संवर्धन मूल्यांकन के लिए वरीयता रैंकिंग संगठन विधि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Promethee & Gaia, tools for management}}
{{Short description|Promethee & Gaia, tools for management}}


'''मूल्यांकन को समृद्ध करने के लिए वरीयता रैंकिंग संगठन विधि''' और इंटरैक्टिव सहायता के लिए इसके वर्णनात्मक पूरक ज्यामितीय विश्लेषण को प्रोमेथी और गैया <ref name="Figueria">{{Cite book|title=Multiple Criteria Decision Analysis: State of the Art Surveys|author1=J. Figueira |author2=S. Greco |author3=M. Ehrgott  |name-list-style=amp |year=2005|publisher=Springer Verlag  }}</ref> विधियों के रूप में जाना जाता है।
'''मानांकन को समृद्ध करने के लिए वरीयता रैंकिंग संगठन विधि''' और इंटरैक्टिव सहायता के लिए इसके वर्णनात्मक पूरक ज्यामितीय विश्लेषण को प्रोमेथी और गैया <ref name="Figueria">{{Cite book|title=Multiple Criteria Decision Analysis: State of the Art Surveys|author1=J. Figueira |author2=S. Greco |author3=M. Ehrgott  |name-list-style=amp |year=2005|publisher=Springer Verlag  }}</ref> विधियों के रूप में जाना जाता है।


गणित और समाजशास्त्र के आधार पर, प्रोमेथी और गैया पद्धति 1980 के दशक की प्रारंभ में विकसित की गई थी और तब से इसका बड़े मापदंड पर अध्ययन और परिष्कृत किया गया है।
गणित और समाजशास्त्र के आधार पर, प्रोमेथी और गैया पद्धति 1980 के दशक की प्रारंभ में विकसित की गई थी और तब से इसका उच्च मापदंड पर अध्ययन और परिष्कृत किया गया है।


निर्णय लेने में इसका विशेष अनुप्रयोग है, और विश्व भर में व्यवसाय, सरकारी संस्थानों, परिवहन, स्वास्थ्य सेवा और शिक्षा जैसे क्षेत्रों में विभिन्न प्रकार के निर्णय परिदृश्यों में इसका उपयोग किया जाता है।
निर्णय लेने में इसका विशेष अनुप्रयोग है, और विश्व भर में व्यवसाय, सरकारी संस्थानों, परिवहन, स्वास्थ्य सेवा और शिक्षा जैसे क्षेत्रों में विभिन्न प्रकार के निर्णय परिदृश्यों में इसका उपयोग किया जाता है।
Line 11: Line 11:
==इतिहास                                                                                                          ==
==इतिहास                                                                                                          ==


प्रोमेथी विधि के मूल अवयवों को पहली बार 1982 में प्रोफेसर जीन-पियरे ब्रैन्स (सीएसओओ, वीयूबी व्रीजे यूनिवर्सिटिट ब्रुसेल) द्वारा प्रस्तुत किया गया था।<ref name="Brans">{{Cite news|author=J.P. Brans|title=L'ingénierie de la décision: élaboration d'instruments d'aide à la décision. La méthode PROMETHEE.|year=1982|publisher=Presses de l’Université Laval}}</ref> इसे बाद में प्रोफेसर जीन-पियरे ब्रैन्स और प्रोफेसर बर्ट्रेंड मारेस्चल (सोल्वे ब्रुसेल्स स्कूल ऑफ इकोनॉमिक्स एंड मैनेजमेंट, यूएलबी यूनिवर्सिटी लिब्रे डी ब्रुक्सलेज़) द्वारा विकसित और कार्यान्वित किया गया था, जिसमें जीएआईए जैसे एक्सटेंशन सम्मिलित थे।
प्रोमेथी विधि के मूल अवयवों को पहली बार 1982 में प्रोफेसर जीन-पियरे ब्रैन्स (सीएसओओ, वीयूबी व्रीजे यूनिवर्सिटिट ब्रुसेल) द्वारा प्रस्तुत किया गया था।<ref name="Brans">{{Cite news|author=J.P. Brans|title=L'ingénierie de la décision: élaboration d'instruments d'aide à la décision. La méthode PROMETHEE.|year=1982|publisher=Presses de l’Université Laval}}</ref> इसके पश्चात प्रोफेसर जीन-पियरे ब्रैन्स और प्रोफेसर बर्ट्रेंड मारेस्चल (सोल्वे ब्रुसेल्स स्कूल ऑफ इकोनॉमिक्स एंड मैनेजमेंट, यूएलबी यूनिवर्सिटी लिब्रे डी ब्रुक्सलेज़) द्वारा विकसित और कार्यान्वित किया गया था, जिसमें जीएआईए जैसे एक्सटेंशन सम्मिलित थे।


