एक वलय में कण: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
:<math> -\frac{\hbar^2}{2m}\nabla^2 \psi = E\psi </math> | :<math> -\frac{\hbar^2}{2m}\nabla^2 \psi = E\psi </math> | ||
== '''तरंग फलन''' == | == '''तरंग फलन''' == | ||
[[Image:Quantum-rigid-rotator 1+2-animation-color.gif|thumb|एक "सुसंगत" अवस्था का एनिमेटेड तरंग फलन जिसमें आइजेनस्टेट्स n=1 और n=2 सम्मिलित हैं।]]त्रिज्या R के 1-आयामी वलय पर ध्रुवीय निर्देशांक का उपयोग करते हुए, तरंग फलन केवल [[कोण|कोणीय]] निर्देशांक पर निर्भर करता है, और इसी तरह<ref>[[#McQuarrieProb|Problems and Solutions to accompany Physical Chemistry: a Molecular Approach]]</ref> | [[Image:Quantum-rigid-rotator 1+2-animation-color.gif|thumb|एक '''"सुसंगत"''' अवस्था का एनिमेटेड तरंग फलन जिसमें आइजेनस्टेट्स n=1 और n=2 सम्मिलित हैं।]]त्रिज्या R के 1-आयामी वलय पर ध्रुवीय निर्देशांक का उपयोग करते हुए, तरंग फलन केवल [[कोण|कोणीय]] निर्देशांक पर निर्भर करता है, और इसी तरह<ref>[[#McQuarrieProb|Problems and Solutions to accompany Physical Chemistry: a Molecular Approach]]</ref> | ||
:<math> \nabla^2 = \frac{1}{R^2} \frac{\partial^2}{\partial \theta^2} </math> | :<math> \nabla^2 = \frac{1}{R^2} \frac{\partial^2}{\partial \theta^2} </math> | ||
यह आवश्यक है कि तरंग फलन [[आवधिक कार्य]] हो <math> \ \theta </math> अवधि के साथ <math> 2 \pi</math> (इस मांग से कि तरंग कार्य वृत्त पर एकल-मूल्यवान [[फ़ंक्शन (गणित)|फलन (गणित)]] हों), और यह कि उन्हें सामान्यीकृत किया जाए, जिससे स्थितियां बनती हैं | यह आवश्यक है कि तरंग फलन [[आवधिक कार्य]] हो <math> \ \theta </math> अवधि के साथ <math> 2 \pi</math> (इस मांग से कि तरंग कार्य वृत्त पर एकल-मूल्यवान [[फ़ंक्शन (गणित)|फलन (गणित)]] हों), और इस प्रकार यह कि उन्हें सामान्यीकृत किया जाए, जिससे स्थितियां बनती हैं | ||
:<math> \int_{0}^{2 \pi} \left| \psi ( \theta ) \right|^2 \, d\theta = 1\ </math>, | :<math> \int_{0}^{2 \pi} \left| \psi ( \theta ) \right|^2 \, d\theta = 1\ </math>, | ||
Line 17: | Line 17: | ||
=='''[[ऊर्जा]] [[eigenvalue|आइगेनवैल्यू]]''' == | =='''[[ऊर्जा]] [[eigenvalue|आइगेनवैल्यू]]''' == | ||
ऊर्जा आइगेनवैल्यू <math> E </math> आवधिक सीमा स्थितियों के कारण [[परिमाणीकरण (भौतिकी)]] डी हैं, और उन्हें संतुष्ट करना आवश्यक है | ऊर्जा आइगेनवैल्यू <math> E </math> आवधिक सीमा स्थितियों के कारण [[परिमाणीकरण (भौतिकी)]] डी हैं, और इस प्रकार उन्हें संतुष्ट करना आवश्यक है | ||
