के रूप में परिभाषित किया गया है। | |||
पीडीएम को किसी भी | पीडीएम को किसी भी अनैतिक संख्या में आयामों तक बढ़ाया जा सकता है, किन्तु सामान्यतः 2डी छवि और 3डी वॉल्यूम अनुप्रयोगों में उपयोग किया जाता है (जहां प्रत्येक लैंडमार्क प्वाइंट <math>\mathbb{R}^2</math> या <math>\mathbb{R}^3</math> होता है). | ||
==चर्चा== | ==चर्चा== | ||
यूक्लिडियन अंतरिक्ष में व्याख्या किए गए | यूक्लिडियन अंतरिक्ष में व्याख्या किए गए एक ईजेनवेक्टर को संबंधित लैंडमार्क से जुड़े <math>k</math> यूक्लिडियन वैक्टर के अनुक्रम के रूप में देखा जा सकता है और पूर्ण आकृति के लिए एक मिश्रित चाल को निर्दिष्ट किया जा सकता है। वैश्विक अरैखिक भिन्नता को सामान्यतः अच्छी तरह से नियंत्रित किया जाता है, नियमबद्ध अरेखीय भिन्नता को उचित स्तर पर रखा जाता है। सामान्यतः एक ट्विस्टिंग [[ निमेटोड |निमेटोड]] वर्म का उपयोग [[कर्नेल पीसीए]]-आधारित विधियों के शिक्षण में एक उदाहरण के रूप में किया जाता है। | ||
पीसीए गुणों के कारण: ईजेनवेक्टर परस्पर [[ ओर्थोगोनल |ओर्थोगोनल]] होते हैं, | पीसीए गुणों के कारण: ईजेनवेक्टर परस्पर [[ ओर्थोगोनल |ओर्थोगोनल]] होते हैं, आकृति स्थान में प्रशिक्षण सेट क्लाउड का आधार बनाते हैं, और इस स्थान में 0 पर क्रॉस करते हैं, जो औसत आकृति का प्रतिनिधित्व करता है। इसके अतिरिक्त, पीसीए संवृत दीर्घवृत्त को बिंदुओं के गाऊसी बादल (उनके आयाम जो भी हो) में फिट करने का पारंपरिक विधि है: यह सीमित भिन्नता की अवधारणा का सुझाव देता है। | ||
पीडीएम के पीछे विचार यह है कि ईजेनवेक्टरों को रैखिक रूप से जोड़कर नए | पीडीएम के पीछे विचार यह है कि ईजेनवेक्टरों को रैखिक रूप से जोड़कर नए आकृति के उदाहरण तैयार किए जा सकते हैं जो प्रशिक्षण सेट में 'जैसा दिखेंगे'। गुणांकों को संबंधित आइगेनवैल्यू के मानों के समान सीमित किया गया है, जिससे यह सुनिश्चित किया जा सके कि उत्पन्न 2n/3n-आयामी प्वाइंट हाइपर-दीर्घवृत्ताकार अनुमत डोमेन-[[स्वीकार्य आकार डोमेन|स्वीकार्य आकृति डोमेन]] (एएसडी) में रहते है।<ref name=taylor/> | ||
Line 64: | Line 64: | ||
==बाहरी संबंध== | ==बाहरी संबंध == | ||
* [https://web.archive.org/web/20080509041813/http://www.isbe.man.ac.uk/~bim/Models/index.html Flexible Models for Computer Vision], Tim Cootes, Manchester University. | * [https://web.archive.org/web/20080509041813/http://www.isbe.man.ac.uk/~bim/Models/index.html Flexible Models for Computer Vision], Tim Cootes, Manchester University. | ||
* [http://www.icaen.uiowa.edu/~dip/LECTURE/Understanding3.html A practical introduction to PDM and ASMs]. | * [http://www.icaen.uiowa.edu/~dip/LECTURE/Understanding3.html A practical introduction to PDM and ASMs]. |
Revision as of 10:10, 3 August 2023