गैया नाम का वर्णनात्मक दृष्टिकोण,<ref name="Gaia">{{Cite news|title=एमसीडीए के लिए ज्यामितीय प्रतिनिधित्व। GAIA मॉड्यूल|author1=B. Mareschal |author2=J.P. Brans |year=1988|publisher=European Journal of Operational Research}}</ref> निर्णय निर्माता को निर्णय समस्या की मुख्य विशेषताओं की कल्पना करने की अनुमति देता है: वह मानदंडों के बीच संघर्ष या समन्वय को सरलता से पहचानने, क्रिया के समूहों की पहचान करने और उल्लेखनीय प्रदर्शन को प्रकाशित करने में सक्षम है।
गैया नाम का वर्णनात्मक दृष्टिकोण,<ref name="Gaia">{{Cite news|title=एमसीडीए के लिए ज्यामितीय प्रतिनिधित्व। GAIA मॉड्यूल|author1=B. Mareschal |author2=J.P. Brans |year=1988|publisher=European Journal of Operational Research}}</ref> निर्णय निर्माता को निर्णय समस्या की मुख्य विशेषताओं की कल्पना करने की अनुमति देता है: वह मानदंडों के मध्य संघर्ष या समन्वय को सरलता से पहचानने, क्रिया के समूहों की पहचान करने और उल्लेखनीय प्रदर्शन को प्रकाशित करने में सक्षम है।


प्रोमेथी नामक अनुदेशात्मक दृष्टिकोण,<ref name="Promethee">{{Cite news|title=A preference ranking organisation method: The PROMETHEE method for MCDM|author1=J.P. Brans  |author2=P. Vincke |name-list-style=amp |publisher=Management Science|year=1985}}</ref> निर्णय निर्माता को क्रिया की पूर्ण और आंशिक दोनों रैंकिंग प्रदान करता है।
प्रोमेथी नामक अनुदेशात्मक दृष्टिकोण,<ref name="Promethee">{{Cite news|title=A preference ranking organisation method: The PROMETHEE method for MCDM|author1=J.P. Brans  |author2=P. Vincke |name-list-style=amp |publisher=Management Science|year=1985}}</ref> निर्णय निर्माता को क्रिया की पूर्ण और आंशिक दोनों रैंकिंग प्रदान करता है।
Line 21: Line 21:
== उपयोग और अनुप्रयोग ==
== उपयोग और अनुप्रयोग ==


चूँकि इसका उपयोग सीधे निर्णयों पर काम करने वाले व्यक्तियों द्वारा किया जा सकता है, प्रोमेथी और गैया सबसे उपयोगी है जहाँ लोगों के समूह सम्मिश्र समस्याओं पर काम कर रहे हैं, विशेष रूप से अनेक मानदंडों के साथ, जिसमें यह अधिक मानवीय धारणाएँ और निर्णय सम्मिलित हैं, जिनके निर्णयों का दीर्घकालिक प्रभाव होता है। जब निर्णय के महत्वपूर्ण अवयवों को मापना या तुलना करना अधिक होता है, या जहां विभागों या टीम के सदस्यों के बीच सहयोग उनकी अलग-अलग विशेषज्ञता या दृष्टिकोण से बाधित होता है, तो इसके अद्वितीय लाभ होते हैं।
चूँकि इसका उपयोग सीधे निर्णयों पर कार्य करने वाले व्यक्तियों द्वारा किया जा सकता है, प्रोमेथी और गैया सबसे उपयोगी है जहाँ लोगों के समूह सम्मिश्र समस्याओं पर कार्य कर रहे हैं, विशेष रूप से अनेक मानदंडों के साथ, जिसमें यह अधिक मानवीय धारणाएँ और निर्णय सम्मिलित हैं, जिनके निर्णयों का दीर्घकालिक प्रभाव होता है। जब निर्णय के महत्वपूर्ण अवयवों को मापना या तुलना करना अधिक होता है, या जहां विभागों या टीम के सदस्यों के मध्य सहयोग उनकी अलग-अलग विशेषज्ञता या दृष्टिकोण से बाधित होता है, तो इसके अद्वितीय लाभ होते हैं।