:<math> e^{\pm i \frac{R}{\hbar} \sqrt{2 m E} \theta } = e^{\pm i \frac{R}{\hbar} \sqrt{2 m E} (\theta +2 \pi)}</math>, या | :<math> e^{\pm i \frac{R}{\hbar} \sqrt{2 m E} \theta } = e^{\pm i \frac{R}{\hbar} \sqrt{2 m E} (\theta +2 \pi)}</math>, या | ||
:<math> e^{\pm i 2 \pi \frac{R}{\hbar} \sqrt{2 m E} } = 1 = e^{i 2 \pi n}</math> | :<math> e^{\pm i 2 \pi \frac{R}{\hbar} \sqrt{2 m E} } = 1 = e^{i 2 \pi n}</math> | ||
आइजनफंक्शन और आइजेनएनर्जीज़ हैं | |||
:<math> \psi(\theta) = \frac{1}{\sqrt{2 \pi R}} \, e^{\pm i n \theta }</math> | :<math> \psi(\theta) = \frac{1}{\sqrt{2 \pi R}} \, e^{\pm i n \theta }</math> | ||
:<math> E_n = \frac{n^2 \hbar^2}{2 m R^2} </math> कहाँ <math>n = 0,\pm 1,\pm 2,\pm 3, \ldots</math> | :<math> E_n = \frac{n^2 \hbar^2}{2 m R^2} </math> कहाँ <math>n = 0,\pm 1,\pm 2,\pm 3, \ldots</math> | ||
इसलिए, प्रत्येक मूल्य के लिए दो पतित क्वांटम अवस्थाएँ हैं <math> n>0 </math> (तदनुसार <math> \ e^{\pm i n \theta}</math>). इसलिए, संख्या n द्वारा अनुक्रमित ऊर्जा तक की ऊर्जा वाले 2n+1 राज्य हैं। | इसलिए, प्रत्येक मूल्य के लिए दो पतित क्वांटम अवस्थाएँ हैं <math> n>0 </math> (तदनुसार <math> \ e^{\pm i n \theta}</math>). इसलिए, संख्या n द्वारा अनुक्रमित ऊर्जा तक की ऊर्जा वाले 2n+1 राज्य हैं। | ||
एक-आयामी रिंग में कण का स्थिति शिक्षाप्रद उदाहरण है, इस प्रकार जब [[परमाणु नाभिक]] की परिक्रमा करने वाले [[इलेक्ट्रॉन]] के लिए कोणीय गति के परिमाणीकरण (भौतिकी) का अध्ययन किया जाता है। इस प्रकार उस स्थिति में [[दिगंश]] तरंग कार्य वलय पर कण के ऊर्जा | एक-आयामी रिंग में कण का स्थिति शिक्षाप्रद उदाहरण है, इस प्रकार जब [[परमाणु नाभिक]] की परिक्रमा करने वाले [[इलेक्ट्रॉन]] के लिए कोणीय गति के परिमाणीकरण (भौतिकी) का अध्ययन किया जाता है। इस प्रकार उस स्थिति में [[दिगंश]] तरंग कार्य वलय पर कण के ऊर्जा आइजनफंक्शनस के समान होते हैं। | ||
यह कथन कि रिंग पर कण के लिए किसी भी तरंग फलन को ऊर्जा आइजनफंक्शन के [[ जितना कि सुपरइम्पोज़िशन |जितना कि सुपरइम्पोज़िशन]] के रूप में लिखा जा सकता है, इस प्रकार फूरियर श्रृंखला में किसी भी आवधिक फलन (गणित) के विकास के बारे में [[फूरियर प्रमेय]] के बिल्कुल समान है। | यह कथन कि रिंग पर कण के लिए किसी भी तरंग फलन को ऊर्जा आइजनफंक्शन के [[ जितना कि सुपरइम्पोज़िशन |जितना कि सुपरइम्पोज़िशन]] के रूप में लिखा जा सकता है, इस प्रकार फूरियर श्रृंखला में किसी भी आवधिक फलन (गणित) के विकास के बारे में [[फूरियर प्रमेय]] के बिल्कुल समान है। |