प्वाइंट वितरण मॉडल किसी आकृति की औसत ज्यामिति और आकृतियों के प्रशिक्षण सेट से अनुमानित ज्यामितीय भिन्नता के कुछ सांख्यिकीय विधियों का प्रतिनिधित्व करने के लिए मॉडल है।
पृष्ठभूमि
प्वाइंट वितरण मॉडल अवधारणा कूट्स द्वारा विकसित की गई है,[1] टेलर एट अल.[2] और सांख्यिकीय आकृति विश्लेषण के लिए कंप्यूटर दृष्टि में मानक बन गया था [3] और मेडिकल इमेजिंग की छवि विभाजन के लिए [2] जहां आकृति प्रीअर वास्तव में ध्वनि और कम-विपरीत पिक्सेल/स्वर की व्याख्या में सहायता करते हैं। इसके पश्चात् वाला प्वाइंट सक्रिय आकृति मॉडल (एएसएम) और सक्रिय उपस्थिति मॉडल (एएएम) की ओर ले जाता है।
प्वाइंट वितरण मॉडल ऐतिहासिक बिंदुओं पर निर्भर करते हैं। मील का पत्थर एनोटेटिंग प्वाइंट है जो एनाटोमिस्ट द्वारा प्रशिक्षण सेट जनसंख्या में प्रत्येक आकृति के उदाहरण के लिए दिए गए स्थान पर लगाया जाता है। उदाहरण के लिए, वही लैंडमार्क 2डी हाथों की रूपरेखा के प्रशिक्षण सेट में तर्जनी की नोक को नामित कर लेते है। उदाहरण के लिए, प्रमुख कॉम्पोनेन्ट विश्लेषण (पीसीए), प्रशिक्षण सेट जनसंख्या के मध्य स्थलों के समूहों के मध्य आंदोलन के सहसंबंधों का अध्ययन करने के लिए प्रासंगिक उपकरण है। सामान्यतः, यह पता लगा सकता है कि ही उंगली के साथ स्थित सभी स्थलचिह्न प्रशिक्षण सेट उदाहरणों में साथ पुर्णतः साथ चलते हैं, जो सपाट हाथों के संग्रह के लिए भिन्न-भिन्न अंगुलियों के मध्य का अंतर दिखाते हैं।
विवरण
सबसे पहले, प्रशिक्षण छवियों का सेट मूल आकृतियों की ज्यामिति को पर्याप्त रूप से अनुमानित करने के लिए पर्याप्त संबंधित स्थलों के साथ मैन्युअल रूप से चिह्नित किया जाता है। इन स्थलों को सामान्यीकृत प्रोक्रस्टेस विश्लेषण का उपयोग करके संरेखित किया गया है, जो बिंदुओं के मध्य न्यूनतम वर्ग त्रुटि को कम करता है।
दो आयामों में संरेखित स्थलचिह्न इस प्रकार दिए गए हैं
- .
यह ध्यान रखना महत्वपूर्ण है कि प्रत्येक मील का पत्थर समान संरचनात्मक स्थान का प्रतिनिधित्व करना चाहिए। उदाहरण के लिए, मील का पत्थर #3, सभी प्रशिक्षण छवियों में अनामिका की नोक का प्रतिनिधित्व हो सकता है।
अब आकृति की रूपरेखा को k स्थलों के अनुक्रम में घटा दिया गया है, जिससे किसी दिए गए प्रशिक्षण आकृति को वेक्टर के रूप में परिभाषित किया जा सकता है। यह मानते हुए कि इस स्थान में प्रकीर्णन गाऊसी वितरण है, पीसीए का उपयोग सभी प्रशिक्षण आकृतियों में सहप्रसरण मैट्रिक्स के सामान्यीकृत आइजनवेक्टर और आइगेनवैल्यू की गणना करने के लिए किया जाता है। शीर्ष आइजनवेक्टर का मैट्रिक्स के रूप में दिया गया है, और प्रत्येक आइजनवेक्टर सेट के साथ भिन्नता के एक प्रमुख मोड का वर्णन करता है।
अंत में आइजेनवेक्टरों के एक रैखिक संयोजन का उपयोग गणितीय रूप से परिभाषित एक नए आकृति को परिभाषित करने के लिए किया जाता है:
जहां को सभी प्रशिक्षण छवियों में माध्य आकृति के रूप में परिभाषित किया गया है, और प्रत्येक प्रमुख कॉम्पोनेन्ट के लिए स्केलिंग मानों का एक वेक्टर है। इसलिए, वेरिएबल को संशोधित करके अनंत संख्या में आकृतियों को परिभाषित किया जा सकता है। यह सुनिश्चित करने के लिए कि नए आकृति प्रशिक्षण सेट में देखी गई विविधता के अन्दर हैं, केवल के प्रत्येक तत्व को 3 मानक विचलन के अन्दर होने की अनुमति देना सामान्य बात है, जहां किसी दिए गए प्रमुख कॉम्पोनेन्ट का मानक विचलन होता है इसे इसके संगत आइगेनवैल्यू के वर्गमूल के रूप में परिभाषित किया गया है।
पीडीएम को किसी भी अनैतिक संख्या में आयामों तक बढ़ाया जा सकता है, किन्तु सामान्यतः 2डी छवि और 3डी वॉल्यूम अनुप्रयोगों में उपयोग किया जाता है (जहां प्रत्येक लैंडमार्क प्वाइंट या होता है).
चर्चा
यूक्लिडियन अंतरिक्ष में व्याख्या किए गए एक ईजेनवेक्टर को संबंधित लैंडमार्क से जुड़े यूक्लिडियन वैक्टर के अनुक्रम के रूप में देखा जा सकता है और पूर्ण आकृति के लिए एक मिश्रित चाल को निर्दिष्ट किया जा सकता है। वैश्विक अरैखिक भिन्नता को सामान्यतः अच्छी तरह से नियंत्रित किया जाता है, नियमबद्ध अरेखीय भिन्नता को उचित स्तर पर रखा जाता है। सामान्यतः एक ट्विस्टिंग निमेटोड वर्म का उपयोग कर्नेल पीसीए-आधारित विधियों के शिक्षण में एक उदाहरण के रूप में किया जाता है।
पीसीए गुणों के कारण: ईजेनवेक्टर परस्पर ओर्थोगोनल होते हैं, आकृति स्थान में प्रशिक्षण सेट क्लाउड का आधार बनाते हैं, और इस स्थान में 0 पर क्रॉस करते हैं, जो औसत आकृति का प्रतिनिधित्व करता है। इसके अतिरिक्त, पीसीए संवृत दीर्घवृत्त को बिंदुओं के गाऊसी बादल (उनके आयाम जो भी हो) में फिट करने का पारंपरिक विधि है: यह सीमित भिन्नता की अवधारणा का सुझाव देता है।
पीडीएम के पीछे विचार यह है कि ईजेनवेक्टरों को रैखिक रूप से जोड़कर नए आकृति के उदाहरण तैयार किए जा सकते हैं जो प्रशिक्षण सेट में 'जैसा दिखेंगे'। गुणांकों को संबंधित आइगेनवैल्यू के मानों के समान सीमित किया गया है, जिससे यह सुनिश्चित किया जा सके कि उत्पन्न 2n/3n-आयामी प्वाइंट हाइपर-दीर्घवृत्ताकार अनुमत डोमेन-स्वीकार्य आकृति डोमेन (एएसडी) में रहते है।[2]
यह भी देखें
संदर्भ
- ↑ T. F. Cootes (May 2004), Statistical models of appearance for computer vision (PDF)
- ↑ 2.0 2.1 2.2 D.H. Cooper; T.F. Cootes; C.J. Taylor; J. Graham (1995), "Active shape models—their training and application", Computer Vision and Image Understanding (61): 38–59
- ↑ Rhodri H. Davies and Carole J. Twining and P. Daniel Allen and Tim F. Cootes and Chris J. Taylor (2003). Shape discrimination in the Hippocampus using an MDL Model. IMPI. Archived from the original on 2008-10-08. Retrieved 2007-07-27.
बाहरी संबंध
- Flexible Models for Computer Vision, Tim Cootes, Manchester University.
- A practical introduction to PDM and ASMs.