जिन निर्णय स्थितियों में प्रोमेथी और गैया को प्रयुक्त किया जा सकता है उनमें सम्मिलित हैं:
जिन निर्णय स्थितियों में प्रोमेथी और गैया को प्रयुक्त किया जा सकता है उनमें सम्मिलित हैं:
* विकल्प - विकल्पों के दिए गए समुच्चय में से विकल्प का चयन, समान्यत: जहां अनेक निर्णय मानदंड सम्मिलित होते हैं।
* विकल्प - विकल्पों के दिए गए समुच्चय में से विकल्प का चयन, समान्यत: जहां अनेक निर्णय मानदंड सम्मिलित होते हैं।
* प्राथमिकताकरण - किसी को चुनने या केवल उन्हें [[ श्रेणी |श्रेणी]] देने के अतिरिक्त , विकल्पों के समूह के सदस्यों की सापेक्ष योग्यता का निर्धारण करना है।
* प्राथमिकताकरण - किसी को चुनने या केवल उन्हें [[ श्रेणी |श्रेणी]] देने के अतिरिक्त , विकल्पों के समूह के सदस्यों की सापेक्ष योग्यता का निर्धारण करना है।
* संसाधन आवंटन - विकल्पों के समुच्चय के बीच [[संसाधनों का आवंटन|संसाधनों का आवंटन है]]
* संसाधन आवंटन - विकल्पों के समुच्चय के मध्य [[संसाधनों का आवंटन|संसाधनों का आवंटन है]]
* रैंकिंग - विकल्पों के समुच्चय को सबसे अधिक से कम इच्छित के क्रम में रखना था
* रैंकिंग - विकल्पों के समुच्चय को सबसे अधिक से कम इच्छित के क्रम में रखना था
* संघर्ष समाधान - स्पष्ट रूप से असंगत उद्देश्यों वाले पक्षों के बीच विवादों का समाधान करना था
* संघर्ष समाधान - स्पष्ट रूप से असंगत उद्देश्यों वाले पक्षों के मध्य विवादों का समाधान करना था
<br>सम्मिश्र बहु-मानदंड निर्णय परिदृश्यों में प्रोमेथी और गैया के अनुप्रयोगों की संख्या हजारों में है, और योजना, संसाधन आवंटन, प्राथमिकता निर्धारण और विकल्पों के बीच चयन से जुड़ी समस्याओं में व्यापक परिणाम दिए हैं। अन्य क्षेत्रों में पूर्वानुमान, प्रतिभा चयन और निविदा विश्लेषण सम्मिलित हैं।
<br>सम्मिश्र बहु-मानदंड निर्णय परिदृश्यों में प्रोमेथी और गैया के अनुप्रयोगों की संख्या हजारों में है, और योजना, संसाधन आवंटन, प्राथमिकता निर्धारण और विकल्पों के मध्य चयन से जुड़ी समस्याओं में व्यापक परिणाम दिए हैं। अन्य क्षेत्रों में पूर्वानुमान, प्रतिभा चयन और निविदा विश्लेषण सम्मिलित हैं।


<br>
<br>इस प्रकार से प्रोमेथी और गैया के कुछ उपयोग केस-स्टडी बन गए हैं। वर्तमान ही में इनमें सम्मिलित किया गया है:
प्रोमेथी और गैया के कुछ उपयोग केस-स्टडी बन गए हैं। वर्तमान ही में इनमें सम्मिलित किया गया है:
* एसपीएस गुणवत्ता मानकों (एसटीडीएफ - [[विश्व व्यापार संगठन]]) को पूरा करने के लिए उपलब्ध बजट में कौन से संसाधन सर्वोत्तम हैं, यह निर्धारित करना (बाहरी लिंक में और देखें)
* एसपीएस गुणवत्ता मानकों (एसटीडीएफ - [[विश्व व्यापार संगठन]]) को पूरा करने के लिए उपलब्ध बजट में कौन से संसाधन सर्वोत्तम हैं, यह निर्धारित करना (बाहरी लिंक में और देखें)
* ट्रेन प्रदर्शन के लिए नए मार्ग का चयन ([[इटालफेर]]) (बाहरी लिंक में और देखें)
* ट्रेन प्रदर्शन के लिए नए मार्ग का चयन ([[इटालफेर]]) (बाहरी लिंक में और देखें)
Line 42: Line 41:


ऐसी समस्या से संबंधित मूलभूत डेटा को <math>n\times q                                                                                                                                                                                                               
ऐसी समस्या से संबंधित मूलभूत डेटा को <math>n\times q                                                                                                                                                                                                               
                                                                                                                                                                                                                             </math> मूल्यांकन वाली टेबल में लिखा जा सकता है। प्रत्येक पंक्ति एक क्रिया से मेल खाती है और प्रत्येक स्तम्भ एक मानदंड से मेल खाता है।
                                                                                                                                                                                                                             </math> मानांकन वाली टेबल में लिखा जा सकता है। प्रत्येक पंक्ति एक क्रिया से मेल खाती है और प्रत्येक स्तम्भ एक मानदंड से मेल खाता है।


: <math>
: <math>
Line 61: Line 60:


=== जोड़ीवार तुलना ===
=== जोड़ीवार तुलना ===
सबसे पहले, प्रत्येक मानदंड के लिए सभी क्रियाओं के बीच जोड़ीवार तुलना की जाएगी:
सर्वप्रथम, प्रत्येक मानदंड के लिए सभी क्रियाओं के मध्य जोड़ीवार तुलना की जाएगी:


:<math>d_k(a_i,a_j)=f_k(a_i)-f_k(a_j)</math>
:<math>d_k(a_i,a_j)=f_k(a_i)-f_k(a_j)</math>


<math>d_k(a_i,a_j)</math> मानदंड <math>f_k</math> के लिए दो क्रियाओं के मूल्यांकन के बीच का अंतर है। परन्तु ये अंतर उपयोग किए गए माप मापदंड पर निर्भर करते हैं और निर्णय निर्माता के लिए तुलना करना सदैव सरल नहीं होता है।
<math>d_k(a_i,a_j)</math> मानदंड <math>f_k</math> के लिए दो क्रियाओं के मानांकन के मध्य का अंतर है। परन्तु ये अंतर उपयोग किए गए माप मापदंड पर निर्भर करते हैं और निर्णय निर्माता के लिए तुलना करना सदैव सरल नहीं होता है।