Revision as of 00:14, 3 August 2023
क्वांटम यांत्रिकी में, एक-आयामी रिंग में कण का मामला बॉक्स में कण के समान होता है। इस प्रकार मुक्त कण के लिए श्रोडिंगर समीकरण जो वलय तक सीमित है (विधिक रूप से, जिसका विन्यास स्थान (भौतिकी) वृत्त है) ) है
तरंग फलन
त्रिज्या R के 1-आयामी वलय पर ध्रुवीय निर्देशांक का उपयोग करते हुए, तरंग फलन केवल कोणीय निर्देशांक पर निर्भर करता है, और इसी तरह[1]
यह आवश्यक है कि तरंग फलन आवधिक कार्य हो अवधि के साथ (इस मांग से कि तरंग कार्य वृत्त पर एकल-मूल्यवान फलन (गणित) हों), और इस प्रकार यह कि उन्हें सामान्यीकृत किया जाए, जिससे स्थितियां बनती हैं
- ,
और
इन शर्तों के अनुसार , श्रोडिंगर समीकरण का समाधान दिया गया है
ऊर्जा आइगेनवैल्यू
ऊर्जा आइगेनवैल्यू आवधिक सीमा स्थितियों के कारण परिमाणीकरण (भौतिकी) डी हैं, और इस प्रकार उन्हें संतुष्ट करना आवश्यक है
- , या
आइजनफंक्शन और आइजेनएनर्जीज़ हैं
- कहाँ
इसलिए, प्रत्येक मूल्य के लिए दो पतित क्वांटम अवस्थाएँ हैं (तदनुसार ). इसलिए, संख्या n द्वारा अनुक्रमित ऊर्जा तक की ऊर्जा वाले 2n+1 राज्य हैं।
एक-आयामी रिंग में कण का स्थिति शिक्षाप्रद उदाहरण है, इस प्रकार जब परमाणु नाभिक की परिक्रमा करने वाले इलेक्ट्रॉन के लिए कोणीय गति के परिमाणीकरण (भौतिकी) का अध्ययन किया जाता है। इस प्रकार उस स्थिति में दिगंश तरंग कार्य वलय पर कण के ऊर्जा आइजनफंक्शनस के समान होते हैं।
यह कथन कि रिंग पर कण के लिए किसी भी तरंग फलन को ऊर्जा आइजनफंक्शन के जितना कि सुपरइम्पोज़िशन के रूप में लिखा जा सकता है, इस प्रकार फूरियर श्रृंखला में किसी भी आवधिक फलन (गणित) के विकास के बारे में फूरियर प्रमेय के बिल्कुल समान है।
इस सरल मॉडल का उपयोग बेंजीन जैसे कुछ रिंग अणुओं के अनुमानित ऊर्जा स्तर को खोजने के लिए किया जा सकता है।
आवेदन
कार्बनिक रसायन विज्ञान में, सुगंधित यौगिकों में परमाणु वलय होते हैं, जैसे बेंजीन वलय (केकुले संरचना) जिसमें पाँच या छह, सामान्यतः कार्बन, परमाणु होते हैं। इस प्रकार "बकीबॉल्स" (बकमिनस्टरफुलरीन) की सतह भी वैसी ही है। यह वलय गोलाकार वेवगाइड की तरह व्यवहार करता है, जिसमें वैलेंस इलेक्ट्रॉन दोनों दिशाओं में परिक्रमा करते हैं। n तक के सभी ऊर्जा स्तरों को भरने के लिए इसकी आवश्यकता होती है इस प्रकार इलेक्ट्रॉनों, क्योंकि इलेक्ट्रॉनों के स्पिन के अतिरिक्त दो संभावित अभिविन्यास होते हैं। इस प्रकार यह असाधारण स्थिरता ("सुगंधित") देता है, और इसे हुकेल नियम के रूप में जाना जाता है।
इस प्रकार इसके अतिरिक्त घूर्णी स्पेक्ट्रोस्कोपी में इस मॉडल का उपयोग घूर्णी ऊर्जा स्तरों के अनुमान के रूप में किया जा सकता है।