=== वरीयता डिग्री ===
=== वरीयता डिग्री ===
परिणामस्वरूप, अंतर को यूनिकाइटेरियन वरीयता डिग्री में अनुवाद करने के लिए वरीयता फलन की धारणा को निम्नानुसार प्रस्तुत किया गया है:
परिणामस्वरूप, अंतर को यूनिकाइटेरियन वरीयता डिग्री में अनुवाद करने के लिए वरीयता फलन की धारणा को निम्नानुसार प्रस्तुत किया गया है:


:<math>\pi_k(a_i,a_j)=P_k[d_k(a_i,a_j)]</math>
:<math>\pi_k(a_i,a_j)=P_k[d_k(a_i,a_j)]</math>
जहाँ <math>P_k:\R\rightarrow[0,1]</math> यह धनात्मक गैर-घटती प्राथमिकता फलन है जैसे कि <math>P_j(0)=0</math>. मूल प्रोमेथी परिभाषा में छह अलग-अलग प्रकार के वरीयता फलन प्रस्तावित हैं। उनमें से, रैखिक यूनिकाइटेरियन वरीयता फलन का उपयोग अधिकांशत: मात्रात्मक मानदंड के लिए अभ्यास में किया जाता है:
जहाँ <math>P_k:\R\rightarrow[0,1]</math> यह धनात्मक गैर-घटती प्राथमिकता फलन है जैसे कि <math>P_j(0)=0</math>. मूल प्रोमेथी परिभाषा में छह अलग-अलग प्रकार के वरीयता फलन प्रस्तावित हैं। उनमें से, रैखिक यूनिकाइटेरियन वरीयता फलन का उपयोग अधिकांशत: मात्रात्मक मानदंड के लिए अभ्यास में किया जाता है:


:<math>P_k(x) \begin{cases} 0, & \text{if } x\le q_k \\ \frac{x-q_k}{p_k-q_k}, & \text{if } q_k<x\le p_k \\ 1, & \text{if } x>p_k  \end{cases}</math>
:<math>P_k(x) \begin{cases} 0, & \text{if } x\le q_k \\ \frac{x-q_k}{p_k-q_k}, & \text{if } q_k<x\le p_k \\ 1, & \text{if } x>p_k  \end{cases}</math>
जहाँ <math>q_j</math> और <math>p_j</math> क्रमशः उदासीनता और वरीयता सीमाएँ हैं। इन मापदंडों का अर्थ निम्नलिखित है: जब अंतर उदासीनता सीमा से छोटा होता है तो निर्णय निर्माता द्वारा इसे नगण्य माना जाता है। इसलिए, संबंधित यूनिकाइटेरियन वरीयता डिग्री शून्य के समान है। यदि अंतर वरीयता सीमा से अधिक है तो इसे महत्वपूर्ण माना जाता है। इसलिए, यूनिकाइटेरियन वरीयता डिग्री (अधिकतम मूल्य) के समान है। जब अंतर दो सीमाओं के बीच होता है, तो रैखिक प्रक्षेप का उपयोग करके वरीयता डिग्री के लिए मध्यवर्ती मान की गणना की जाती है।
जहाँ <math>q_j</math> और <math>p_j</math> क्रमशः उदासीनता और वरीयता सीमाएँ हैं। इन मापदंडों का अर्थ निम्नलिखित है: जब अंतर उदासीनता सीमा से छोटा होता है तो निर्णय निर्माता द्वारा इसे नगण्य माना जाता है। इसलिए, संबंधित यूनिकाइटेरियन वरीयता डिग्री शून्य के समान है। यदि अंतर वरीयता सीमा से अधिक है तो इसे महत्वपूर्ण माना जाता है। इसलिए, यूनिकाइटेरियन वरीयता डिग्री (अधिकतम मान) के समान है। जब अंतर दो सीमाओं के मध्य होता है, तो रैखिक प्रक्षेप का उपयोग करके वरीयता डिग्री के लिए मध्यवर्ती मान की गणना की जाती है।


=== बहुमानदंड वरीयता डिग्री ===
=== बहुमानदंड वरीयता डिग्री ===
जब निर्णय निर्माता द्वारा प्रत्येक मानदंड के साथ प्राथमिकता फलन जोड़ा गया है, तो सभी मानदंडों के लिए सभी क्रियाओं के बीच सभी तुलनाएं की जा सकती हैं। फिर प्रत्येक दो क्रिया की विश्व स्तर पर तुलना करने के लिए बहुमानदंडीय वरीयता डिग्री की गणना की जाती है:
जब निर्णय निर्माता द्वारा प्रत्येक मानदंड के साथ प्राथमिकता फलन जोड़ा गया है, तो सभी मानदंडों के लिए सभी क्रियाओं के मध्य सभी तुलनाएं की जा सकती हैं। फिर प्रत्येक दो क्रिया की विश्व स्तर पर तुलना करने के लिए बहुमानदंडीय वरीयता डिग्री की गणना की जाती है:


:<math>\pi(a,b)=\displaystyle\sum_{k=1}^qP_{k}(a,b)\cdot w_{k}</math>
:<math>\pi(a,b)=\displaystyle\sum_{k=1}^qP_{k}(a,b)\cdot w_{k}</math>
जहां <math>w_k</math> मानदंड <math>f_k</math> के वजन का प्रतिनिधित्व करता है। यह माना जाता है कि <math>w_k\ge 0</math> और <math>\sum_{k=1}^q w_{k}=1</math>प्रत्यक्ष परिणाम के रूप में, हमारे पास है:
जहां <math>w_k</math> मानदंड <math>f_k</math> के वजन का प्रतिनिधित्व करता है। यह माना जाता है कि <math>w_k\ge 0</math> और <math>\sum_{k=1}^q w_{k}=1</math>प्रत्यक्ष परिणाम के रूप में, हमारे पास है:


:<math>\pi(a_i,a_j)\ge 0</math>
:<math>\pi(a_i,a_j)\ge 0</math>
Line 93: Line 92:




धनात्मक प्राथमिकता प्रवाह <math>\phi^{+}(a_i)</math> किसी दी गई क्रिया <math>a_i</math> को परिमाणित करता है  वैश्विक स्तर पर अन्य सभी क्रिया की तुलना में ऋणात्मक प्राथमिकता <math>\phi^{-}(a_i)</math> प्रवाह को प्राथमिकता दी जाती है  किसी दी गई क्रिया <math>a_i</math> को परिमाणित करता है  अन्य सभी क्रिया द्वारा विश्व स्तर पर पसंद किया जा रहा है। आदर्श क्रिया में 1 के समान धनात्मक प्राथमिकता प्रवाह और 0 के समान ऋणात्मक प्राथमिकता प्रवाह होगा। दो प्राथमिकता प्रवाह क्रियाओं के समुच्चय पर दो समान्यत: अलग-अलग पूर्ण रैंकिंग उत्पन्न करते हैं। पहला उनके धनात्मक प्रवाह स्कोर के घटते मानो के अनुसार क्रिया की रैंकिंग करके प्राप्त किया जाता है। दूसरा उनके ऋणात्मक प्रवाह स्कोर के बढ़ते मानो के अनुसार क्रिया की रैंकिंग करके प्राप्त किया जाता है। प्रोमेथी  आंशिक रैंकिंग को इन दो रैंकिंग के प्रतिच्छेदन के रूप में परिभाषित किया गया है। परिणामस्वरूप, क्रिया <math>a_i</math> किसी अन्य क्रिया <math>a_j</math> के समान ही अच्छा होगा  यदि <math> \phi^{-}(a_i) \ge \phi^{-}(a_j)</math> और <math>\phi^{-}(a_i)\le \phi^{-}(a_j)</math> है


धनात्मक प्राथमिकता प्रवाह <math>\phi^{+}(a_i)</math> किसी दी गई क्रिया <math>a_i</math> को परिमाणित करता है वैश्विक स्तर पर अन्य सभी क्रिया की तुलना में ऋणात्मक प्राथमिकता <math>\phi^{-}(a_i)</math> प्रवाह को प्राथमिकता दी जाती है किसी दी गई क्रिया <math>a_i</math> को परिमाणित करता है अन्य सभी क्रिया द्वारा विश्व स्तर पर पसंद किया जा रहा है। आदर्श क्रिया में 1 के समान धनात्मक प्राथमिकता प्रवाह और 0 के समान ऋणात्मक प्राथमिकता प्रवाह होगा। दो प्राथमिकता प्रवाह क्रियाओं के समुच्चय पर दो समान्यत: अलग-अलग पूर्ण रैंकिंग उत्पन्न करते हैं। पहला उनके धनात्मक प्रवाह स्कोर के घटते मानो के अनुसार क्रिया की रैंकिंग करके प्राप्त किया जाता है। दूसरा उनके ऋणात्मक प्रवाह स्कोर के बढ़ते मानो के अनुसार क्रिया की रैंकिंग करके प्राप्त किया जाता है। प्रोमेथी आंशिक रैंकिंग को इन दो रैंकिंग के प्रतिच्छेदन के रूप में परिभाषित किया गया है। परिणामस्वरूप, क्रिया <math>a_i</math> किसी अन्य क्रिया <math>a_j</math> के समान ही अच्छा होगा यदि <math> \phi^{-}(a_i) \ge \phi^{-}(a_j)</math> और <math>\phi^{-}(a_i)\le \phi^{-}(a_j)</math> है




Line 189: Line 188:
==यह भी देखें==
==यह भी देखें==
* [[निर्णय लेना]]
* [[निर्णय लेना]]
* [[निर्णय लेने वाला सॉफ्टवेयर]]
* [[निर्णय लेने वाला सॉफ्टवेयर|डिसिशन-मेकिंग सॉफ्टवेयर]]
* [[डी-दृष्टि]]
* [[डी-दृष्टि|डी-सिघत]]
* बहु-मानदंड निर्णय विश्लेषण
* मल्टीक्राइटेरिया डिसिशन एनालिसिस
* [[सामान्य प्राथमिकता दृष्टिकोण]]
* [[सामान्य प्राथमिकता दृष्टिकोण]]
* [[जोड़े द्वारा तुलना]]
* [[जोड़े द्वारा तुलना|पैर्विस कंपारीसों]]
* [[पसंद|प्राथमिकता]]
* [[पसंद|प्रेफेरेंस]]


==संदर्भ==
==संदर्भ==
Line 210: Line 209:
* [http://en.promethee-gaia.net/assets/vpmanual.pdf User manual for Visual PROMETHEE, a guide to all PROMETHEE methods]
* [http://en.promethee-gaia.net/assets/vpmanual.pdf User manual for Visual PROMETHEE, a guide to all PROMETHEE methods]


{{DEFAULTSORT:Promethee}}[[Category: निर्णय विश्लेषण]]
{{DEFAULTSORT:Promethee}}


 
[[Category:Created On 25/07/2023|Promethee]]
 
[[Category:Lua-based templates|Promethee]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Promethee]]
[[Category:Created On 25/07/2023]]
[[Category:Pages with script errors|Promethee]]
[[Category:Short description with empty Wikidata description|Promethee]]
[[Category:Templates Vigyan Ready|Promethee]]
[[Category:Templates that add a tracking category|Promethee]]
[[Category:Templates that generate short descriptions|Promethee]]
[[Category:Templates using TemplateData|Promethee]]
[[Category:निर्णय विश्लेषण|Promethee]]

Latest revision as of 18:14, 10 August 2023

मानांकन को समृद्ध करने के लिए वरीयता रैंकिंग संगठन विधि और इंटरैक्टिव सहायता के लिए इसके वर्णनात्मक पूरक ज्यामितीय विश्लेषण को प्रोमेथी और गैया [1] विधियों के रूप में जाना जाता है।

गणित और समाजशास्त्र के आधार पर, प्रोमेथी और गैया पद्धति 1980 के दशक की प्रारंभ में विकसित की गई थी और तब से इसका उच्च मापदंड पर अध्ययन और परिष्कृत किया गया है।

निर्णय लेने में इसका विशेष अनुप्रयोग है, और विश्व भर में व्यवसाय, सरकारी संस्थानों, परिवहन, स्वास्थ्य सेवा और शिक्षा जैसे क्षेत्रों में विभिन्न प्रकार के निर्णय परिदृश्यों में इसका उपयोग किया जाता है।

एक सही निर्णय को निरुपित करने के अतिरिक्त, प्रोमेथी और गैया पद्धति निर्णय निर्माताओं को वह विकल्प खोजने में सहायता करती है जो उनके लक्ष्य और समस्या की उनकी समझ के लिए सबसे उपयुक्त होता है। इया प्रकार यह निर्णय समस्या की संरचना करने, इसके संघर्षों और सहक्रियाओं, क्रिया के समूहों की पहचान करने और मात्रा निर्धारित करने के लिए व्यापक और तर्कसंगत फ्रेम वर्क प्रदान करता है, और मुख्य विकल्पों और पीछे के संरचित तर्क को प्रकाशित करता है।

इतिहास

प्रोमेथी विधि के मूल अवयवों को पहली बार 1982 में प्रोफेसर जीन-पियरे ब्रैन्स (सीएसओओ, वीयूबी व्रीजे यूनिवर्सिटिट ब्रुसेल) द्वारा प्रस्तुत किया गया था।[2] इसके पश्चात प्रोफेसर जीन-पियरे ब्रैन्स और प्रोफेसर बर्ट्रेंड मारेस्चल (सोल्वे ब्रुसेल्स स्कूल ऑफ इकोनॉमिक्स एंड मैनेजमेंट, यूएलबी यूनिवर्सिटी लिब्रे डी ब्रुक्सलेज़) द्वारा विकसित और कार्यान्वित किया गया था, जिसमें जीएआईए जैसे एक्सटेंशन सम्मिलित थे।

गैया नाम का वर्णनात्मक दृष्टिकोण,[3] निर्णय निर्माता को निर्णय समस्या की मुख्य विशेषताओं की कल्पना करने की अनुमति देता है: वह मानदंडों के मध्य संघर्ष या समन्वय को सरलता से पहचानने, क्रिया के समूहों की पहचान करने और उल्लेखनीय प्रदर्शन को प्रकाशित करने में सक्षम है।

प्रोमेथी नामक अनुदेशात्मक दृष्टिकोण,[4] निर्णय निर्माता को क्रिया की पूर्ण और आंशिक दोनों रैंकिंग प्रदान करता है।

विश्व भर में अनेक निर्णय लेने वाले संदर्भों में प्रोमेथी का सफलतापूर्वक उपयोग किया गया है। प्रोमेथी विधियों से संबंधित एक्सटेंशन, अनुप्रयोगों और विचारों के बारे में वैज्ञानिक प्रकाशनों की गैर-विस्तृत सूची[5] 2010 में प्रकाशित हुआ था.

उपयोग और अनुप्रयोग

चूँकि इसका उपयोग सीधे निर्णयों पर कार्य करने वाले व्यक्तियों द्वारा किया जा सकता है, प्रोमेथी और गैया सबसे उपयोगी है जहाँ लोगों के समूह सम्मिश्र समस्याओं पर कार्य कर रहे हैं, विशेष रूप से अनेक मानदंडों के साथ, जिसमें यह अधिक मानवीय धारणाएँ और निर्णय सम्मिलित हैं, जिनके निर्णयों का दीर्घकालिक प्रभाव होता है। जब निर्णय के महत्वपूर्ण अवयवों को मापना या तुलना करना अधिक होता है, या जहां विभागों या टीम के सदस्यों के मध्य सहयोग उनकी अलग-अलग विशेषज्ञता या दृष्टिकोण से बाधित होता है, तो इसके अद्वितीय लाभ होते हैं।

जिन निर्णय स्थितियों में प्रोमेथी और गैया को प्रयुक्त किया जा सकता है उनमें सम्मिलित हैं:

  • विकल्प - विकल्पों के दिए गए समुच्चय में से विकल्प का चयन, समान्यत: जहां अनेक निर्णय मानदंड सम्मिलित होते हैं।
  • प्राथमिकताकरण - किसी को चुनने या केवल उन्हें श्रेणी देने के अतिरिक्त , विकल्पों के समूह के सदस्यों की सापेक्ष योग्यता का निर्धारण करना है।
  • संसाधन आवंटन - विकल्पों के समुच्चय के मध्य संसाधनों का आवंटन है
  • रैंकिंग - विकल्पों के समुच्चय को सबसे अधिक से कम इच्छित के क्रम में रखना था
  • संघर्ष समाधान - स्पष्ट रूप से असंगत उद्देश्यों वाले पक्षों के मध्य विवादों का समाधान करना था


सम्मिश्र बहु-मानदंड निर्णय परिदृश्यों में प्रोमेथी और गैया के अनुप्रयोगों की संख्या हजारों में है, और योजना, संसाधन आवंटन, प्राथमिकता निर्धारण और विकल्पों के मध्य चयन से जुड़ी समस्याओं में व्यापक परिणाम दिए हैं। अन्य क्षेत्रों में पूर्वानुमान, प्रतिभा चयन और निविदा विश्लेषण सम्मिलित हैं।


इस प्रकार से प्रोमेथी और गैया के कुछ उपयोग केस-स्टडी बन गए हैं। वर्तमान ही में इनमें सम्मिलित किया गया है:

  • एसपीएस गुणवत्ता मानकों (एसटीडीएफ - विश्व व्यापार संगठन) को पूरा करने के लिए उपलब्ध बजट में कौन से संसाधन सर्वोत्तम हैं, यह निर्धारित करना (बाहरी लिंक में और देखें)
  • ट्रेन प्रदर्शन के लिए नए मार्ग का चयन (इटालफेर) (बाहरी लिंक में और देखें)

गणितीय मॉडल

धारणाएँ

मान लीजिए n क्रियाओं का एक समूह है और मान लीजिए एक सुसंगत परिवार है q मानदंड. व्यापकता की हानि के बिना, हम मान लेंगे कि इन मानदंडों को अधिकतम करना होगा।

ऐसी समस्या से संबंधित मूलभूत डेटा को मानांकन वाली टेबल में लिखा जा सकता है। प्रत्येक पंक्ति एक क्रिया से मेल खाती है और प्रत्येक स्तम्भ एक मानदंड से मेल खाता है।


जोड़ीवार तुलना

सर्वप्रथम, प्रत्येक मानदंड के लिए सभी क्रियाओं के मध्य जोड़ीवार तुलना की जाएगी:

मानदंड के लिए दो क्रियाओं के मानांकन के मध्य का अंतर है। परन्तु ये अंतर उपयोग किए गए माप मापदंड पर निर्भर करते हैं और निर्णय निर्माता के लिए तुलना करना सदैव सरल नहीं होता है।

वरीयता डिग्री

परिणामस्वरूप, अंतर को यूनिकाइटेरियन वरीयता डिग्री में अनुवाद करने के लिए वरीयता फलन की धारणा को निम्नानुसार प्रस्तुत किया गया है:

जहाँ यह धनात्मक गैर-घटती प्राथमिकता फलन है जैसे कि . मूल प्रोमेथी परिभाषा में छह अलग-अलग प्रकार के वरीयता फलन प्रस्तावित हैं। उनमें से, रैखिक यूनिकाइटेरियन वरीयता फलन का उपयोग अधिकांशत: मात्रात्मक मानदंड के लिए अभ्यास में किया जाता है:

जहाँ और क्रमशः उदासीनता और वरीयता सीमाएँ हैं। इन मापदंडों का अर्थ निम्नलिखित है: जब अंतर उदासीनता सीमा से छोटा होता है तो निर्णय निर्माता द्वारा इसे नगण्य माना जाता है। इसलिए, संबंधित यूनिकाइटेरियन वरीयता डिग्री शून्य के समान है। यदि अंतर वरीयता सीमा से अधिक है तो इसे महत्वपूर्ण माना जाता है। इसलिए, यूनिकाइटेरियन वरीयता डिग्री (अधिकतम मान) के समान है। जब अंतर दो सीमाओं के मध्य होता है, तो रैखिक प्रक्षेप का उपयोग करके वरीयता डिग्री के लिए मध्यवर्ती मान की गणना की जाती है।

बहुमानदंड वरीयता डिग्री

जब निर्णय निर्माता द्वारा प्रत्येक मानदंड के साथ प्राथमिकता फलन जोड़ा गया है, तो सभी मानदंडों के लिए सभी क्रियाओं के मध्य सभी तुलनाएं की जा सकती हैं। फिर प्रत्येक दो क्रिया की विश्व स्तर पर तुलना करने के लिए बहुमानदंडीय वरीयता डिग्री की गणना की जाती है:

जहां मानदंड के वजन का प्रतिनिधित्व करता है। यह माना जाता है कि और प्रत्यक्ष परिणाम के रूप में, हमारे पास है:


बहुमानदंडीय प्राथमिकता प्रवाह

प्रत्येक क्रिया को अन्य सभी क्रियाओं के संबंध में स्थापित करने के लिए, दो अंकों की गणना की जाती है:


धनात्मक प्राथमिकता प्रवाह किसी दी गई क्रिया को परिमाणित करता है वैश्विक स्तर पर अन्य सभी क्रिया की तुलना में ऋणात्मक प्राथमिकता प्रवाह को प्राथमिकता दी जाती है किसी दी गई क्रिया को परिमाणित करता है अन्य सभी क्रिया द्वारा विश्व स्तर पर पसंद किया जा रहा है। आदर्श क्रिया में 1 के समान धनात्मक प्राथमिकता प्रवाह और 0 के समान ऋणात्मक प्राथमिकता प्रवाह होगा। दो प्राथमिकता प्रवाह क्रियाओं के समुच्चय पर दो समान्यत: अलग-अलग पूर्ण रैंकिंग उत्पन्न करते हैं। पहला उनके धनात्मक प्रवाह स्कोर के घटते मानो के अनुसार क्रिया की रैंकिंग करके प्राप्त किया जाता है। दूसरा उनके ऋणात्मक प्रवाह स्कोर के बढ़ते मानो के अनुसार क्रिया की रैंकिंग करके प्राप्त किया जाता है। प्रोमेथी आंशिक रैंकिंग को इन दो रैंकिंग के प्रतिच्छेदन के रूप में परिभाषित किया गया है। परिणामस्वरूप, क्रिया किसी अन्य क्रिया के समान ही अच्छा होगा यदि और है


धनात्मक और ऋणात्मक वरीयता प्रवाह को शुद्ध वरीयता प्रवाह में एकत्रित किया जाता है:

पिछले सूत्र के प्रत्यक्ष परिणाम हैं:

प्रोमेथी II पूर्ण रैंकिंग शुद्ध प्रवाह स्कोर के घटते मानो के अनुसार क्रिया का आदेश देकर प्राप्त की जाती है।

यूनिक्राइटेरियन नेट प्रवाह

मल्टीक्राइटेरिया वरीयता डिग्री की परिभाषा के अनुसार, मल्टीक्राइटेरिया शुद्ध प्रवाह को निम्नानुसार विभाजित किया जा सकता है:

जहाँ :

.

यूनिकाइटेरियन शुद्ध प्रवाह, जिसे में दर्शाया गया है, की व्याख्या मल्टीक्रिटेरिया नेट प्रवाह के समान है, किंतु यह सीमित है एक एकल मानदंड. किसी भी क्रिया को आयामी स्थान में एक सदिश द्वारा चित्रित किया जा सकता है। जीएआईए स्थान इस स्थान में क्रिया के समुच्चय पर प्रमुख घटक विश्लेषण प्रयुक्त करके प्राप्त किया गया मुख्य स्थान है।

प्रोमेथी वरीयता फलन

  • साधारण
  • यू-आकार
  • V-आकार
  • स्तर
  • रैखिक
  • गाऊशियन


प्रोमेथी रैंकिंग

प्रोमेथी मैं

प्रोमेथी I क्रियाओं की आंशिक रैंकिंग है। यह धनात्मक और ऋणात्मक प्रवाह पर आधारित है। इसमें प्राथमिकताएँ, उदासीनता और अतुलनीयताएँ (आंशिक प्रीऑर्डर) सम्मिलित हैं।

प्रोमेथी II

प्रोमेथी II क्रिया की पूरी रैंकिंग है। यह मल्टीक्राइटेरिया नेट फ्लो पर आधारित है। इसमें प्राथमिकताएँ और उदासीनता (प्रीऑर्डर) सम्मिलित हैं।

यह भी देखें

संदर्भ

  1. J. Figueira; S. Greco & M. Ehrgott (2005). Multiple Criteria Decision Analysis: State of the Art Surveys. Springer Verlag.
  2. J.P. Brans (1982). "L'ingénierie de la décision: élaboration d'instruments d'aide à la décision. La méthode PROMETHEE". Presses de l’Université Laval.
  3. B. Mareschal; J.P. Brans (1988). "एमसीडीए के लिए ज्यामितीय प्रतिनिधित्व। GAIA मॉड्यूल". European Journal of Operational Research.
  4. J.P. Brans & P. Vincke (1985). "A preference ranking organisation method: The PROMETHEE method for MCDM". Management Science.
  5. M. Behzadian; R.B. Kazemzadeh; A. Albadvi; M. Aghdasi (2010). "PROMETHEE: A comprehensive literature review on methodologies and applications". European Journal of Operational Research.


बाहरी संबंध